An Observation of Precipitation during Cooling with Ka-Band Cloud Radar in Wuhan, China
Abstract
:1. Introduction
2. Radar and Data
2.1. Ka-Band MMCR
2.2. ERA5 Reanalysis Data
2.3. Radiosonde Data
3. Results
3.1. MMCR Observation during Cooling
3.2. Bright Band Features in Precipitation
3.3. Observation of Mixed Rain and Snow
4. Atmospheric Conditions
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quante, M. The Role of Clouds in the Climate System. J. Phys. IV Proc. 2004, 121, 61–86. [Google Scholar] [CrossRef]
- Stephens, G.L. Cloud Feedbacks in the Climate System: A Critical Review. J. Clim. 2005, 18, 237–273. [Google Scholar] [CrossRef]
- Szeto, K.K.; Lin, C.A.; Stewart, R.E. Mesoscale Circulations Forced by Melting Snow. Part I: Basic Simulations and Dynamics. J. Atmos. Sci. 1988, 45, 1629–1641. [Google Scholar] [CrossRef]
- Han, X.; Xue, H.; Zhao, C.; Lu, D. The Roles of Convective and Stratiform Precipitation in the Observed Precipitation Trends in Northwest China during 1961–2000. Atmos. Res. 2016, 169, 139–146. [Google Scholar] [CrossRef]
- Houze, R.A., Jr.; Rasmussen, K.L.; Zuluaga, M.D.; Brodzik, S.R. The Variable Nature of Convection in the Tropics and Subtropics: A Legacy of 16 Years of the Tropical Rainfall Measuring Mission Satellite. Rev. Geophys. 2015, 53, 994–1021. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Huang, Y.; Zhang, Y.; Zhang, L.; Lei, H.; Zheng, H. Precipitation Characteristics of Typhoon Lekima (2019) at Landfall Revealed by Joint Observations from GPM Satellite and S-Band Radar. Atmos. Res. 2021, 260, 105714. [Google Scholar] [CrossRef]
- Wang, R.; Tian, W.; Chen, F.; Wei, D.; Luo, J.; Tian, H.; Zhang, J. Analysis of Convective and Stratiform Precipitation Characteristics in the Summers of 2014–2019 over Northwest China Based on GPM Observations. Atmos. Res. 2021, 262, 105762. [Google Scholar] [CrossRef]
- Wen, L.; Chen, G.; Yang, C.; Zhang, H.; Fu, Z. Seasonal Variations in Precipitation Microphysics over East China Based on GPM DPR Observations. Atmos. Res. 2023, 293, 106933. [Google Scholar] [CrossRef]
- Gettelman, A.; Liu, X.; Barahona, D.; Lohmann, U.; Chen, C. Climate Impacts of Ice Nucleation. J. Geophys. Res. Atmos. 2012, 117, D20201. [Google Scholar] [CrossRef]
- He, J.; Zheng, J.; Zeng, Z.; Che, Y.; Zheng, M.; Li, J. A Comparative Study on the Vertical Structures and Microphysical Properties of Stratiform Precipitation over South China and the Tibetan Plateau. Remote Sens. 2021, 13, 2897. [Google Scholar] [CrossRef]
- Houze, R.A. Stratiform Precipitation in Regions of Convection: A Meteorological Paradox? Bull. Am. Meteorol. Soc. 1997, 78, 2179–2196. [Google Scholar] [CrossRef]
- Ruiz-Leo, A.M.; Hernández, E.; Queralt, S.; Maqueda, G. Convective and Stratiform Precipitation Trends in the Spanish Mediterranean Coast. Atmos. Res. 2013, 119, 46–55. [Google Scholar] [CrossRef]
- Schumacher, C.; Houze, R.A. Stratiform Rain in the Tropics as Seen by the TRMM Precipitation Radar. J. Clim. 2003, 16, 1739–1756. [Google Scholar] [CrossRef]
- Hou, T.; Lei, H.; Hu, Z. A Comparative Study of the Microstructure and Precipitation Mechanisms for Two Stratiform Clouds in China. Atmos. Res. 2010, 96, 447–460. [Google Scholar] [CrossRef]
- Garcia-Benadí, A.; Bech, J.; Gonzalez, S.; Udina, M.; Codina, B. A New Methodology to Characterise the Radar Bright Band Using Doppler Spectral Moments from Vertically Pointing Radar Observations. Remote Sens. 2021, 13, 4323. [Google Scholar] [CrossRef]
