Rangeland Brush Estimation Tool (RaBET): An Operational Remote Sensing-Based Application for Quantifying Woody Cover on Western Rangelands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data
2.2.1. Aerial Orthophotography
2.2.2. Landsat Satellite Imagery
2.2.3. National Land Cover Database (NLCD)
2.2.4. Rangeland Analysis Platform (RAP)
2.2.5. Landscape Cover Analysis and Reporting Tool (LandCART)
2.2.6. Ground Data
2.3. RaBET Woody Canopy Cover Map Generation
3. Results
3.1. Rangeland Brush Estimation Tool
3.2. RaBET Validation and Comparison to RAP and LandCART
Transect Line Comparisons for MLRA 65 and MLRA 71
4. Discussion
4.1. Motivation for the Project
4.2. Comparison of RaBET, RAP, and LandCART Map Products
4.3. Comparison of Map Validation Methods
4.4. Contributions to Land Management
4.5. Applying Remote Sensing for Woody Vegetation Mapping
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Archer, S.R.; Andersen, E.M.; Predick, K.I.; Schwinning, S.; Steidl, R.J.; Woods, S.R.; Briske, D.D. Woody plant encroachment: Causes and consequences. In Rangeland Systems: Processes, Management and Challenges; Springer International Publishing: Cham, Switzerland, 2017; pp. 25–84. [Google Scholar]
- Ding, J.; Eldridge, D. The success of woody plant removal depends on encroachment stage and plant traits. Nat. Plants 2023, 9, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, D.J.; Bowker, M.A.; Maestre, F.T.; Roger, E.; Reynolds, J.F.; Whitford, W.G. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecol. Lett. 2011, 14, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Archer, S.; Boutton, T.W.; Hibbard, K.A. Trees in grasslands: Biogeochemical consequences of woody plant expansion. In Global Biogeochemical Cycles in the Climate System; Schulz, M., Heimann, S., Harrison, E., Holland, J., Lloyd, I., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 115–138. [Google Scholar]
- Londe, D.; Cady, S.; Elmore, R.D.; Fuhlendorf, S. Woody plant encroachment pervasive across three socially and ecologically diverse ecoregions. Ecol. Soc. 2022, 27, 11. [Google Scholar] [CrossRef]
- Scifres, C.J. Brush Management: Principles and Practices for Texas and the Southwest; Texas A&M University Press: College Station, TX, USA, 1980. [Google Scholar]
- Hamilton, W.T.; McGinty, A.; Ueckert, D.N.; Hanselka, C.W.; Lee, M.R. Brush Managment: Past, Present, Future; Texas A&M University Press: College Station, TX, USA, 2004. [Google Scholar]
- Welch, T.G. Brush Management Methods; Texas A&M Agrilife Extension: College Station, TX, USA, 2000. [Google Scholar]
- Scholtz, R.; Fuhlendorf, S.D.; Uden, D.R.; Allred, B.W.; Jones, M.O.; Naugle, D.E.; Twidwell, D. Challenges of brush management treatment effectiveness in southern Great Plains, United States. Rangel. Ecol. Manag. 2021, 77, 57–65. [Google Scholar] [CrossRef]
- Jansen, V.S.; Kolden, C.A.; Schmalz, H.J. The development of near real-time biomass and cover estimates for adaptive rangeland management using Landsat 7 and Landsat 8 surface reflectance products. Remote Sens. 2018, 10, 1057. [Google Scholar] [CrossRef]
- Mansour, K.; Mutanga, O.; Everson, T. Remote sensing based indicators of vegetation species for assessing rangeland degradation: Opportunities and challenges. Afr. J. Agric. Res. 2012, 7, 3261–3270. [Google Scholar] [CrossRef]
- Robinson, N.P.; Allred, B.W.; Naugle, D.E.; Jones, M.O. Patterns of rangeland productivity and land ownership: Implications for conservation and management. Ecol. Appl. 2019, 29, e01862. [Google Scholar] [CrossRef]
- Stubbs, M. Environmental Quality Incentives Program (EQIP): Status and Issues; Congressional Research Service: Washington, DC, USA, 2010.
