Vegetation Stress Monitor—Assessment of Drought and Temperature-Related Effects on Vegetation in Germany Analyzing MODIS Time Series over 23 Years
Abstract
:1. Introduction
- Provide an improved and updated time series of monthly vegetation stress for Germany spanning the years between 2000 and 2022.
- Enhance our understanding of drought- and temperature-related patterns of vegetation stress in Germany with a particular focus on spatio-temporal differences and on the droughts that happened from 2018 to 2022 compared to previous years.
- Quantify the relationship between vegetation stress and yields for important crop types in Germany to provide a better understanding of which periods of vegetation stress throughout the growing season are most relevant and where in Germany such effects are most prominent.
2. Study Area
2.1. Geographic Characteristics
Focus County | Mean Temperature (°C) Average of 1991–2020 [59] | Maximum July Temperature (°C) Average of 1991–2020 [60] | Annual Rainfall (mm) Average of 1991–2020 [61] | Muencheberger Soil Quality Rating (min–max (mean)) 1 [62,63] |
---|---|---|---|---|
C1—Demmin | 9.1 | 23.4 | 592 | 27–69 (56) |
C2—Steinfurt | 10.2 | 23.9 | 784 | 19–78 (61) |
C3—Soemmerda | 9.6 | 24.9 | 542 | 46–98 (89) |
C4–Wuerzburg | 9.7 | 25.2 | 658 | 29–77 (59) |
C5–Rottal–Inn | 9.1 | 24.7 | 875 | 57–77 (69) |
G1–Cuxhaven | 9.7 | 22.5 | 832 | 19–78 (61) |
G2–Ostallgaeu | 7.6 | 22.2 | 1314 | 59–77 (73) |
2.2. Dry and Hot Years 2018–2022
3. Data
3.1. Satellite and Land Cover
3.2. Yield Statistics
4. Methods
4.1. Vegetation Stress Assessment
4.2. Correlation Analyses
5. Results
5.1. Vegetation Stress Detection in Germany for 2000–2022
5.2. Detected Vegetation Stress Characteristics for Germany in 2018–2022
5.3. Relationship of MODIS-Based Vegetation Stress and Agricultural Yields
6. Discussion
6.1. Long-Term Patterns of Vegetation Stress and the Particular Situation since 2018
6.2. Vegetation Stress and Yields
6.3. Strengths and Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conradt, T.; Engelhardt, H.; Menz, C.; Vicente-Serrano, S.M.; Farizo, B.A.; Pena-Angulo, D.; Dominguez-Castro, F.; Eklundh, L.; Jin, H.; Boincean, B.; et al. Cross-sectoral impacts of the 2018–2019 Central European drought and climate resilience in the German part of the Elbe River basin. Reg. Environ. Chang. 2023, 23, 32. [Google Scholar] [CrossRef] [PubMed]
- Thonfeld, F.; Gessner, U.; Holzwarth, S.; Kriese, J.; da Ponte, E.; Huth, J.; Kuenzer, C. A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years. Remote Sens. 2022, 14, 562. [Google Scholar] [CrossRef]
- Boergens, E.; Güntner, A.; Dobslaw, H.; Dahle, C. Quantifying the Central European Droughts in 2018 and 2019 With GRACE Follow-On. Geophys. Res. Lett. 2020, 47, e2020GL087285. [Google Scholar] [CrossRef]
- Buras, A.; Rammig, A.; Zang, C.S. The European Forest Condition Monitor: Using Remotely Sensed Forest Greenness to Identify Hot Spots of Forest Decline. Front. Plant Sci. 2021, 12, 689220. [Google Scholar] [CrossRef] [PubMed]
- Orth, R.; Zscheischler, J.; Mahecha, M.D.; Reichstein, M. Contrasting biophysical and societal impacts of hydro-meteorological extremes. Environ. Res. Lett. 2022, 17, 014044. [Google Scholar] [CrossRef]
- Boeing, F.; Rakovec, O.; Kumar, R.; Samaniego, L.; Schrön, M.; Hildebrandt, A.; Rebmann, C.; Thober, S.; Müller, S.; Zacharias, S.; et al. High-resolution drought simulations and comparison to soil moisture observations in Germany. Hydrol. Earth Syst. Sci. 2022, 26, 5137–5161. [Google Scholar] [CrossRef]
- Bastos, A.; Fu, Z.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Weber, U.; Reichstein, M.; Anthoni, P.; Arneth, A.; et al. Impacts of extreme summers on European ecosystems: A comparative analysis of 2003, 2010 and 2018. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190507. [Google Scholar] [CrossRef]
- Markonis, Y.; Kumar, R.; Hanel, M.; Rakovec, O.; Maca, P.; AghaKouchak, A. The rise of compound warm-season droughts in Europe. Sci. Adv. 2021, 7, eabb9668. [Google Scholar] [CrossRef]