- Ghada, W.; Casellas, E.; Herbinger, J.; Garcia-Benadí, A.; Bothmann, L.; Estrella, N.; Bech, J.; Menzel, A. Stratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar. Remote Sens. 2022, 14, 4563. [Google Scholar] [CrossRef]
- Matrosov, S.Y. Distinguishing between Warm and Stratiform Rain Using Polarimetric Radar Measurements. Remote Sens. 2021, 13, 214. [Google Scholar] [CrossRef]
- Gray, W.R.; Cluckie, I.D.; Griffith, R.J. Aspects of Melting and the Radar Bright Band. Meteorol. Appl. 2001, 8, 371–379. [Google Scholar] [CrossRef]
- White, A.B.; Gottas, D.J.; Strem, E.T.; Ralph, F.M.; Neiman, P.J. An Automated Brightband Height Detection Algorithm for Use with Doppler Radar Spectral Moments. J. Atmos. Ocean Technol. 2002, 19, 687–697. [Google Scholar] [CrossRef]
- Evans, S. Dielectric Properties of Ice and Snow—A Review. J. Glaciol. 1965, 5, 773–792. [Google Scholar] [CrossRef]
- Meneghini, R.; Liao, L. Effective Dielectric Constants of Mixed-Phase Hydrometeors. J. Atmos. Ocean Technol. 2000, 17, 628–640. [Google Scholar] [CrossRef]
- Fabry, F.; Zawadzki, I. Long-Term Radar Observations of the Melting Layer of Precipitation and Their Interpretation. J. Atmos. Sci. 1995, 52, 838–851. [Google Scholar] [CrossRef]
- Li, H.; Moisseev, D. Two Layers of Melting Ice Particles Within a Single Radar Bright Band: Interpretation and Implications. Geophys. Res. Lett. 2020, 47, e2020GL087499. [Google Scholar] [CrossRef]
- Yi, Y.; Yi, F.; Liu, F.; Zhang, Y.; Yu, C.; He, Y. Microphysical Process of Precipitating Hydrometeors from Warm-Front Mid-Level Stratiform Clouds Revealed by Ground-Based Lidar Observations. Atmos. Chem. Phys. 2021, 21, 17649–17664. [Google Scholar] [CrossRef]
- Di Girolamo, P.; Summa, D.; Cacciani, M.; Norton, E.G.; Peters, G.; Dufournet, Y. Lidar and Radar Measurements of the Melting Layer: Observations of Dark and Bright Band Phenomena. Atmos. Chem. Phys. 2012, 12, 4143–4157. [Google Scholar] [CrossRef]
- Wei, T.; Xia, H.; Wu, K.; Yang, Y.; Liu, Q.; Ding, W. Dark/Bright Band of a Melting Layer Detected by Coherent Doppler Lidar and Micro Rain Radar. Opt. Express 2022, 30, 3654. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Mishra, S.; Giangrande, S.E.; Toto, T.; Ryzhkov, A.V.; Bansemer, A. Polarimetric Radar and Aircraft Observations of Saggy Bright Bands during MC3E. J. Geophys. Res. Atmos. 2016, 121, 3584–3607. [Google Scholar] [CrossRef]
- Dias Neto, J.; Kneifel, S.; Ori, D.; Trömel, S.; Handwerker, J.; Bohn, B.; Hermes, N.; Mühlbauer, K.; Lenefer, M.; Simmer, C. The TRIple-Frequency and Polarimetric Radar Experiment for Improving Process Observations of Winter Precipitation. Earth Syst. Sci. Data 2019, 11, 845–863. [Google Scholar] [CrossRef]
- Arulraj, M.; Barros, A.P. Improving Quantitative Precipitation Estimates in Mountainous Regions by Modelling Low-Level Seeder-Feeder Interactions Constrained by Global Precipitation Measurement Dual-Frequency Precipitation Radar Measurements. Remote Sens. Environ. 2019, 231, 111213. [Google Scholar] [CrossRef]
- Kühnlein, M.; Appelhans, T.; Thies, B.; Nauss, T. Improving the Accuracy of Rainfall Rates from Optical Satellite Sensors with Machine Learning—A Random Forests-Based Approach Applied to MSG SEVIRI. Remote Sens. Environ. 2014, 141, 129–143. [Google Scholar] [CrossRef]
- Zawadzki, I.; Szyrmer, W.; Bell, C.; Fabry, F. Modeling of the Melting Layer. Part III: The Density Effect. J. Atmos. Sci. 2005, 62, 3705–3723. [Google Scholar] [CrossRef]
- Leinonen, J.; von Lerber, A. Snowflake Melting Simulation Using Smoothed Particle Hydrodynamics. J. Geophys. Res. Atmos. 2018, 123, 1811–1825. [Google Scholar] [CrossRef]
