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Abstract: Much of the western United States is covered by rangelands used for grazing and wildlife.
Woody plant cover is increasing in areas historically covered by grasslands and can cause numerous
problems, including losses in wildlife habitat, forage for grazing, and overall losses in soil health.
Land managers and conservationists are working to control these increases in woody plants, but
need tools to help determine target areas to focus efforts and resources where they are most needed.
In this work, we present RaBET (Rangeland Brush Estimation Tool), which uses transparent, well-
understood methodologies with remotely sensed data to map woody canopy cover across large
areas of rangelands. We demonstrate that our process produced more accurate results than two
currently available tools based on advanced machine learning techniques. We compare two methods
of map validation: traditional field methods of plant canopy measurements; and aircraft-based
photography, which decreases the amount of time and resources needed. RaBET is a remote sensing-
based application for obtaining repeatable, accurate measures of woody cover to aid land managers
and conservationists in the control of woody plants on rangelands.

Keywords: Landsat; woody cover; rangelands; vegetation maps

1. Introduction

Woody plant encroachment in rangelands is one of the challenges that ranchers, land
managers, and conservationists have faced for decades [1,2]. Left unchecked, increases
in woody species can cause the loss of native perennial grasses and lead to declines in
forage availability, biodiversity, wildlife habitat, and soil health, ultimately leading to loss
of function and services throughout rangeland ecosystems [3–5].

Implementing conservation practices through informed management is critical for
ensuring the health and sustainability of natural resources throughout rangelands and
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other ecosystems. Brush management as a conservation practice includes the treatment
of woody plants with a variety of methods, including herbicides, prescribed fire, and
mechanical removal to mitigate decreases in system function [6,7]. Efficacy, sustainability,
and cost of conservation practices depend on timing, location, and treatment method(s);
thus, significant planning is necessary [8]. Monitoring and accurately assessing treatment
outcomes poses a substantial challenge, particularly when dealing with vast expanses of
land with limited resources [9–11].

Numerous federal and state government agencies and non-governmental organiza-
tions have adopted brush management in rangeland ecosystems [12]. The United States
Department of Agriculture’s Natural Resources Conservation Service (NRCS), for example,
spends millions of dollars each year on brush management through the Environmental
Quality Incentives Program (EQIP), which provides financial support to ranchers and other
agricultural producers to identify and use appropriate conservation practices [13].

The NRCS Conservation Effects Assessment Project (CEAP) examines the impact
of conservation practices on natural resources such as soil, water, and wildlife [14]. The
project’s goal is to give decision-makers and policymakers science-based information to
help evaluate conservation practices, prioritize funding, and allocate resources where they
are most needed. The processes of monitoring and evaluating a conservation practice can be
constrained by the availability of sufficient personnel to conduct field surveys during time-
sensitive periods. Data collection is thus limited to key areas that are unlikely to capture
the variability in spatial or spectral characteristics of larger landscapes due to topography
and soils as well as temporal impacts arising with changing climate and land use.

Remote sensing-based methods have been developed, often incorporating ground-
based data, to map rangeland vegetation [15–20]. Many of these maps are restricted
by vegetation type, have limited spatial coverage, and/or only provide snapshots in
time [15–18]; this does not meet brush management needs for planning and documenting
changes in time and space over a variety of landscapes. The Rangeland Analysis Platform
(RAP) and Landscape Cover Analysis and Reporting Tool (LandCART) quantify woody or
brush cover from satellite imagery, provide time series maps, and are currently available for
the assessment and monitoring at regional/national scales [19,20]. However, neither tool
is optimized for rangelands. Woody canopy cover values at ranch or pasture scales that
capture rangeland landscape variability are more useful for the planning, implementation,
and monitoring of brush management.

In this work, we present RaBET (Rangeland Brush Estimation Tool), which provides
maps of woody canopy cover and uses transparent, well-understood methodologies with
remotely sensed data and parameters tuned to rangelands in Major Land Resource Areas
(MLRAs) [21] ranging in area up to 145,000 sq. km. Our primary goal is to compare RaBET
output with RAP and LandCART, which use advanced machine learning techniques, and
demonstrate that our process produces more accurate results. In addition, we compare two
methods of map validation, traditional field methods of plant canopy measurements and
aircraft-based photography, to explore the disconnect that often exists between ground-
based and remotely sensed vegetation observations.

