RANet: Relationship Attention for Hyperspectral Anomaly Detection
Abstract
:1. Introduction
- We propose a novel framework, RANet, for hyperspectral anomaly detection. To the best of our knowledge, this is the first attempt to explore the potential of topological relationships in this task;
- We introduce a customized incidence matrix that directs GAT to pay attention to topological relationships in HSIs, where the attention intensity is self-adaptively adjusted to different data characteristics;
- Furthermore, an end-to-end unsupervised CAE with high-fidelity and high-dimensional data representation is developed as the reconstruction backbone;
- We jointly learn the reconstructed backbone and topological attention to detect anomalies with the reconstruction error. Extensive experiments on HSIs indicate that our RANet outperforms existing state-of-the-art methods.
2. Related Work
3. Proposed Method
3.1. Overall Architecture
3.2. Topological-Aware Module
3.3. Reconstructed Backbone
3.4. Joint Learning
4. Experimental Results
4.1. Experimental Setup
4.2. Detection Performance
4.3. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Veganzones, M.A.; Tochon, G.; Dalla-Mura, M.; Plaza, A.J.; Chanussot, J. Hyperspectral image segmentation using a new spectral unmixing-based binary partition tree representation. IEEE Trans. Image Process. 2014, 23, 3574–3589. [Google Scholar] [CrossRef]
- Dong, W.; Fu, F.; Shi, G.; Cao, X.; Wu, J.; Li, G.; Li, X. Hyperspectral image super-resolution via non-negative structured sparse representation. IEEE Trans. Image Process. 2016, 25, 2337–2352. [Google Scholar] [CrossRef]
- Akgun, T.; Altunbasak, Y.; Mersereau, R. Super-resolution reconstruction of hyperspectral images. IEEE Trans. Image Process. 2005, 14, 1860–1875. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, T.; Fu, Y.; Huang, H. Hyperreconnet: Joint coded aperture optimization and image reconstruction for compressive hyperspectral imaging. IEEE Trans. Image Process. 2019, 28, 2257–2270. [Google Scholar] [CrossRef]
- Veganzones, M.A.; Simões, M.; Licciardi, G.; Yokoya, N.; Bioucas-Dias, J.M.; Chanussot, J. Hyperspectral super-resolution of locally low rank images from complementary multisource data. IEEE Trans. Image Process. 2016, 25, 274–288. [Google Scholar] [CrossRef]
- Jiang, K.; Xie, W.; Lei, J.; Jiang, T.; Li, Y. Lren: Low-rank embedded network for sample-free hyperspectral anomaly detection. AAAI-AAAI Conf. Artif. Intell. 2021, 35, 4139–4146. [Google Scholar] [CrossRef]
- Wu, H.; Prasad, S. Semi-supervised deep learning using pseudo labels for hyperspectral image classification. IEEE Trans. Image Process. 2018, 27, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Shi, Z. Hyperspectral image target detection improvement based on total variation. IEEE Trans. Image Process. 2016, 25, 2249–2258. [Google Scholar] [CrossRef] [PubMed]
- Imbiriba, T.; Bermudez, J.C.M.; Richard, C.; Tourneret, J.-Y. Nonparametric detection of nonlinearly mixed pixels and endmember estimation in hyperspectral images. IEEE Trans. Image Process. 2016, 25, 1136–1151. [Google Scholar] [CrossRef]
- Du, B.; Zhang, Y.; Zhang, L.; Tao, D. Beyond the sparsity-based target detector: A hybrid sparsity and statistics-based detector for hyperspectral images. IEEE Trans. Image Process. 2016, 25, 5345–5357. [Google Scholar] [CrossRef]
- Altmann, Y.; Dobigeon, N.; McLaughlin, S.; Tourneret, J.-Y. Residual component analysis of hyperspectral images—Application to joint nonlinear unmixing and nonlinearity detection. IEEE Trans. Image Process. 2014, 23, 2148–2158. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y. Hyperspectral anomaly detection via image super-resolution processing and spatial correlation. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2307–2320. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Zhong, Y.; Zhang, L. Hyperspectral anomaly detection via locally enhanced low-rank prior. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6995–7009. [Google Scholar] [CrossRef]