- Billault-Roux, A.-C.; Grazioli, J.; Delanoë, J.; Jorquera, S.; Pauwels, N.; Viltard, N.; Martini, A.; Mariage, V.; Gac, C.L.; Caudoux, C.; et al. ICE GENESIS: Synergetic Aircraft and Ground-Based Remote Sensing and In Situ Measurements of Snowfall Microphysical Properties. Bull. Am. Meteorol. Soc. 2023, 104, E367–E388. [Google Scholar] [CrossRef]
- Smyth, T.J.; Illingworth, A.J. Radar Estimates of Rainfall Rates at the Ground in Bright Band and Non-Bright Band Events. Q. J. R. Meteorol. Soc. 1998, 124, 2417–2434. [Google Scholar] [CrossRef]
- Sassen, K.; Campbell, J.R.; Zhu, J.; Kollias, P.; Shupe, M.; Williams, C. Lidar and Triple-Wavelength Doppler Radar Measurements of the Melting Layer: A Revised Model for Dark- and Brightband Phenomena. J. Appl. Meteorol. 2005, 44, 301–312. [Google Scholar] [CrossRef]
- Devisetty, H.K.; Jha, A.K.; Das, S.K.; Deshpande, S.M.; Krishna, U.V.M.; Kalekar, P.M.; Pandithurai, G. A Case Study on Bright Band Transition from Very Light to Heavy Rain Using Simultaneous Observations of Collocated X- and Ka-Band Radars. J. Earth Syst. Sci. 2019, 128, 136. [Google Scholar] [CrossRef]
- Jha, A.; Kalapureddy, M.; Devisetty, H.; Deshpande, S.; Pandithurai, G. A Case Study on Large-Scale Dynamical Influence on Bright Band Using Cloud Radar during the Indian Summer Monsoon. Meteorol. Atmos. Phys. 2019, 131, 505–515. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.; Della-Marta, P.; Gleason, B.; Haylock, M.; Klein Tank, A.; Peterson, T. Observed Coherent Changes in Climatic Extremes during the Second Half of the Twentieth Century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef]
- Roland, J.; Matter, S.F. Variability in Winter Climate and Winter Extremes Reduces Population Growth of an Alpine Butterfly. Ecology 2013, 94, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.C.; Xie, S.-P.; Kosaka, Y.; Li, X. Increasing Occurrence of Cold and Warm Extremes during the Recent Global Warming Slowdown. Nat. Commun. 2018, 9, 1724. [Google Scholar] [CrossRef] [PubMed]
- Probert-Jones, J.R. The Radar Equation in Meteorology. Q. J. R. Meteorol. Soc. 1962, 88, 485–495. [Google Scholar] [CrossRef]
- Doviak, R.; Zrnic, S. Doppler Radar and Weather Observations, 2nd ed.; Dover Press: Mineola, NY, USA, 2006; ISBN 0486450600. [Google Scholar]
- Ryzhkov, A.; Zrnic, D. Radar Polarimetry for Weather Observations; Springer Nature Switzerland AG: Cham, Switzerland, 2019; ISBN 978-3-030-05092-4. [Google Scholar]
- Fang, J.; Huang, K.; Du, M.; Zhang, Z.; Cao, R.; Yi, F. Investigation on Cloud Vertical Structures Based on Ka-Band Cloud Radar Observations at Wuhan in Central China. Atmos. Res. 2023, 281, 106492. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Brandes, E.A.; Ikeda, K. Freezing-Level Estimation with Polarimetric Radar. J. Appl. Meteorol. Climatol. 2004, 43, 1541–1553. [Google Scholar] [CrossRef]
- Harris, G.N.; Bowman, K.P.; Shin, D.-B. Comparison of Freezing-Level Altitudes from the NCEP Reanalysis with TRMM Precipitation Radar Brightband Data. J. Clim. 2000, 13, 4137–4148. [Google Scholar] [CrossRef]
- Leary, C.A.; Houze, R.A. Melting and Evaporation of Hydrometeors in Precipitation from the Anvil Clouds of Deep Tropical Convection. J. Atmos. Sci. 1979, 36, 669–679. [Google Scholar] [CrossRef]
- Thurai, M.; Deguchi, E.; Iguchi, T.; Okamoto, K. Freezing Height Distribution in the Tropics. Int. J. Satell. Commun. Netw. 2003, 21, 533–545. [Google Scholar] [CrossRef]
- Thurai, M.; Iguchi, T.; Kozu, T.; Eastment, J.D.; Wilson, C.L.; Ong, J.T. Radar Observations in Singapore and Their Implications for the TRMM Precipitation Radar Retrieval Algorithms. Radio Sci. 2003, 38, 1086. [Google Scholar] [CrossRef]
