Impact of a Severe Dust Event on Diurnal Behavior of Surface Water Temperature in Subtropical Lake Kinneret
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. September 2015 Severe Dust Event in the Eastern Mediterranean Study Area
2.3. Method
2.4. Data
3. Results
3.1. Dust Influence on Solar Radiation
3.2. Dust Influence on Upwelling LW Radiation
3.3. Dust Influence on Diurnal Variations of Satellite METEOSAT SWT
3.4. Dust Influence on Diurnal Variations of In-Situ Measured SWTA
3.5. Dust Effect on Atmospheric Humidity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.; et al. Climate change and weather extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Tsikerdekis, A.; Zanis, P.; Georgoulias, A.K.; Alexandri, G.; Katragkou, E.; Karacostas, T.; Solmon, F. Direct and semi-direct radiative effect of North African dust in present and future regional climate simulations. Clim. Dyn. 2019, 53, 4311–4336. [Google Scholar] [CrossRef]
- Shaheen, A.; Wu, R.; Lelieveld, J.; Yousefi, R.; Aldabash, M. Winter AOD trend changes over the Eastern Mediterranean and Middle East region. Int. J. Climatol. 2021, 41, 5516–5535. [Google Scholar] [CrossRef]
- De Meij, A.; Lelieveld, J. Evaluating aerosol optical properties observed by ground-based and satellite remote sensing over the Mediterranean and the Middle East in 2006. Atmos. Res. 2011, 99, 415–433. [Google Scholar] [CrossRef]
- Yu, Y.; Kalashnikova, O.V.; Garay, M.J.; Lee, H.; Notaro, M. Identification and characterization of dust source regions across North Africa and the Middle East using MISR satellite observations. Geophys. Res. Lett. 2018, 45, 6690–6701. [Google Scholar] [CrossRef]
- Thomas, N.; Nigam, S. Twentieth-century climate change over Africa: Seasonal hydroclimate trends and Sahara Desert expansion. J. Clim. 2018, 31, 3349–3370. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, Y. Expansion of the Sahara Desert and shrinking of frozen land of the Arctic. Sci. Rep. 2020, 10, 4109. [Google Scholar] [CrossRef] [PubMed]
- Francis, D.; Temimi, M.; Fonseca, R.; Nelli, N.R.; Abida, R.; Weston, M.; Whebe, Y. On the analysis of a summertime convective event in a hyper arid environment. Quarter. J. R. Meteorol. Soc. 2020, 147, 501–525. [Google Scholar] [CrossRef]
- Jin, Q.; Yang, Z.L.; Wei, J. Seasonal responses of Indian summer monsoon to dust aerosols in the Middle East, India, and China. J. Clim. 2016, 29, 6329–6349. [Google Scholar] [CrossRef]
- Solmon, F.; Nair, V.S.; Mallet, M. Increasing Arabian dust activity and the Indian summer monsoon. Atmos. Chem. Phys. 2015, 15, 8051–8064. [Google Scholar] [CrossRef]
- Osipov, S.; Stenchikov, G. Simulating the regional impact of dust on the Middle East climate and the Red Sea. J. Geophys. Res. Oceans 2018, 123, 1032–1047. [Google Scholar] [CrossRef]
- Azad, M.T.; Lari, K.; Oudi, R.; Sadeghifar, T.; Kisi, O. The effect of dust storm on sea surface temperature in the Western Basin of Persian Gulf. Standards 2022, 2, 246–259. [Google Scholar] [CrossRef]
- Antón, M.; Valenzuela, A.; Mateos, D.; Alados, I.; Foyo-Moreno, I.; Olmo, F.J.; Alados-Arboledas, L. Longwave aerosol radiative effects during an extreme desert dust event in southeastern Spain. Atmos. Res. 2014, 149, 18–23. [Google Scholar] [CrossRef]
- Kishcha, P.; Volpov, E.; Starobinets, B.; Alpert, P.; Nickovic, S. Dust Dry Deposition over Israel. Atmosphere 2020, 11, 197. [Google Scholar] [CrossRef]
- La Fuente, S.; Jennings, E.; Gal, G.; Kirillin, G.; Shatwell, T.; Ladwig, R.; Moore, T.; Couture, R.-M.; Côté, M.; Love Råman Vinnå, C.; et al. Multi-model projections of future evaporation in a sub-tropical lake. J. Hydrol. 2022, 615, 128729. [Google Scholar] [CrossRef]
- Ostrovsky, I.; Rimmer, A.; Yacobi, Y.Z.; Nishri, A.; Sukenik, A.; Hadas, O.; Zohary, T. Long-term changes in the Lake Kinneret ecosystem: The effects of climate change and anthropogenic Factors. In Climatic Change and Global Warming of Inland Water: Impacts and Mitigation for Ecosystems and Societies, 1st ed.; Goldman, C.R., Kumagai, M., Robats, R.D., Eds.; John Willey & Sons, Ltd.: New York, NY, USA, 2013; Chapter 13; pp. 271–293. [Google Scholar]
- Ziv, B.; Shilo, E.; Lechinsky, Y.; Rimmer, A. Meteorology. In Lake Kinneret—Ecology and Management; Zohary, T., Sukenik, A., Berman, T., Nishri, A., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 81–96. [Google Scholar]
- Kishcha, P.; Lechinsky, Y.; Starobinets, B. Cooling by Cyprus Lows of Surface and Epilimnion Water in Subtropical Lake Kinneret in Rainy Seasons. Remote Sens. 2022, 14, 4709. [Google Scholar] [CrossRef]