- Tu, B.; Yang, X.; Zhou, C.; He, D.; Plaza, A. Hyperspectral anomaly detection using dual window density. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8503–8517. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Y.; Liu, W.; Orlando, D.; Li, H. Training data assisted anomaly detection of multi-pixel targets in hyperspectral imagery. IEEE Trans. Signal Process. 2020, 68, 3022–3032. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, X.; Li, X. Similarity constrained convex nonnegative matrix factorization for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4810–4822. [Google Scholar] [CrossRef]
- Dong, G.; Liao, G.; Liu, H.; Kuang, G. A review of the autoencoder and its variants: A comparative perspective from target recognition in synthetic-aperture radar images. IEEE Geosci. Remote Sens. Mag. 2018, 6, 44–68. [Google Scholar] [CrossRef]
- Reed, I.S.; Yu, X. Adaptive multiple-band cfar detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1760–1770. [Google Scholar] [CrossRef]
- Matteoli, S.; Veracini, T.; Diani, M.; Corsini, G. A locally adaptive background density estimator: An evolution for rx-based anomaly detectors. IEEE Geosci. Remote Sens. Lett. 2014, 11, 323–327. [Google Scholar] [CrossRef]
- Li, W.; Du, Q. Collaborative representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1463–1474. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Zhang, L.; Ma, L. Hyperspectral anomaly detection by the use of background joint sparse representation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2523–2533. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, B.; Zhang, L.; Wang, S. A low-rank and sparse matrix decomposition-based mahalanobis distance method for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1376–1389. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Z.; Li, J.; Plaza, A.; Wei, Z. Anomaly detection in hyperspectral images based on low-rank and sparse representation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1990–2000. [Google Scholar] [CrossRef]
- Wang, K.; Gou, C.; Duan, Y.; Lin, Y.; Zheng, X.; Wang, F.-Y. Generative adversarial networks: Introduction and outlook. IEEE/CAA J. Autom. Sin. 2017, 4, 588–598. [Google Scholar] [CrossRef]
- Li, W.; Wu, G.; Du, Q. Transferred deep learning for anomaly detection in hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 597–601. [Google Scholar] [CrossRef]
- Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; Ma, Y. Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Abati, D.; Porrello, A.; Calderara, S.; Cucchiara, R. Latent space autoregression for novelty detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 481–490. [Google Scholar] [CrossRef]
- Park, H.; Noh, J.; Ham, B. Learning memory-guided normality for anomaly detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 14360–14369. [Google Scholar] [CrossRef]
- Pang, G.; Yan, C.; Shen, C.; Hengel, A.V.; Bai, X. Self-trained deep ordinal regression for end-to-end video anomaly detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 12170–12179. [Google Scholar] [CrossRef]
- Xie, W.; Lei, J.; Liu, B.; Li, Y.; Jia, X. Spectral constraint adversarial autoencoders approach to feature representation in hyperspectral anomaly detection. Neural Netw. 2019, 119, 222–234. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, W.; Li, Y.; Li, Z.; Du, Q. Dual-frequency autoencoder for anomaly detection in transformed hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5523613. [Google Scholar] [CrossRef]
- Xie, W.; Fan, S.; Qu, J.; Wu, X.; Lu, Y.; Du, Q. Spectral distribution-aware estimation network for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5512312. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Zhang, L.; Zhong, Y. Auto-ad: Autonomous hyperspectral anomaly detection network based on fully convolutional autoencoder. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Jiang, T.; Xie, W.; Li, Y.; Lei, J.; Du, Q. Weakly supervised discriminative learning with spectral constrained generative adversarial network for hyperspectral anomaly detection. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6504–6517. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Li, Y.; Xie, W.; Du, Q. Discriminative reconstruction constrained generative adversarial network for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4666–4679. [Google Scholar] [CrossRef]