- Briske, D.D.; Jolley, L.W.; Duriancik, L.F.; Dobrowolski, J.P. Introduction to the conservation effects assessment project and the rangeland literature synthesis. In Conservation Benefits of Rangeland Practices: Assessment, Recommendations, and Knowledge Gaps; Natural Resources Conservation Service: Washington, DC, USA, 2011; pp. 4–8. [Google Scholar]
- Rigge, M.; Shi, H.; Homer, C.; Danielson, P.; Granneman, B. Long-term trajectories of fractional component change in the Northern Great Basin, USA. Ecosphere 2019, 10, e02762. [Google Scholar] [CrossRef]
- Boyte, S.P.; Wylie, B.K.; Major, D.J. Cheatgrass percent cover change: Comparing recent estimates to climate change-driven predictions in the northern Great Basin. Rangel. Ecol. Manag. 2016, 69, 265–279. [Google Scholar] [CrossRef]
- Henderson, E.B.; Bell, D.M.; Gregory, M.J. Vegetation mapping to support greater sage-grouse habitat monitoring and management: Multi-or univariate approach? Ecosphere 2019, 10, e02838. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Evans, J.S.; Naugle, D.E.; Hagen, C.A.; Carleton, S.A.; Maestas, J.D.; Henareh Khalyani, A.; Poznanovic, A.J.; Lawrence, A.J. Mapping tree canopy cover in support of proactive prairie grouse conservation in western North America. Rangel. Ecol. Manag. 2017, 70, 15–24. [Google Scholar] [CrossRef]
- Allred, B.W.; Bestelmeyer, B.T.; Boyd, C.S.; Brown, C.; Davies, K.W.; Duniway, M.C.; Ellsworth, L.M.; Erickson, T.A.; Fuhlendorf, S.D.; Griffiths, T.V.; et al. Improving Landsat predictions of rangeland fractional cover with multitask learning and uncertainty. Methods Ecol. Evol. 2021, 12, 841–849. [Google Scholar] [CrossRef]
- Okin, G.; Zhou, B.; Duniway, M.; Cole, C.; Savage, S.; Litschert, S.; Liddle, J. Landscape Cover Analysis and Reporting Tools V1.0. Available online: https://landcart-301816.wm.r.appspot.com/#/ (accessed on 1 April 2023).
- United States Department of Agriculture, Natural Resources Conservation Service. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin; U.S. Department of Agriculture Handbook 296: Washington, DC, USA, 2006.
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Stehman, S. Estimating the kappa coefficient and its variance under stratified random sampling. Photogramm. Eng. Remote Sens. 1996, 62, 401–407. [Google Scholar]
- Karasiak, N.; Fauvel, M.; Dejoux, J.-F.; Monteil, C.; Sheeren, D. Optimal dates for deciduous tree species mapping using full years Sentinel-2 time series in south west France. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V-3-2020, 469–476. [Google Scholar] [CrossRef]
- Van Leeuwen, W.J.D.; Davison, J.E.; Casady, G.M.; Marsh, S.E. Phenological characterization of Desert Sky Island vegetation communities with remotely sensed and climate time series data. Remote Sens. 2010, 2, 388–415. [Google Scholar] [CrossRef]
- Casady, G.M.; van Leeuwen, W.J.D.; Reed, B.C. Estimating winter annual biomass in the Sonoran and Mojave deserts with satellite- and ground-based observations. Remote Sens. 2013, 5, 909–926. [Google Scholar] [CrossRef]
- Smith, W.K.; Dannenberg, M.P.; Yan, D.; Herrmann, S.; Barnes, M.L.; Barron-Gafford, G.A.; Biederman, J.A.; Ferrenberg, S.; Fox, A.M.; Hudson, A.; et al. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sens. Environ. 2019, 233, 111401. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Marsett, R.C.; Qi, J.; Heilman, P.; Biedenbender, S.H.; Watson, M.C.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R. Remote sensing for grassland management in the arid southwest. Rangel. Ecol. Manag. 2006, 59, 530–540. [Google Scholar] [CrossRef]
