Evaluation of Tropopause Height from Sentinel-6 GNSS Radio Occultation Using Different Methods
Abstract
:1. Introduction
2. Data and Methods
2.1. GNSS RO Data
2.2. Methods of TPH Estimation
3. Results and Analysis
3.1. TPH from Various Algorithms
3.2. Comparison of LRT Heights
3.3. Determination of the Zonal Mean
3.4. Determination of the Monthly Mean
3.5. Evaluation of TPH with ECMWF
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnston, B.; Xie, F. Characterizing Extratropical Tropopause Bimodality and Its Relationship to the Occurrence of Double Tropopauses Using COSMIC GPS Radio Occultation Observations. Remote Sens. 2020, 12, 1109. [Google Scholar] [CrossRef]
- Johnston, B.R.; Xie, F.; Liu, C. The Effects of Deep Convection on Regional Temperature Structure in the Tropical Upper Troposphere and Lower Stratosphere. J. Geophys. Res. Atmos. 2018, 123, 1585–1603. [Google Scholar] [CrossRef]
- Munchak, L.A.; Pan, L.L. Separation of the Lapse Rate and the Cold Point Tropopauses in the Tropics and the Resulting Impact on Cloud Top-Tropopause Relationships. J. Geophys. Res. 2014, 119, 7963–7978. [Google Scholar] [CrossRef]
- Xu, X.; Luo, J.; Zhang, K. An Analysis of the Structure and Variation of the Tropopause over China with GPS Radio Occultation Data. J. Navig. 2011, 64, S103–S111. [Google Scholar] [CrossRef]
- Schmidt, T.; Wickert, J.; Beyerle, G.; Reigber, C. Tropical Tropopause Parameters Derived from GPS Radio Occultation Measurements with CHAMP. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Santer, B.D.; Sausen, R.; Wigley, T.M.L.; Boyle, J.S.; AchutaRao, K.; Doutriaux, C.; Hansen, J.E.; Meehl, G.A.; Roeckner, E.; Ruedy, R.; et al. Behavior of Tropopause Height and Atmospheric Temperature in Models, Reanalyses, and Observations: Decadal Changes. J. Geophys. Res. Atmos. 2003, 108, ACL-1. [Google Scholar] [CrossRef]
- Seidel, D.J.; Randel, W.J. Variability and Trends in the Global Tropopause Estimated from Radiosonde Data. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Santer, B.D.; Wehner, M.F.; Wigley, T.M.L.; Sausen, R.; Meehl, G.A.; Taylor, K.E.; Ammann, C.; Arblaster, J.; Washington, W.M.; Boyle, J.S.; et al. Contributions of Anthropogenic and Natural Forcing to Recent Tropopause Height Changes. Science 2003, 301, 479–483. [Google Scholar] [CrossRef]
- Sausen, R.; Santer, B.D. Use of Changes in Tropopause Height to Detect Human Influences on Climate. Meteorol. Z. 2003, 12, 131–136. [Google Scholar] [CrossRef]
- Meng, L.; Liu, J.; Tarasick, D.W.; Li, Y. Biases of Global Tropopause Altitude Products in Reanalyses and Implications for Estimates of Tropospheric Column Ozone. Atmosphere 2021, 12, 417. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Xie, S.-P.; Liu, Q.; Zheng, X.-T. Global Influence of Tropical Pacific Variability with Implications for Global Warming Slowdown. J. Clim. 2017, 30, 2679–2695. [Google Scholar] [CrossRef]
- Di Noia, A.; Sellitto, P.; Del Frate, F.; De Laat, J. Global Tropospheric Ozone Column Retrievals from OMI Data by Means of Neural Networks. Atmos. Meas. Tech. 2013, 6, 895–915. [Google Scholar] [CrossRef]