- Fu, X.; Jia, S.; Zhuang, L.; Xu, M.; Zhou, J.; Li, Q. Hyperspectral anomaly detection via deep plug-and-play denoising cnn regularization. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9553–9568. [Google Scholar] [CrossRef]
- Ma, J.; Xie, W.; Li, Y.; Fang, L. Bsdm: Background suppression diffusion model for hyperspectral anomaly detection. arXiv 2023, arXiv:2307.09861. [Google Scholar]
- Wang, M.; Wang, Q.; Hong, D.; Roy, S.K.; Chanussot, J. Learning tensor low-rank representation for hyperspectral anomaly detection. IEEE Trans. Cybern. 2023, 53, 679–691. [Google Scholar] [CrossRef]
- Jiang, K.; Xie, W.; Lei, J.; Li, Z.; Li, Y.; Jiang, T.; Du, Q. E2e-liade: End-to-end local invariant autoencoding density estimation model for anomaly target detection in hyperspectral image. IEEE Trans. Cybern. 2021, 52, 11385–11396. [Google Scholar] [CrossRef]
- Zweig, M.H.; Campbell, G. Receiver-operating characteristic (roc) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Flach, P.; Hernándezorallo, J.; Ferri, C. A coherent interpretation of aucas a measure of aggregated classification performance. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011; pp. 657–664. [Google Scholar]
- Mcgill, R.; Tukey, J.W.; Larsen, W.A. Variation of box plots. Am. Stat. 1978, 32, 12–16. [Google Scholar]
- Chang, S.; Du, B.; Zhang, L. A subspace selection-based discriminative forest method for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4033–4046. [Google Scholar] [CrossRef]
- Li, L.; Li, W.; Du, Q.; Tao, R. Low-rank and sparse decomposition with mixture of gaussian for hyperspectral anomaly detection. IEEE Trans. Cybern. 2021, 51, 4363–4372. [Google Scholar] [CrossRef]
- Li, L.; Li, W.; Qu, Y.; Zhao, C.; Tao, R.; Du, Q. Prior-based tensor approximation for anomaly detection in hyperspectral imagery. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 1037–1050. [Google Scholar] [CrossRef]
- Huyan, N.; Zhang, X.; Zhou, H.; Jiao, L. Hyperspectral anomaly detection via background and potential anomaly dictionaries construction. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2263–2276. [Google Scholar] [CrossRef]
- Liu, J.; Hou, Z.; Li, W.; Tao, R.; Orlando, D.; Li, H. Multipixel anomaly detection with unknown patterns for hyperspectral imagery. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 5557–5567. [Google Scholar] [CrossRef]
RANet | RX | LRASR | LSMAD | LSDM–MoG | PTA | SSDF | PAB–DC | Auto-AD | 2S–GLRT | |
---|---|---|---|---|---|---|---|---|---|---|
TC-1 | 0.9929 | 0.9907 | 0.9563 | 0.9829 | 0.991 | 0.9775 | 0.9466 | 0.9793 | 0.9906 | 0.9898 |
TC-2 | 0.9993 | 0.9946 | 0.9798 | 0.9856 | 0.9845 | 0.998 | 0.9781 | 0.9912 | 0.9937 | 0.9913 |
LA | 0.9955 | 0.9887 | 0.9796 | 0.9804 | 0.9781 | 0.9738 | 0.9423 | 0.9323 | 0.9913 | 0.9915 |
SD | 0.9747 | 0.9403 | 0.8891 | 0.9689 | 0.931 | 0.9391 | 0.9454 | 0.9669 | 0.9530 | 0.9647 |
Avg | 0.9906 | 0.9786 | 0.9512 | 0.9795 | 0.9712 | 0.9721 | 0.9531 | 0.9674 | 0.9821 | 0.9843 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Li, Y.; Li, L.; Wang, Y.; Yang, Y.; Ding, Y.; Zhang, M.; Liu, Y.; Gao, X. RANet: Relationship Attention for Hyperspectral Anomaly Detection. Remote Sens. 2023, 15, 5570. https://doi.org/10.3390/rs15235570
Shao Y, Li Y, Li L, Wang Y, Yang Y, Ding Y, Zhang M, Liu Y, Gao X. RANet: Relationship Attention for Hyperspectral Anomaly Detection. Remote Sensing. 2023; 15(23):5570. https://doi.org/10.3390/rs15235570
Chicago/Turabian StyleShao, Yingzhao, Yunsong Li, Li Li, Yuanle Wang, Yuchen Yang, Yueli Ding, Mingming Zhang, Yang Liu, and Xiangqiang Gao. 2023. "RANet: Relationship Attention for Hyperspectral Anomaly Detection" Remote Sensing 15, no. 23: 5570. https://doi.org/10.3390/rs15235570
APA StyleShao, Y., Li, Y., Li, L., Wang, Y., Yang, Y., Ding, Y., Zhang, M., Liu, Y., & Gao, X. (2023). RANet: Relationship Attention for Hyperspectral Anomaly Detection. Remote Sensing, 15(23), 5570. https://doi.org/10.3390/rs15235570