- Grillakis, M.G. Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci. Total Environ. 2019, 660, 1245–1255. [Google Scholar] [CrossRef]
- Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E.F.; Marx, A. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Chang. 2018, 8, 421–426. [Google Scholar] [CrossRef]
- Rakovec, O.; Samaniego, L.; Hari, V.; Markonis, Y.; Moravec, V.; Thober, S.; Hanel, M.; Kumar, R. The 2018–2020 Multi-Year Drought Sets a New Benchmark in Europe. Earth’s Future 2022, 10, e2021EF002394. [Google Scholar] [CrossRef]
- Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Chang. 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Bastos, A.; Orth, R.; Reichstein, M.; Ciais, P.; Viovy, N.; Zaehle, S.; Anthoni, P.; Arneth, A.; Gentine, P.; Joetzjer, E.; et al. Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019. Earth Syst. Dyn. 2021, 12, 1015–1035. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Ramirez, A.R.; Crausbay, S.D.; Carter, S.L.; Cross, M.S.; Hall, K.R.; Bathke, D.J.; Betancourt, J.L.; Colt, S.; Cravens, A.E.; Dalton, M.S.; et al. Defining Ecological Drought for the Twenty-First Century. Bull. Am. Meteorol. Soc. 2017, 98, 2543–2550. [Google Scholar] [CrossRef]
- van Hateren, T.C.; Chini, M.; Matgen, P.; Teuling, A.J. Ambiguous Agricultural Drought: Characterising Soil Moisture and Vegetation Droughts in Europe from Earth Observation. Remote Sens. 2021, 13, 1990. [Google Scholar] [CrossRef]
- Keyantash, J.; Dracup, J.A. The Quantification of Drought: An Evaluation of Drought Indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Heim, R.R. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A Review of Drought Indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Bachmair, S.; Tanguy, M.; Hannaford, J.; Stahl, K. How well do meteorological indicators represent agricultural and forest drought across Europe? Environ. Res. Lett. 2018, 13, 034042. [Google Scholar] [CrossRef]
- Winkler, K.; Gessner, U.; Hochschild, V. Identifying Droughts Affecting Agriculture in Africa Based on Remote Sensing Time Series between 2000–2016: Rainfall Anomalies and Vegetation Condition in the Context of ENSO. Remote Sens. 2017, 9, 831. [Google Scholar] [CrossRef]
- Peled, E.; Dutra, E.; Viterbo, P.; Angert, A. Technical Note: Comparing and ranking soil drought indices performance over Europe, through remote-sensing of vegetation. Hydrol. Earth Syst. Sci. 2010, 14, 271–277. [Google Scholar] [CrossRef]
- Sepulcre-Canto, G.; Horion, S.; Singleton, A.; Carrao, H.; Vogt, J. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Hazards Earth Syst. Sci. 2012, 12, 3519–3531. [Google Scholar] [CrossRef]
- Cammalleri, C.; Arias-Muñoz, C.; Barbosa, P.; de Jager, A.; Magni, D.; Masante, D.; Mazzeschi, M.; McCormick, N.; Naumann, G.; Spinoni, J.; et al. A revision of the Combined Drought Indicator (CDI) used in the European Drought Observatory (EDO). Nat. Hazards Earth Syst. Sci. 2021, 21, 481–495. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Trigo, R.M.; Beguería, S.; Vicente-Serrano, S.M. Drought impacts on vegetation activity in the Mediterranean region: An assessment using remote sensing data and multi-scale drought indicators. Glob. Planet. Chang. 2017, 151, 15–27. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Begueria, S.; Trigo, R.; Lopez-Moreno, J.I.; Azorin-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef]
- Ivits, E.; Horion, S.; Fensholt, R.; Cherlet, M. Drought footprint on European ecosystems between 1999 and 2010 assessed by remotely sensed vegetation phenology and productivity. Glob. Chang. Biol. 2014, 20, 581–593. [Google Scholar] [CrossRef]
- Caloiero, T.; Veltri, S.; Caloiero, P.; Frustaci, F. Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index. Water 2018, 10, 1043. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; US Weather Bureau Research Paper; US Weather Bureau: Washington DC, USA, 1965; Volume 45.