- Schmidt, T.; Beyerle, G.; Heise, S.; Wickert, J.; Rothacher, M. A Climatology a Multiple Tropauses Derived from GPS Radio Occultations with CHAMP and SAC-C. Geophys. Res. Lett. 2006, 33, 6110. [Google Scholar] [CrossRef]
- Feng, S.; Fu, Y.; Xiao, Q. Trends in the Global Tropopause Thickness Revealed by Radiosondes. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Mateus, P.; Mendes, V.B.; Pires, C.A.L. Global Empirical Models for Tropopause Height Determination. Remote Sens. 2022, 14, 4303. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Y.; Bai, W.; Xia, J.; Tan, G.; Cheng, C.; Du, Q.; Wang, X.; Zhao, D.; Tian, Y.; et al. Comparison of RO Tropopause Height Based on Different Tropopause Determination Methods. Adv. Space Res. 2021, 67, 845–857. [Google Scholar] [CrossRef]
- Nishida, M.; Shimizu, A.; Tsuda, T.; Rocken, C.; Ware, R.H. Seasonal and Longitudinal Variations in the Tropical Tropopause Observed with the GPS Occultation Technique (GPS/MET). J. Meteorol. Soc. Japan Ser II 2000, 78, 691–700. [Google Scholar] [CrossRef]
- Zali, R.M.; Mandeep, J.S. Tropopause Estimation from GPS-RO Space-Based by Using Covariance Linear Regression Technique. J. Commun. 2022, 17, 150–155. [Google Scholar] [CrossRef]
- Narayana Rao, D.; Venkat Ratnam, M.; Krishna Murthy, B.V.; Jagannadha Rao, V.V.M.; Kumar Mehta, S.; Nath, D.; Ghouse Basha, S. Identification of Tropopause Using Bending Angle Profile from GPS Radio Occultation (RO): A Radio Tropopause. Geophys. Res. Lett. 2007, 34, L15809. [Google Scholar] [CrossRef]
- Schmidt, T.; Wickert, J.; Beyerle, G.; Heise, S. Global Tropopause Height Trends Estimated from GPS Radio Occultation Data. Geophys. Res. Lett. 2008, 35, L11806. [Google Scholar] [CrossRef]
- Schmidt, T.; Heise, S.; Wickert, J.; Beyerle, G.; Reigber, C. GPS Radio Occultation with CHAMP and SAC-C: Global Monitoring of Thermal Tropopause Parameters. Atmos. Chem. Phys. 2005, 5, 1473–1488. [Google Scholar] [CrossRef]
- Zhran, M.; Mousa, A. Global Tropopause Height Determination Using GNSS Radio Occultation. Egypt. J. Remote Sens. Space Sci. 2023, 26, 317–331. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Y.; Bai, W.; Xia, J.; Tan, G.; Cheng, C.; Du, Q.; Wang, X.; Zhao, D.; Tian, Y.; et al. Validation of Preliminary Results of Thermal Tropopause Derived from FY-3C GNOS Data. Remote Sens. 2019, 11, 1139. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, P.; Xu, X. Variations of the Tropopause over Different Latitude Bands Observed Using COSMIC Radio Occultation Bending Angles. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2339–2349. [Google Scholar] [CrossRef]
- Vespe, F.; Pacione, R.; Rosciano, E. A Novel Tool for the Determination of Tropopause Heights by Using GNSS Radio Occultation Data. Atmos. Clim. Sci. 2017, 7, 301–313. [Google Scholar] [CrossRef]
- Anthes, R.A. Exploring Earth’s Atmosphere with Radio Occultation: Contributions to Weather, Climate and Space Weather. Atmos. Meas. Tech. 2011, 4, 1077–1103. [Google Scholar] [CrossRef]