2. Materials and Methods
2.1. Study Areas

This work was conducted within 15 Major Land Resource Areas (MLRAs) across the
western United States (Figure 1) [21]. MLRAs are large areas characterized by similar pat-
terns of soils, climate, water resources, and land uses, which are important for agricultural
planning at regional and national scales [21]. Study MLRAs extend from Arizona east
to Texas and north to Nebraska. Elevations ranged from 60 m in Texas to approximately
2285 m in the mountains of Arizona, with vegetation spanning desert scrubland, savannas
and prairies, and dense forests. Some of the most common woody species present include
pinyon (Pinus spp.), juniper (Juniperus communis L.), eastern redcedar (Juniperus virginiana
L.), and mesquite (Prosopis spp.), which are often targets for removal through brush man-
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agement. MLRA sizes ranged widely from 15,970 sq. km up to 145,040 sq. km with annual
average precipitation of 75 to 1065 mm and annual air temperatures of 8 to 23 ◦C (Table 1).
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Figure 1. Map showing the coverage of MLRAs used in the study [21] and locations of National
Agriculture Imagery Program (NAIP) pasture-sized image samples.

Table 1. Major Land Resource Area descriptions of symbol, location, size, name, average annual
precipitation, and average annual air temperature [21].

MLRA
Symbol State(s) Size

(sq. km) MLRA Name Avg. Annual
Precip. (mm)

Avg. Annual Air
Temp. (◦C)

38 AZ
NM 49,195 Mogollon Transition 255 to 940 8 to 21

40 AZ 82,310 Sonoran Basin and Range 75 to 255 15 to 23

41 AZ 40,765 Southeastern Arizona Basin and Range 230 to 510 8 to 20

42 NM
TX 145,040 Southern Desertic Basins, Plains, and Mountains 205 to 355 10 to 22

65 NE 53,235 Nebraska Sand Hills 380 to 660 8 to 10

69 CO 30,885 Upper Arkansas Valley Rolling Plains 255 to 485 8 to 12

70A NM 27,910 Canadian River Plains and Valleys 255 to 535 8 to 14

70B NM 25,660 Upper Pecos River Valley 330 to 380 12 to 16

71 NE 21,160 Central Nebraska Loess Hills 535 to 735 8 to 11

73 NE
KS 55,670 Rolling Plains and Breaks 485 to 760 9 to 14

81B TX 28,825 Edwards Plateau, Central Part 485 to 815 17 to 20

81C TX 20,890 Edwards Plateau, Eastern Part 610 to 760 17 to 20

83A TX 28,805 Northern Rio Grande Plain 535 to 940 20 to 22

84B TX
OK 15,970 West Cross Timbers 660 to 1065 17 to 19

85 TX
OK 26,955 Grand Prairie 685 to 1040 16 to 19
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2.2. Data

The following subsections describe the data sources and methods used for this work. A
schematic of how the datasets and methods relate is provided in Figure 2. Landsat satellite
imagery and National Agriculture Imagery Program (NAIP) aerial orthophotography were
used to create vegetation indices and linear regressions. The regressions were applied to
Landsat vegetation indices to create RaBET maps. National Land Cover Database (NLCD)
layers were applied to the RaBET maps to mask out unwanted features. RaBET maps
were validated using NAIP, finer resolution (10 cm) aerial imagery, and ground-based data.
Comparisons of RaBET maps and RAP and LandCART map products were performed.
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Orange boxes are calculated operations. Blue boxes are project results. Green boxes are new and
existing map products.

2.2.1. Aerial Orthophotography

High-resolution imagery was used for map creation and validation. Subsets of Na-
tional Agriculture Imagery Program (NAIP) imagery at 0.6 m resolution were used as
samples from each MLRA (Table 2). Samples were collected via the Google Earth Engine
(GEE) repository and classified into woody and non-woody classes using the Support
Vector Machine supervised classification method [22] in ArcGIS Pro. Approximate extents
of classified pasture-sized samples ranged between 400 m × 400 m and 900 m × 900 m.
There were between 18 and 46 samples per MLRA. Accuracy of each classified sample was
determined using a stratified random Kappa Coefficient test [23]. Samples failing to meet a
0.7 Kappa threshold were excluded.

Privately contracted finer spatial resolution (10 cm) orthoimagery was also collected
for MLRAs 41, 65, and 71 (Table 2, Figure 3). Pasture-sized imagery sites were overlaid
with polylines to create sampling block layouts composed of one 100 m baseline and six
70 m side lines. At 0.5 m intervals, line-point intercepts (woody, non-woody) were read
directly from the imagery to calculate woody canopy cover for validation of woody cover
maps.
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Table 2. Major Land Resource Areas: state locations, image type, and year.