- Briffa, K.R.; Jones, P.D.; Hulme, M. Summer moisture variability across Europe, 1892–1991: An analysis based on the Palmer Drought Sevirity Index. Int. J. Climatol. 1994, 14, 475–506. [Google Scholar] [CrossRef]
- Dabrowska-Zielinska, K.; Malinska, A.; Bochenek, Z.; Bartold, M.; Gurdak, R.; Paradowski, K.; Lagiewska, M. Drought Model DISS Based on the Fusion of Satellite and Meteorological Data under Variable Climatic Conditions. Remote Sens. 2020, 12, 2944. [Google Scholar] [CrossRef]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35, L02405. [Google Scholar] [CrossRef]
- Carrão, H.; Russo, S.; Sepulcre-Canto, G.; Barbosa, P. An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 74–84. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Herrero-Jiménez, C.M. Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sens. Environ. 2016, 177, 277–286. [Google Scholar] [CrossRef]
- Kogan, F.N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 1989, 11, 1405–1419. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of Vegetation Index and Brightness Temperature for Drought Detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Hu, X.; Ren, H.; Tansey, K.; Zheng, Y.; Ghent, D.; Liu, X.; Yan, L. Agricultural drought monitoring using European Space Agency Sentinel 3A land surface temperature and normalized difference vegetation index imageries. Agric. For. Meteorol. 2019, 279, 107707. [Google Scholar] [CrossRef]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 2020, 17, 1655–1672. [Google Scholar] [CrossRef]
- Dech, S.; Holzwarth, S.; Asam, S.; Andresen, T.; Bachmann, M.; Boettcher, M.; Dietz, A.; Eisfelder, C.; Frey, C.; Gesell, G.; et al. Challenges of Harmonizing 40 Years of AVHRR Data: The TIMELINE Experience. Remote Sens. 2021, 13, 3618. [Google Scholar] [CrossRef]
- Reinermann, S.; Gessner, U.; Asam, S.; Kuenzer, C.; Dech, S. The Effect of Droughts on Vegetation Condition in Germany: An Analysis Based on Two Decades of Satellite Earth Observation Time Series and Crop Yield Statistics. Remote Sens. 2019, 11, 1783. [Google Scholar] [CrossRef]
- Gu, Y.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett. 2007, 34, L06407. [Google Scholar] [CrossRef]
- Rossi, S.; Niemeyer, S. Drought Monitoring Using Fraction of Absorbed Photosynthetically Active Radiation Estimates Derived from MERIS. In Remote Sensing of Drought; Wardlow, B.D., Anderson, M.C., Verdin, J.P., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 95–116. [Google Scholar]
- Zscheischler, J.; Mahecha, M.D.; Harmeling, S.; Reichstein, M. Detection and attribution of large spatiotemporal extreme events in Earth observation data. Ecol. Inform. 2013, 15, 66–73. [Google Scholar] [CrossRef]
- Panek, E.; Gozdowski, D. Relationship between MODIS Derived NDVI and Yield of Cereals for Selected European Countries. Agronomy 2021, 11, 340. [Google Scholar] [CrossRef]
- Kloos, S.; Yuan, Y.; Castelli, M.; Menzel, A. Agricultural Drought Detection with MODIS Based Vegetation Health Indices in Southeast Germany. Remote Sens. 2021, 13, 3907. [Google Scholar] [CrossRef]
- Lüttger, A.B.; Feike, T. Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany. Theor. Appl. Climatol. 2017, 132, 15–29. [Google Scholar] [CrossRef]
- Möllmann, J.; Buchholz, M.; Musshoff, O. Comparing the Hedging Effectiveness of Weather Derivatives Based on Remotely Sensed Vegetation Health Indices and Meteorological Indices. Weather. Clim. Soc. 2019, 11, 33–48. [Google Scholar] [CrossRef]
- Peichl, M.; Thober, S.; Samaniego, L.; Hansjurgens, B.; Marx, A. Climate impacts on long-term silage maize yield in Germany. Sci. Rep. 2019, 9, 7674. [Google Scholar] [CrossRef]
- Peichl, M.; Thober, S.; Samaniego, L.; Hansjürgens, B.; Marx, A. Machine-learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany. Hydrol. Earth Syst. Sci. 2021, 25, 6523–6545. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, J.; Yu, L.; Hao, P.; Chen, B.; Xin, Q.; Fu, H.; Gong, P. Annual dynamic dataset of global cropping intensity from 2001–2019. Sci. Data 2021, 8, 283. [Google Scholar] [CrossRef]
- Li, L.; Friedl, M.A.; Xin, Q.; Gray, J.; Pan, Y.; Frolking, S. Mapping Crop Cycles in China Using MODIS-EVI Time Series. Remote Sens. 2014, 6, 2473–2493. [Google Scholar] [CrossRef]
- Kuwata, K.; Shibasaki, R. Estimating Corn Yield in the United States with Modis Evi and Machine Learning Methods. ISPRS Ann. Photo. Rem. 2016, 3, 131–136. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- DWD. German Climate Atlas; DWD: Offenbach, Germany, 2023; Available online: https://www.dwd.de/EN/climate_environment/climateatlas/climateatlas_node.html (accessed on 1 September 2023).