- Steiner, A.K.; Lackner, B.C.; Ladstdter, F.; Scherllin-Pirscher, B.; Foelsche, U.; Kirchengast, G. GPS Radio Occultation for Climate Monitoring and Change Detection. Radio Sci. 2011, 46, 1–17. [Google Scholar] [CrossRef]
- Wang, W.; Shangguan, M.; Tian, W.; Schmidt, T.; Ding, A. Large Uncertainties in Estimation of Tropical Tropopause Temperature Variabilities Due to Model Vertical Resolution. Geophys. Res. Lett. 2019, 46, 10043–10052. [Google Scholar] [CrossRef]
- Kursinski, E.R.; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s Atmosphere with Radio Occultation Measurements Using the Global Positioning System. J. Geophys. Res. Atmos. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Gorbunov, M.E.; Benzon, H.H.; Jensen, A.S.; Lohmann, M.S.; Nielsen, A.S. Comparative Analysis of Radio Occultation Processing Approaches Based on Fourier Integral Operators. Radio Sci. 2004, 39, 1–11. [Google Scholar] [CrossRef]
- Gorbunov, M.E.; Shmakov, A.V.; Leroy, S.S.; Lauritsen, K.B. COSMIC Radio Occultation Processing: Cross-Center Comparison and Validation. J. Atmos. Ocean. Technol. 2011, 28, 737–751. [Google Scholar] [CrossRef]
- Syndergaard, S. Algorithm Theoretical Baseline Document: Level 1B Bending Angles. 2020. Available online: https://rom-saf.eumetsat.int/product_documents/romsaf_atbd_ba.pdf (accessed on 30 September 2022).
- Wickert, J.; Reigber, C.; Beyerle, G.; König, R.; Marquardt, C.; Schmidt, T.; Grunwaldt, L.; Galas, R.; Meehan, T.K.; Melbourne, W.G.; et al. Atmosphere Sounding by GPS Radio Occultation: First Results from CHAMP. Geophys. Res. Lett. 2001, 28, 3263–3266. [Google Scholar] [CrossRef]
- Zhran, M.; Mousa, A. Planetary Boundary Layer Height Retrieval Using GNSS Radio Occultation over Egypt. Egypt. J. Remote Sens. Space Sci. 2022, 25, 551–559. [Google Scholar] [CrossRef]
- WMO. Atmospheric Ozone 1985: Global Ozone Research and Monitoring Report; World Meteorological Organization (WMO): Geneva, Switzerland, 1986. [Google Scholar]
- Li, W.; Yuan, Y.B.; Chai, Y.J.; Liou, Y.A.; Ou, J.K.; Zhong, S. ming Characteristics of the Global Thermal Tropopause Derived from Multiple Radio Occultation Measurements. Atmos. Res. 2017, 185, 142–157. [Google Scholar] [CrossRef]
- Han, T.T.; Ping, J.S.; Zhang, S.J. Global Features and Trends of the Tropopause Derived from GPS/CHAMP RO Data. Sci. China Phys. Mech. Astron. 2011, 54, 365–374. [Google Scholar] [CrossRef]
- Seidel, D.J.; Ross, R.J.; Angell, J.K.; Reid, G.C. Climatological Characteristics of the Tropical Tropopause as Revealed by Radiosondes. J. Geophys. Res. Atmos. 2001, 106, 7857–7878. [Google Scholar] [CrossRef]
- Xia, P.; Shan, Y.; Ye, S.; Jiang, W. Identification of Tropopause Height with Atmospheric Refractivity. J. Atmos. Sci. 2021, 78, 3–16. [Google Scholar] [CrossRef]
- Lewis, H.W. A Robust Method for Tropopause Altitude Identification Using GPS Radio Occultation Data. Geophys. Res. Lett. 2009, 36, L12808. [Google Scholar] [CrossRef]
- Zhran, M. An Evaluation of GNSS Radio Occultation Atmospheric Profiles from Sentinel-6. Egypt. J. Remote Sens. Space Sci. 2023, 26, 654–665. [Google Scholar] [CrossRef]