- Waller, E.K.; Villarreal, M.L.; Poitras, T.B.; Nauman, T.W.; Duniway, M.C. Landsat time series analysis of fractional plant cover changes on abandoned energy development sites. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 407–419. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, J.; Wu, X.; Dong, Y. Comparison of vegetation indices and red-edge parameters for estimating grassland cover from canopy reflectance data. J. Integr. Plant Biol. 2007, 49, 299–306. [Google Scholar] [CrossRef]
- McNairn, H.; Protz, R. Mapping corn residue cover on agricultural fields in Oxford County, Ontario, using thematic mapper. Can. J. Remote 1993, 19, 152–159. [Google Scholar] [CrossRef]
- Dingaan, M.N.V.; Tsubo, M. Improved assessment of pasture availability in semi-arid grassland of South Africa. Environ. Monit. Assess. 2019, 191, 733. [Google Scholar] [CrossRef]
- Zhang, J.; Okin, G.S.; Zhou, B. Assimilating optical satellite remote sensing images and field data to predict surface indicators in the Western US: Assessing error in satellite predictions based on large geographical datasets with the use of machine learning. Remote Sens. Environ. 2019, 233, 111382. [Google Scholar] [CrossRef]
- Zhou, B.; Okin, G.S.; Zhang, J. Leverageing Google Earth Engine (GEE) and machine learning algorithms to incorporate in situ measurement from different times for rangelands monitoring. Remote Sens. Environ. 2020, 236, 111521. [Google Scholar] [CrossRef]
- Herrick, J.E. Monitoring Manual for Grassland, Shrubland and Savanna Ecosystems, Volume 1: Quick Start; USDA-ARS Jornada Experimental Range; The University of Arizona Press: Tucson, AZ, USA, 2005. [Google Scholar]
- Holifield Collins, C.D.; Kautz, M.A.; Tiller, R.; Lohani, S.; Ponce-Campos, G.; Hottenstein, J.; Metz, L.J. Development of an integrated multiplatform approach for assessing brush management conservation efforts in semiarid rangelands. J. Appl. Remote Sens. 2015, 9, 096057. [Google Scholar] [CrossRef]
- Steinauer, E.M.; Bragg, T.B. Ponderosa pine (Pinus ponderosa) invasion of Nebraska Sandhills prairie. Am. Midl. Nat. 1987, 118, 358–365. [Google Scholar] [CrossRef]
- Eggemeyer, K.D.; Awada, T.; Wedin, D.A.; Harvey, F.E.; Zhou, X. Ecophysiology of two native invasive woody species and two dominant warm-season grasses in the semiarid grasslands of the Nebraska Sandhills. Int. J. Plant Sci. 2006, 167, 991–999. [Google Scholar] [CrossRef]
- Barger, N.N.; Archer, S.R.; Campbell, J.L.; Huang, C.Y.; Morton, J.A.; Knapp, A.K. Woody plant proliferation in North American drylands: A synthesis of impacts on ecosystem carbon balance. J. Geophys. Res. Biogeosci. 2011, 116, G4. [Google Scholar] [CrossRef]
- Walker, T.L., Jr.; Hoback, W.W. Effects of invasive eastern redcedar on capture rates of Nicrophorus americanus and other Silphidae. Environ. Entomol. 2007, 36, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Ucar, Z.; Bettinger, P.; Merry, K.; Akbulut, R.; Siry, J. Estimation of urban woody vegetation cover using multispectral imagery and LiDAR. Urban For. Urban Green. 2018, 29, 248–260. [Google Scholar] [CrossRef]
- Boswell, A.; Petersen, S.; Roundy, B.; Jensen, R.; Summers, D.; Hulet, A. Rangeland monitoring using remote sensing: Comparison of cover estimates from field measurements and image analysis. AIMS Environ. Sci. 2017, 4, 1–16. [Google Scholar] [CrossRef]