MLRA State(s) Image Type Image Year

38 AZ
NM

NAIP
NAIP

2018
2016

40 AZ NAIP 2019

41 AZ NAIP
10 cm

2019
2022

42 NM
TX

NAIP
NAIP

2018
2016

65 NE NAIP
10 cm

2016, 2018
2020

69 CO NAIP 2018

70A NM NAIP 2018

70B NM NAIP 2018

71 NE NAIP
10 cm

2018
2022

73 NE
KS

NAIP
NAIP

2018
2019

81B TX NAIP 2020

81C TX NAIP 2020

83A TX NAIP 2020

84B TX
OK

NAIP
NAIP

2020
2019, 2020

85 TX
OK

NAIP
NAIP

2020
2019
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Figure 3. Maps showing pasture-sized 10 cm imagery sites within (A) MLRA 41 and (B) MLRAs 65
and 71.

2.2.2. Landsat Satellite Imagery

Collection 1 Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper
Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) Level 2 Surface Reflectance
products, courtesy of the U.S. Geological Survey, were used for woody cover map devel-
opment. Cloud cover screening was performed and images with cloud cover thresholds
above 10% were excluded.
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For this work, the temporal range of the data used was 2015–2021. Rather than using the
full 12-month time series per year, as is common when using vegetation indices [19,24–27],
the months used here were based on phenology time windows appropriate for the MLRA’s
woody species targeted for management and are shown in Table 3. Phenology windows were
periods of time when, ideally, the woody target species of interest for brush management
would be green and background vegetation would not. Maps available in the final RaBET
web application used Landsat data from 1997–2021 with the phenology windows shown in
Table 3.

Table 3. Major Land Resource Areas: state locations and Landsat phenology window.

MLRA State(s) Landsat Phenology Window

38 AZ
NM Jan, Feb, Mar

40 AZ Mar, Apr

41 AZ Jun

42 NM
TX Apr, May

65 NE Jan, Feb, Mar, Apr, Nov, Dec

69 CO Jan, Feb, Mar, Nov, Dec

70A NM Jan, Feb, Mar, Nov, Dec

70B NM Jan, Feb, Mar, Nov, Dec

71 NE Jan, Feb, Mar, Nov, Dec

73 NE
KS

Jan, Feb, Mar, Nov, Dec
Jan, Feb, Mar

81B TX Jan, Feb, Mar, Dec

81C TX Jan, Dec

83A TX Jan, Dec

84B TX
OK May, Jun, Jul, Aug

85 TX
OK May, Jun, Jul, Aug

Three Landsat-based vegetation indices were used for this work. The Woody Vegeta-
tion Index (WVI) is a new index developed for RaBET, based on the “Green” NDVI [28]
and the Soil Adjusted Total Vegetation Index (SATVI) [29,30], which emphasizes woody
vegetation,

WVI =
ρNIR − ρGREEN
ρNIR + ρGREEN

− ρSWIR1
2

(1)

where ρNIR, ρGREEN, and ρSWIR1 are near-infrared (NIR), green, and shortwave infrared
(SWIR) reflectance, respectively. Utilizing the green rather than red reflectance normally
used with NDVI provides higher sensitivity to chlorophyll concentration [28]. The Modified
Soil Adjusted Vegetation Index (MSAVI2) [31,32],

MSAVI2 =
2ρNIR ± 1 −

√
(2ρNIR + 1)2 − 8(ρNIR − ρRED)

2
(2)

where ρRED is red reflectance, was used to minimize the effects of variable soil background
in heterogeneous areas. The Normalized Difference Index 5 (NDI5) [33,34],

NDI5 =
ρNIR − ρSWIR1
ρNIR + ρSWIR1

(3)
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was originally developed to detect crop residue. In this case, it was used to highlight
dry herbaceous standing biomass, like senescent grasses. Figure 4 demonstrates different
aspects of detection by the three indices in comparison with a reference natural color NAIP
sample of the same area. WVI captures all of the woody areas, but also background grass
and soil signals. MSAVI2 removes the grass and soil background, but also loses a portion
of woody vegetation. NDI5 functions in the opposite manner than the other indices, with
grasses being highlighted and woody vegetation removed. When used in combination,
a stronger signal for woody vegetation is possible.
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2.2.3. National Land Cover Database (NLCD)

The National Land Cover Database (NLCD) land cover product covers the con-
terminous United States of America and is maintained and updated periodically by
the Multi-Resolution Land Characteristics Consortium that is composed of several fed-
eral agencies (https://www.mrlc.gov/, accessed on 24 March 2017 and 5 January 2022;
https://www.mrlc.gov/data, accessed on 24 March 2017 and 5 January 2022). The NLCD
product includes a suite of land cover maps for periods between 2001 to 2021 at varying
time intervals and uses a 30 m Landsat-compatible pixel size. RaBET maps were masked
using modifications to the 2016 NLCD map for all MLRAs except for the MLRA 65 mask,
which was based on the 2019 NLCD map. Excluded NLCD classes were open water, peren-
nial ice/snow, developed, barren land, pasture/hay, and cultivated crops. Included NLCD
classes were forest types, scrub types, grassland/herbaceous, and woody and emergent
herbaceous wetlands. Barren land was included for MLRA 40 only.