- Uzan, L.; Egert, S.; Alpert, P. Ceilometer evaluation of the eastern Mediterranean summer boundary layer height—First study of two Israeli sites. Atmos. Meas. Tech. 2016, 9, 4387–4398. [Google Scholar] [CrossRef]
- Uzan, L.; Egert, S.; Alpert, P. New insights into the vertical structure of the September 2015 dust storm employing eight ceilometers and auxiliary measurements over Israel. Atmos. Chem. Phys. 2018, 18, 3203–3221. [Google Scholar] [CrossRef]
- Gasch, P.; Rieger, D.; Walter, C.; Khain, P.; Levi, Y.; Knippertz, P.; Vogel, B. Revealing the meteorological drivers of the September 2015 severe dust event in the Eastern Mediterranean. Atmos. Chem. Phys. 2017, 17, 13573–13604. [Google Scholar] [CrossRef]
- Kishcha, P.; Starobinets, B. Spatial heterogeneity in Dead Sea surface temperature associated with inhomogeneity in evaporation. Remote Sens. 2021, 13, 93. [Google Scholar] [CrossRef]
- Duguay-Tetzlaff, A.; Bento, V.A.; Göttsche, F.-M.; Stöckli, R.; Martins, J.P.A.; Trigo, I.; Olesen, F.-S.; Bojanowski, J.S.; Dacamara, C.C.; Kunz, H. Meteosat Land Surface Temperature Climate Data Record: Achievable Accuracy and Potential Uncertainties. Remote Sens. 2015, 7, 13139–13156. [Google Scholar] [CrossRef]
- Duguay-Tetzlaff, A.; Stöckli, R.; Bojanowski, J.; Hollmann, R.; Fuchs, P.; Werscheck, M. CM SAF Land SUrface Temperature Dataset from METeosat First and Second Generation—Edition 1 (SUMET Ed. 1); Satellite Application Facility on Climate Monitoring, DWD: Offenbach am Main, Germany, 2017. [Google Scholar] [CrossRef]
- Product User Manual (PUM) Meteosat Land Surface Temperature. 2017. Available online: https://www.cmsaf.eu/SharedDocs/Literatur/document/2017/saf_cm_meteoswiss_pum_met_lst_1_1_pdf.pdf?__blob=publicationFile (accessed on 7 November 2023).
- Emery, W.J.; Castro, S.; Wick, G.A.; Schluessel, P.; Donlon, C. Estimating sea surface temperature from infrared satellite and in situ temperature data. Bull. Am. Meteorol. Soc. 2001, 82, 2773–2785. [Google Scholar] [CrossRef]
- Kishcha, P.; Lechinsky, Y.; Starobinets, B. Measurements of diurnal variations of subsurface water temperature in Lake Kinneret during the period (6–9 September 2015). Zenodo 2023. [Google Scholar] [CrossRef]
- David, N.; Alpert, P.; Messer, H. Technical note: Novel method for water vapour monitoring using wireless communication networks measurements. Atmos. Chem. Phys. 2009, 9, 2413–2418. [Google Scholar] [CrossRef]
- Schmid, M.; Read, J. Heat budget of lakes. In Encyclopedia of Inland Waters 2022, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 1, pp. 467–473. [Google Scholar] [CrossRef]
- Al-Shehhi, M.R. Uncertainty in satellite sea surface temperature with respect to air temperature, dust level, wind speed and solar position. Reg. Stud. Mar. Sci. 2022, 53, 102385. [Google Scholar] [CrossRef]
- Agrawal, D.C.; Menon, V.J. Surface tension and evaporation: An empirical relation for water. Phys. Rev. A 1992, 46, 2166–2169. [Google Scholar] [CrossRef] [PubMed]
Date | GSR, W m−2 | DifSR, W m−2 | DirSR, W m−2 | α |
---|---|---|---|---|
6 September 2015 | 871 | 108 | 763 | 7.04 |
7 September 2015 | 802 | 321 | 481 | 1.50 |
8 September 2015 | 198 | 194 | 4 | 0.02 |
9 September 2015 | 636 | 509 | 127 | 0.25 |
Date | Δ SWTA [°C] | Δ SWT [°C] | Δ Tair [°C] |
---|---|---|---|
7 September 2015 | 1.2 | −3.5 | 3.2 |
8 September 2015 | −1.0 | (−9.0) * | −2.9 |
9 September 2015 | 0.5 | −5.8 | 4.4 |
Date | Δ SWTA [°C] | Δ SWT [°C] | Δ Tair [°C] |
---|---|---|---|
7 September 2015 | 1.1 | −6.2 | 2.2 |
8 September 2015 | 0.9 | −9.0 | 4.3 |
9 September 2015 | 1.0 | −9.0 | 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kishcha, P.; Lechinsky, Y.; Starobinets, B. Impact of a Severe Dust Event on Diurnal Behavior of Surface Water Temperature in Subtropical Lake Kinneret. Remote Sens. 2023, 15, 5297. https://doi.org/10.3390/rs15225297
Kishcha P, Lechinsky Y, Starobinets B. Impact of a Severe Dust Event on Diurnal Behavior of Surface Water Temperature in Subtropical Lake Kinneret. Remote Sensing. 2023; 15(22):5297. https://doi.org/10.3390/rs15225297
Chicago/Turabian StyleKishcha, Pavel, Yury Lechinsky, and Boris Starobinets. 2023. "Impact of a Severe Dust Event on Diurnal Behavior of Surface Water Temperature in Subtropical Lake Kinneret" Remote Sensing 15, no. 22: 5297. https://doi.org/10.3390/rs15225297
APA StyleKishcha, P., Lechinsky, Y., & Starobinets, B. (2023). Impact of a Severe Dust Event on Diurnal Behavior of Surface Water Temperature in Subtropical Lake Kinneret. Remote Sensing, 15(22), 5297. https://doi.org/10.3390/rs15225297