- Whiteside, T.G.; Esparon, A.J.; Bartolo, R.E. A semi-automated approach for quantitative mapping of woody cover from historical time series aerial photography and satellite imagery. Ecol. Inform. 2020, 55, 101012. [Google Scholar] [CrossRef]
- Fern, R.R.; Foxley, E.A.; Bruno, A.; Morrison, M.L. Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland. Ecol. Indic. 2018, 94, 16–21. [Google Scholar] [CrossRef]
- Lo, A.; Diouf, A.A.; Diedhiou, I.; Basséne, C.D.E.; Leroux, L.; Tagesson, T.; Fensholt, R.; Hiernaux, P.; Mottet, A.; Taugourdeau, S.; et al. Dry season forage assessment across senegalese rangelands using earth observation data. Front. Environ. Sci. 2022, 10, 931299. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, H.; Wang, Z.; Xie, Q.; Wang, Y.; Liu, L.; Hall, C. A comparison of estimating crop residue cover from Sentinel-2 data using empirical regressions and machine learning methods. Remote Sens. 2020, 12, 1470. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J. 2016, 4, 212–219. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Y.; Cui, X.; Chen, J.; Chen, X. Mechanisms, monitoring and modeling of shrub encroachment into grassland: A review. Int. J. Digit. Earth 2019, 12, 625–641. [Google Scholar] [CrossRef]
- Selkowitz, D.J. A comparison of multi-spectral, multi-angular, and multi-temporal remote sensing datasets for fractional shrub canopy mapping in arctic Alaska. Remote Sens. Environ. 2010, 114, 1338–1352. [Google Scholar] [CrossRef]
- Booth, D.T.; Cox, S.E.; Meikle, T.; Zuuring, H.R. Ground-cover measurements: Assessing correlation among aerial and ground-based methods. Environ. Manag. 2008, 42, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Boswell, A.K. Rangeland Monitoring Using Remote Sensing: An Assessment of Vegetation Cover Comparing Field-Based Sampling and Image Analysis Techniques. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2015. [Google Scholar]
- Karl, J.W.; Herrick, J.E.; Pyke, D.A. Monitoring protocols: Options, approaches, implementation, benefits. In Rangeland Systems: Processes, Management and Challenges; Springer: Berlin/Heidelberg, Germany, 2017; pp. 527–567. [Google Scholar]
- Booth, D.T.; Cox, S.E.; Meikle, T.W.; Fitzgerald, C. The accuracy of ground-cover measurements. Rangel. Ecol. Manag. 2006, 59, 179–188. [Google Scholar] [CrossRef]
- Cagney, J.; Cox, S.E.; Booth, D.T. Comparison of point intercept and image analysis for monitoring rangeland transects. Rangel. Ecol. Manag. 2011, 64, 309–315. [Google Scholar] [CrossRef]
- Ramoelo, A.; Stolter, C.; Joubert, D.; Cho, M.A.; Groengroeft, A.; Madibela, O.R.; Zimmermann, I.; Pringle, H. Rangeland monitoring and assessment: A review. Biodivers. Ecol. 2018, 6, 170–176. [Google Scholar] [CrossRef]
- Soubry, I.; Guo, X. Quantifying woody plant encroachment in grasslands: A review on remote sensing approaches. Can. J. Remote 2022, 48, 337–378. [Google Scholar] [CrossRef]
- Holifield Collins, C.; Skirvin, S.; Curley, D.; Corrales, A.; Winston, Z.; Heilman, P.; Metz, L. Hopping onto airborne-based validation for Landsat-based Rangeland Brush Estimation Tool (RaBET) woody cover maps. In Proceedings of the American Geophysical Union, Chicago, IL, USA, 12–16 December 2022. [Google Scholar]
- Briske, D.D. (Ed.) Conservation Benefits of Rangeland Practices: Assessment, Recommendations, and Knowledge Gaps; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2011; p. 429.