- Destatis. Land- und Forstwirtschaft, Fischerei. Feldfrüchte und Grünland. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Feldfruechte-Gruenland/_inhalt.html (accessed on 1 September 2023).
- Destatis. Genesis. Die Datenbank des Statistischen Bundesamtes; Destatis: Wiesbaden, Germany, 2023. Available online: https://www-genesis.destatis.de/genesis/online (accessed on 1 September 2023).
- DWD Climate Data Center (CDC). Multi-Annual Means of Grids of Air Temperature (2m) over Germany 1921–2020; DWD Climate Data Center (CDC): Offenbach, Germany, 2021; Available online: https://opendata.dwd.de/climate_environment/CDC/grids_germany/multi_annual/air_temperature_mean/ (accessed on 1 September 2023).
- DWD Climate Data Center (CDC). Multi-Annual Means of Grids of Monthly Averaged Daily Maximum Air Temperature (2m) over Germany 1991–2020, Version v1.0; DWD Climate Data Center (CDC): Offenbach, Germany, 2021; Available online: https://opendata.dwd.de/climate_environment/CDC/grids_germany/multi_annual/air_temperature_max/ (accessed on 1 September 2023).
- DWD Climate Data Center (CDC). Multi-Annual Grids of Precipitation Height over GERMANY 1991–2020, Version v1.0; DWD Climate Data Center (CDC): Offenbach, Germany, 2021; Available online: https://opendata.dwd.de/climate_environment/CDC/grids_germany/multi_annual/precipitation/ (accessed on 1 September 2023).
- Bundesanstalt für Geowissenschaften und Rohstoffe. Ackerbauliches Ertragspotential der Böden in Deutschland 1:1.000.000; Bundesanstalt für Geowissenschaften und Rohstoffe: Hanover, Germany, 2020. [Google Scholar]
- Müller, L.; Schindler, U.; Behrendt, A.; Eulenstein, F.; Dannowski, R. The Müncheberg Soil Quality Rating. Field Manual for Detecting and Assessing Properties and Limitations of Soils for Cropping and Grazing; Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF): Müncheberg, Germany, 2007. [Google Scholar]
- European Union’s Copernicus Land Monitoring Service. CORINE Land Cover 2018. European Environment Agency: Copenhagen, Denmark, 2019. [Google Scholar] [CrossRef]
- DWD. Klimastatusbericht Deutschland Jahr 2022; DWD: Offenbach, Germany, 2023; p. 27. Available online: https://www.dwd.de/DE/leistungen/klimastatusbericht/publikationen/ksb_2022.pdf?__blob=publicationFile&v=5 (accessed on 1 September 2023).
- DWD. Klimastatusbericht Deutschland Jahr 2021; DWD: Offenbach, Germany, 2022; p. 27. Available online: https://www.dwd.de/DE/leistungen/klimastatusbericht/publikationen/ksb_2021.pdf?__blob=publicationFile&v=4 (accessed on 1 September 2023).
- DWD. Klimastatusbericht Deutschland Jahr 2018; DWD: Offenbach, Germany, 2020; p. 23. Available online: https://www.dwd.de/DE/leistungen/klimastatusbericht/publikationen/ksb_2018.pdf?__blob=publicationFile&v=5 (accessed on 1 September 2023).