- Di Girolamo, P.; Demoz, B.B.; Whiteman, D.N. Model Simulations of Melting Hydrometeors: A New Lidar Bright Band from Melting Frozen Drops. Geophys. Res. Lett. 2003, 30, 1626. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Bansemer, A.; Matrosov, S.; Tian, L. The 94-GHz Radar Dim Band: Relevance to Ice Cloud Properties and CloudSat. Geophys. Res. Lett. 2008, 35, L03802. [Google Scholar] [CrossRef]
- Li, H.; Tiira, J.; von Lerber, A.; Moisseev, D. Towards the Connection between Snow Microphysics and Melting Layer: Insights from Multifrequency and Dual-Polarization Radar Observations during BAECC. Atmos. Chem. Phys. 2020, 20, 9547–9562. [Google Scholar] [CrossRef]
- Islam, T.; Rico-Ramirez, M.A.; Han, D.; Bray, M.; Srivastava, P.K. Fuzzy Logic Based Melting Layer Recognition from 3 GHz Dual Polarization Radar: Appraisal with NWP Model and Radio Sounding Observations. Theor. Appl. Climatol. 2013, 112, 317–338. [Google Scholar] [CrossRef]
- Giangrande, S.E.; Krause, J.M.; Ryzhkov, A.V. Automatic Designation of the Melting Layer with a Polarimetric Prototype of the WSR-88D Radar. J. Appl. Meteorol. Climatol. 2008, 47, 1354–1364. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Zrnic, D.S.; Gordon, B.A. Polarimetric Method for Ice Water Content Determination. J. Appl. Meteorol. Climatol. 1998, 37, 125–134. [Google Scholar] [CrossRef]
- Trömel, S.; Ryzhkov, A.V.; Zhang, P.; Simmer, C. Investigations of Backscatter Differential Phase in the Melting Layer. J. Appl. Meteorol. Climatol. 2014, 53, 2344–2359. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Zrnić, D.S. Estimation of Rain and Hail Rates in Mixed-Phase Precipitation. J. Atmos. Sci. 1990, 47, 565–583. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Zrnic, D. Use of Polarization to Characterize Precipitation and Discriminate Large Hail. J. Atmos. Sci. 1990, 47, 1525–1540. [Google Scholar] [CrossRef]
- Straka, J.M.; Zrnić, D.S.; Ryzhkov, A.V. Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations. J. Appl. Meteorol. Climatol. 2000, 39, 1341–1372. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Zrnic, D.S. Discrimination between Rain and Snow with a Polarimetric Radar. J. Appl. Meteorol. Climatol. 1998, 37, 1228–1240. [Google Scholar] [CrossRef]
- Allabakash, S.; Lim, S.; Chandrasekar, V.; Min, K.H.; Choi, J.; Jang, B. X-Band Dual-Polarization Radar Observations of Snow Growth Processes of a Severe Winter Storm: Case of 12 December 2013 in South Korea. J. Atmos. Ocean Technol. 2019, 36, 1217–1235. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Z.; Huang, K.; Fang, J.; Zhang, Z.; Cao, R.; Yi, F. An Observation of Precipitation during Cooling with Ka-Band Cloud Radar in Wuhan, China. Remote Sens. 2023, 15, 5397. https://doi.org/10.3390/rs15225397
Mao Z, Huang K, Fang J, Zhang Z, Cao R, Yi F. An Observation of Precipitation during Cooling with Ka-Band Cloud Radar in Wuhan, China. Remote Sensing. 2023; 15(22):5397. https://doi.org/10.3390/rs15225397
Chicago/Turabian StyleMao, Zhiwen, Kaiming Huang, Junjie Fang, Zirui Zhang, Rang Cao, and Fan Yi. 2023. "An Observation of Precipitation during Cooling with Ka-Band Cloud Radar in Wuhan, China" Remote Sensing 15, no. 22: 5397. https://doi.org/10.3390/rs15225397
APA StyleMao, Z., Huang, K., Fang, J., Zhang, Z., Cao, R., & Yi, F. (2023). An Observation of Precipitation during Cooling with Ka-Band Cloud Radar in Wuhan, China. Remote Sensing, 15(22), 5397. https://doi.org/10.3390/rs15225397