- Leprieur, C.; Kerr, Y.H.; Mastorchio, S.; Meunier, J.C. Monitoring vegetation cover across semi-arid regions: Comparison of remote observations from various scales. Int. J. Remote Sens. 2000, 21, 281–300. [Google Scholar] [CrossRef]
- Anchang, J.Y.; Prihodko, L.; Ji, W.; Kumar, S.S.; Ross, C.W.; Yu, Q.; Lind, B.; Sarr, M.A.; Diouf, A.A.; Hanan, N.P. Toward operational mapping of woody canopy cover in tropical savannas using Google Earth Engine. Front. Environ. Sci. 2020, 8, 4. [Google Scholar] [CrossRef]
MLRA Symbol | State(s) | Size (sq. km) | MLRA Name | Avg. Annual Precip. (mm) | Avg. Annual Air Temp. (°C) |
---|---|---|---|---|---|
38 | AZ NM | 49,195 | Mogollon Transition | 255 to 940 | 8 to 21 |
40 | AZ | 82,310 | Sonoran Basin and Range | 75 to 255 | 15 to 23 |
41 | AZ | 40,765 | Southeastern Arizona Basin and Range | 230 to 510 | 8 to 20 |
42 | NM TX | 145,040 | Southern Desertic Basins, Plains, and Mountains | 205 to 355 | 10 to 22 |
65 | NE | 53,235 | Nebraska Sand Hills | 380 to 660 | 8 to 10 |
69 | CO | 30,885 | Upper Arkansas Valley Rolling Plains | 255 to 485 | 8 to 12 |
70A | NM | 27,910 | Canadian River Plains and Valleys | 255 to 535 | 8 to 14 |
70B | NM | 25,660 | Upper Pecos River Valley | 330 to 380 | 12 to 16 |
71 | NE | 21,160 | Central Nebraska Loess Hills | 535 to 735 | 8 to 11 |
73 | NE KS | 55,670 | Rolling Plains and Breaks | 485 to 760 | 9 to 14 |
81B | TX | 28,825 | Edwards Plateau, Central Part | 485 to 815 | 17 to 20 |
81C | TX | 20,890 | Edwards Plateau, Eastern Part | 610 to 760 | 17 to 20 |
83A | TX | 28,805 | Northern Rio Grande Plain | 535 to 940 | 20 to 22 |
84B | TX OK | 15,970 | West Cross Timbers | 660 to 1065 | 17 to 19 |
85 | TX OK | 26,955 | Grand Prairie | 685 to 1040 | 16 to 19 |
MLRA | State(s) | Image Type | Image Year |
---|---|---|---|
38 | AZ NM | NAIP NAIP | 2018 2016 |
40 | AZ | NAIP | 2019 |
41 | AZ | NAIP 10 cm | 2019 2022 |
42 | NM TX | NAIP NAIP | 2018 2016 |
65 | NE | NAIP 10 cm | 2016, 2018 2020 |
69 | CO | NAIP | 2018 |
70A | NM | NAIP | 2018 |
70B | NM | NAIP | 2018 |
71 | NE | NAIP 10 cm | 2018 2022 |
73 | NE KS | NAIP NAIP | 2018 2019 |
81B | TX | NAIP | 2020 |
81C | TX | NAIP | 2020 |
83A | TX | NAIP | 2020 |
84B | TX OK | NAIP NAIP | 2020 2019, 2020 |
85 | TX OK | NAIP NAIP | 2020 2019 |
MLRA | State(s) | Landsat Phenology Window |
---|---|---|
38 | AZ NM | Jan, Feb, Mar |
40 | AZ | Mar, Apr |
41 | AZ | Jun |
42 | NM TX | Apr, May |
65 | NE | Jan, Feb, Mar, Apr, Nov, Dec |
69 | CO | Jan, Feb, Mar, Nov, Dec |
70A | NM | Jan, Feb, Mar, Nov, Dec |
70B | NM | Jan, Feb, Mar, Nov, Dec |
71 | NE | Jan, Feb, Mar, Nov, Dec |
73 | NE KS | Jan, Feb, Mar, Nov, Dec Jan, Feb, Mar |
81B | TX | Jan, Feb, Mar, Dec |
81C | TX | Jan, Dec |
83A | TX | Jan, Dec |
84B | TX OK | May, Jun, Jul, Aug |