- DWD. Klimastatusbericht Deutschland Jahr 2019; DWD: Offenbach, Germany, 2020; p. 23. Available online: https://www.dwd.de/DE/leistungen/klimastatusbericht/publikationen/ksb_2019.pdf?__blob=publicationFile&v=5 (accessed on 1 September 2023).
- DWD. Klimastatusbericht Deutschland Jahr 2020; DWD: Offenbach, Germany, 2021; p. 29. Available online: https://www.dwd.de/DE/leistungen/klimastatusbericht/publikationen/ksb_2020.pdf?__blob=publicationFile&v=3 (accessed on 1 September 2023).
- BMEL. Besondere Ernte- und Qualitätsermittlung (BEE) 2021; 0178—899 X. 2022, p. 70. Available online: https://www.bmel-statistik.de/fileadmin/daten/1002000-2021.pdf (accessed on 1 September 2023).
- Destatis. Land- und Forstwirtschaft, Fischerei. Wachstum und Ernte—Feldfrüchte—August/September 2022; Destatis: Wiesbaden, Germany, 2022; p. 78. Available online: https://www.statistischebibliothek.de/mir/servlets/MCRFileNodeServlet/DEHeft_derivate_00071981/2030321222094.pdf (accessed on 1 September 2023).
- Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061. 2021, Distributed by NASA EOSDIS Land Processes Distributed Active Archive Center. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD13Q1 (accessed on 10 October 2023).
- European Union’s Copernicus Land Monitoring Service. CORINE Land Cover; European Environment Agency: Copenhagen, Denmark. Available online: https://land.copernicus.eu/en/products/corine-land-cover (accessed on 1 September 2023).
- Destatis. Land- und Forstwirtschaft, Fischerei. In Wachstum und Ernte—Feldfrüchte; Destatis: Wiesbaden, Germany, 2022. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Feldfruechte-Gruenland/Publikationen/Downloads-Feldfruechte/feldfruechte-jahr-2030321227164.pdf?__blob=publicationFile (accessed on 1 September 2023).
- Ernte- und Betriebsberichterstattungen (EBE). Erträge Ausgewählter Landwirtschaftlicher Feldfrüchte-. Available online: https://www.statistischebibliothek.de/mir/servlets/MCRFileNodeServlet/DEMonografie_derivate_00001133/ErnteEBE.pdf;jsessionid=F1F65AD17A67F615151ED405D4C5B2F9 (accessed on 1 October 2023).
- Jahressumme—Regionale Tiefe: Kreise und krfr. Städte. Regionaldatenbank Deutschland (RDB). Statistische Ämter des Bundes und der Länder. Available online: https://www.regionalstatistik.de/genesis/online/ (accessed on 1 September 2023).
- Destatis. Qualitätsbericht Ernte- und Betriebsberichterstattung (EBE): Feldfrüchte und Grünland; Destatis: Wiesbaden, Germany, 2023. Available online: https://www.destatis.de/DE/Methoden/Qualitaet/Qualitaetsberichte/Land-Forstwirtschaft-Fischerei/ernte-ebe.pdf?__blob=publicationFile (accessed on 1 September 2023).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- UFZ. Dürren in Deutschland. Available online: https://www.ufz.de/index.php?de=47252 (accessed on 1 September 2023).