- Kursinski, E.R.; Hajj, G.A.; Leroy, S.S.; Herman, B. The GPS Radio Occultation Technique. Terr. Atmos. Ocean. Sci. 2000, 11, 53–114. [Google Scholar] [CrossRef]
- Healy, S.B. Annales Geophysicae Smoothing Radio Occultation Bending Angles above 40 Km; European Geophysical Society: Munich, Germany, 2001; Volume 19, pp. 459–468. [Google Scholar] [CrossRef]
- Gobiet, A.; Kirchengast, G.; Manney, G.L.; Borsche, M.; Retscher, C.; Stiller, G. Atmospheric Chemistry and Physics Retrieval of Temperature Profiles from CHAMP for Climate Monitoring: Intercomparison with Envisat MIPAS and GOMOS and Different Atmospheric Analyses. Atmos. Chem. Phys. 2007, 7, 3519–3536. [Google Scholar] [CrossRef]
- Fjeldbo, G.; Kliore, A.J.; Eshleman, R. The Neutral Atmosphere of Venus as Studied with the Mariner V Radio Occultation Experiments. Astron. J. 1971, 76, 123. [Google Scholar] [CrossRef]
- Highwood, E.J.; Hoskins, B.J. The Tropical Tropopause. Q. J. R. Meteorol. Soc. 1998, 124, 1579–1604. [Google Scholar] [CrossRef]
- Jin, S.G. (Ed.) The Radio Occultation Processing Package (ROPP) Applications Module User Guide ROPP APPS User Guide, 2021; Global Navigation Satellite Systems: Signal, Theory and Applications; InTech-Publisher: Rijeka, Croatia, 2021; Volume 49, p. 426. [Google Scholar]
- Jin, S.G.; Han, L.; Cho, J. Lower atmospheric anomalies following the 2008 Wenchuan Earthquake observed by GPS measurements. J. Atmos. Sol.-Terr. Phys. 2011, 73, 810–814. [Google Scholar] [CrossRef]
- Jin, S.; Wang, Q.; Dardanelli, G. A review on multi-GNSS for Earth observation and emerging applications. Remote Sens. 2022, 14, 3930. [Google Scholar] [CrossRef]
- Jin, S.G.; Gao, C.; Li, J. Atmospheric sounding from FY-3C GPS radio occultation observations: First results and validation. Adv. Meteorol. 2019, 2019, 4780143. [Google Scholar] [CrossRef]
Latitude Zone | 0–10°N | 10°–20°N | 20°–30°N | 0–10°S | 10°–20°S | 20°–30°S |
---|---|---|---|---|---|---|
CPT-LRT (km) | 0.574 | 0.685 | 0.902 | 0.568 | 0.677 | 0.899 |
Month | January | February | March | April | May | June |
---|---|---|---|---|---|---|
RO-ECMWF (m) | −194 | −179 | −162 | −159 | −135 | −185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhran, M.; Mousa, A.; Alshehri, F.; Jin, S. Evaluation of Tropopause Height from Sentinel-6 GNSS Radio Occultation Using Different Methods. Remote Sens. 2023, 15, 5513. https://doi.org/10.3390/rs15235513
Zhran M, Mousa A, Alshehri F, Jin S. Evaluation of Tropopause Height from Sentinel-6 GNSS Radio Occultation Using Different Methods. Remote Sensing. 2023; 15(23):5513. https://doi.org/10.3390/rs15235513
Chicago/Turabian StyleZhran, Mohamed, Ashraf Mousa, Fahad Alshehri, and Shuanggen Jin. 2023. "Evaluation of Tropopause Height from Sentinel-6 GNSS Radio Occultation Using Different Methods" Remote Sensing 15, no. 23: 5513. https://doi.org/10.3390/rs15235513
APA StyleZhran, M., Mousa, A., Alshehri, F., & Jin, S. (2023). Evaluation of Tropopause Height from Sentinel-6 GNSS Radio Occultation Using Different Methods. Remote Sensing, 15(23), 5513. https://doi.org/10.3390/rs15235513