85 | TX OK | May, Jun, Jul, Aug |
MLRA | State(s) | βWVI | βMSAVI2 | βNDI5 | β0 | MAE | R2 |
---|---|---|---|---|---|---|---|
38 | AZ NM | 167.95 270.74 | 98.86 −296.32 | 155.79 74.39 | −44.01 −11.58 | 4.60 4.32 | 0.87 0.44 |
40 | AZ | −19.82 | 227.55 | −58.75 | −0.23 | 4.63 | 0.30 |
41 | AZ | 67.93 | 198.83 | −100.78 | −6.48 | 5.32 | 0.76 |
42 | NM TX | 256.36 | −539.26 | −149.27 | 58.45 | 8.18 | 0.43 |
65 | NE | 121.39 243.10 | 52.82 −114.39 | −51.39 52.79 | −15.63 −51.02 | 2.27 | 0.95 |
69 | CO | 56.42 | 81.44 | −22.25 | −6.50 | 2.53 | 0.66 |
70A | NM | 110.01 | 189.14 | 68.10 | −43.44 | 4.73 | 0.54 |
70B | NM | 160.92 | 189.81 | −23.43 | −48.87 | 3.46 | 0.74 |
71 | NE | 123.44 | −268.90 | −137.88 | 40.06 | 2.26 | 0.98 |
73 | NE KS | 271.28 | −43.44 | 104.75 | −79.56 | 6.59 | 0.54 |
81B | TX | 116.57 | −194.38 | −89.69 | 34.55 | 4.21 | 0.84 |
81C | TX | 285.19 | 57.93 | 145.61 | −86.80 | 4.37 | 0.66 |
83A | TX | −93.81 | −632.86 | −514.25 | 259.83 | 4.78 | 0.80 |
84B | TX OK | 135.50 76.58 | −366.66 −302.79 | −190.24 −309.20 | 96.88 76.61 | 7.82 7.34 | 0.26 0.92 |
85 | TX OK | 45.08 349.30 | −441.34 −360.97 | −381.99 −181.73 | 145.51 −22.39 | 5.35 5.39 | 0.82 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holifield Collins, C.; Skirvin, S.; Kautz, M.; Winston, Z.; Curley, D.; Corrales, A.; Bishop, A.; Bishop, N.; Norton, C.; Ponce-Campos, G.; et al. Rangeland Brush Estimation Tool (RaBET): An Operational Remote Sensing-Based Application for Quantifying Woody Cover on Western Rangelands. Remote Sens. 2023, 15, 5102. https://doi.org/10.3390/rs15215102
Holifield Collins C, Skirvin S, Kautz M, Winston Z, Curley D, Corrales A, Bishop A, Bishop N, Norton C, Ponce-Campos G, et al. Rangeland Brush Estimation Tool (RaBET): An Operational Remote Sensing-Based Application for Quantifying Woody Cover on Western Rangelands. Remote Sensing. 2023; 15(21):5102. https://doi.org/10.3390/rs15215102
Chicago/Turabian StyleHolifield Collins, Chandra, Susan Skirvin, Mark Kautz, Zachary Winston, Dustin Curley, Andrew Corrales, Andrew Bishop, Nadine Bishop, Cynthia Norton, Guillermo Ponce-Campos, and et al. 2023. "Rangeland Brush Estimation Tool (RaBET): An Operational Remote Sensing-Based Application for Quantifying Woody Cover on Western Rangelands" Remote Sensing 15, no. 21: 5102. https://doi.org/10.3390/rs15215102
APA StyleHolifield Collins, C., Skirvin, S., Kautz, M., Winston, Z., Curley, D., Corrales, A., Bishop, A., Bishop, N., Norton, C., Ponce-Campos, G., Armendariz, G., Metz, L., Heilman, P., & van Leeuwen, W. (2023). Rangeland Brush Estimation Tool (RaBET): An Operational Remote Sensing-Based Application for Quantifying Woody Cover on Western Rangelands. Remote Sensing, 15(21), 5102. https://doi.org/10.3390/rs15215102