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water; FAO: Rome, Italy, 2012. [Google Scholar]
- Monteleone, B.; Borzí, I.; Bonaccorso, B.; Martina, M. Developing stage-specific drought vulnerability curves for maize: The case study of the Po River basin. Agric. Water Manag. 2022, 269, 107713. [Google Scholar] [CrossRef]
- Riedesel, L.; Moller, M.; Horney, P.; Golla, B.; Piepho, H.P.; Kautz, T.; Feike, T. Timing and intensity of heat and drought stress determine wheat yield losses in Germany. PLoS ONE 2023, 18, e0288202. [Google Scholar] [CrossRef] [PubMed]
- Sarto, M.V.M.; Sarto, J.R.W.; Rampim, L.; Rosset, J.S.; Bassegio, D.; da Costa, P.F.; Inagaki, A.M. Wheat phenology and yield under drought: A review. Aust. J. Crop Sci. 2017, 11, 941–946. [Google Scholar] [CrossRef]
- Radočaj, D.; Šiljeg, A.; Marinović, R.; Jurišić, M. State of Major Vegetation Indices in Precision Agriculture Studies Indexed in Web of Science: A Review. Agriculture 2023, 13, 707. [Google Scholar] [CrossRef]
- Reinermann, S.; Gessner, U.; Asam, S.; Ullmann, T.; Schucknecht, A.; Kuenzer, C. Detection of grassland mowing events for Germany by combining Sentinel-1 and Sentinel-2 time series. Remote Sens. 2022, 14, 1647. [Google Scholar] [CrossRef]
- Schwieder, M.; Wesemeyer, M.; Frantz, D.; Pfoch, K.; Erasmi, S.; Pickert, J.; Nendel, C.; Hostert, P. Mapping grassland mowing events across Germany based on combined Sentinel-2 and Landsat 8 time series. Remote Sens. Environ. 2022, 269, 112795. [Google Scholar] [CrossRef]
- Wu, M.; Manzoni, S.; Vico, G.; Bastos, A.; de Vries, F.T.; Messori, G. Drought Legacy in Sub-Seasonal Vegetation State and Sensitivity to Climate Over the Northern Hemisphere. Geophys. Res. Lett. 2022, 49, e2022GL098700. [Google Scholar] [CrossRef]
- Seidel, P. Extreme weather events and their effects on plant pests infesting wheat, barley and maize. J. Fur Kult. 2016, 68, 313–327. [Google Scholar] [CrossRef]
- Seidel, P. Extreme weather events and their effects on plant pests infecting potato, sugar beet, rape and grassland. J. Fur Kult. 2017, 69, 125–136. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef] [PubMed]
- Didan, K.; Munoz, A.B.; Comptom, T.J.; Pinzon, J.E. Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite Vegetation Index Product Suite User Guide & Abridged Algorithm Theoretical Basis Document Version 2.0. 2017. Available online: https://viirsland.gsfc.nasa.gov/PDF/SNPP_VIIRS_VI_UserGuide_09-26-2017_KDidan.pdf (accessed on 1 September 2023).
- Jarchow, C.J.; Didan, K.; Barreto-Munoz, A.; Nagler, P.L.; Glenn, E.P. Application and Comparison of the MODIS-Derived Enhanced Vegetation Index to VIIRS, Landsat 5 TM and Landsat 8 OLI Platforms: A Case Study in the Arid Colorado River Delta, Mexico. Sensors 2018, 18, 1546. [Google Scholar] [CrossRef] [PubMed]
- Obata, K.; Miura, T.; Yoshioka, H.; Huete, A.R.; Vargas, M. Spectral Cross-Calibration of VIIRS Enhanced Vegetation Index with MODIS: A Case Study Using Year-Long Global Data. Remote Sens. 2016, 8, 34. [Google Scholar] [CrossRef]
- Uereyen, S.; Bachofer, F.; Kuenzer, C. A Framework for Multivariate Analysis of Land Surface Dynamics and Driving Variables—A Case Study for Indo-Gangetic River Basins. Remote Sens. 2022, 14, 197. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Bartold, M.; Kluczek, M. A Machine Learning Approach for Mapping Chlorophyll Fluorescence at Inland Wetlands. Remote Sens. 2023, 15, 2392. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gessner, U.; Reinermann, S.; Asam, S.; Kuenzer, C. Vegetation Stress Monitor—Assessment of Drought and Temperature-Related Effects on Vegetation in Germany Analyzing MODIS Time Series over 23 Years. Remote Sens. 2023, 15, 5428. https://doi.org/10.3390/rs15225428
Gessner U, Reinermann S, Asam S, Kuenzer C. Vegetation Stress Monitor—Assessment of Drought and Temperature-Related Effects on Vegetation in Germany Analyzing MODIS Time Series over 23 Years. Remote Sensing. 2023; 15(22):5428. https://doi.org/10.3390/rs15225428
Chicago/Turabian StyleGessner, Ursula, Sophie Reinermann, Sarah Asam, and Claudia Kuenzer. 2023. "Vegetation Stress Monitor—Assessment of Drought and Temperature-Related Effects on Vegetation in Germany Analyzing MODIS Time Series over 23 Years" Remote Sensing 15, no. 22: 5428. https://doi.org/10.3390/rs15225428
APA StyleGessner, U., Reinermann, S., Asam, S., & Kuenzer, C. (2023). Vegetation Stress Monitor—Assessment of Drought and Temperature-Related Effects on Vegetation in Germany Analyzing MODIS Time Series over 23 Years. Remote Sensing, 15(22), 5428. https://doi.org/10.3390/rs15225428