2.2.4. Rangeland Analysis Platform (RAP)

RAP is a vegetation cover product that utilizes aggregated NRCS National Resource
Inventory (NRI) and Bureau of Land Management (BLM) Assessment, Inventory, and
Management (AIM) field data with remote sensing products to generate fractional cover
maps [19]. These data were aggregated into annual forbs and grasses, perennial forbs and
grasses, shrubs, trees, litter, and bare ground functional cover types. The field data and
Landsat 5 TM, 7 ETM+, and 8 OLI surface reflectance products were used in an Artificial
Neural Network (ANN) to produce fractional cover maps of the six cover types. The
2018–2021 tree cover maps from RAP version 3 were used for this work.

2.2.5. Landscape Cover Analysis and Reporting Tool (LandCART)

LandCART is a web-based mapping tool that can be used to generate and download
fractional cover maps of selected BLM AIM indicators (e.g., annual and perennial forbs
and grasses, bare ground, canopy gaps, sagebrush, succulents, and trees) and display
histograms of their distribution [20]. LandCART uses AIM, NRI and National Park Service
(NPS) field data, Landsat 5 TM, 7 ETM+, and 8 OLI imagery, GEE, and Random Forest
machine learning techniques to generate its fractional cover maps [35,36]. The 2018–2021
tree cover maps were used for this work.

https://www.mrlc.gov/
https://www.mrlc.gov/data
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2.2.6. Ground Data

Field campaigns were conducted in MLRAs 65 and 71 to collect ground-based data
for validation checks (Figure 5). Sampling sites were composed of seven transect lines,
one 100 m baseline with six 70 m side lines (three on each side of the baseline, spaced
at 15 m intervals along the length of the baseline). A combination of line-point intercept
and belt transect methods [37] were used to estimate woody canopy and ground cover.
Observations at 0.5 m intervals were recorded for canopy and ground hits. Woody species
that did not fall on the line but were within 3 m on either side of the transect were recorded
as if present on the transect line. The ground hit was always recorded at the location on
the transect line. All woody vegetation was recorded by species, and all other vegetation
was recorded by lifeform. Readings were collected for 54 sites from October–November
2019 in MLRA 65. In MLRA 71, there were 23 sites collected over the span of December
2020, October–December 2021, and January 2022. All transect data were entered into the
Vegetation GIS Data System (VGS) (https://vgs.arizona.edu, accessed on 1 October 2019),
a suite of software applications for recording, managing, and using vegetation and other
ecosystem related data, and woody canopy cover was calculated.
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2.3. RaBET Woody Canopy Cover Map Generation

RaBET woody canopy cover maps were generated individually for each MLRA
through a multistage process that included the aggregation of classified NAIP imagery
(Figure 6) and the workflow for producing the maps (Figure 7). The aggregation step took
the 0.6 m NAIP sample pixels that had been classified as woody (value = 1) and non-woody
(value = 0) (Figure 6a,b) and applied the process described in Holifield Collins et al. [38].
Each classified image was reduced from native resolution using an aggregation function
that set up an output image of 30 m pixel size corresponding to Landsat pixel locations. The
function then summed woody cover pixels within each complete 30 m input image block to
the matching output location (Figure 6c) to produce a 30 m NAIP-based woody cover image
sample (Figure 6d). These 30 m samples were used to develop multiple linear regression
coefficients for producing MLRA-specific woody canopy cover maps (Table 4). Pixel-level
values from a subset of samples were used to train the regression model; sample-average
values were used to minimize regression error for remaining samples, and the model with
minimum error was selected.

The workflow for creating woody canopy cover maps was coded to run within ArcGIS
Desktop 10.x and is shown in Figure 7. In the first process of the workflow, vegetation
indices (Equations (1)–(3)) were calculated from Landsat surface reflectance product images.

https://vgs.arizona.edu
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Figure 6. Example of process for aggregating 1 m resolution imagery to 30 m resolution: (a) a
section of input image; (b) a section of input image classified as woody or non-woody; (c) sample of
aggregation calculation of percent woody cover for a 5 × 5 m output pixel; (d) example of classified
NAIP aggregated to 30 m resolution [38].
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Figure 7. Workflow for generation of RaBET woody canopy cover maps.

Temporal compositing was used to minimize the effects of interannual and spatial
variability of precipitation on vegetation greenness. Composites were created by drawing
a minimum or median vegetation index value from a 4-year stack of vegetation indices
at each pixel location. Median values were used for most MLRAs to avoid the effects of
noise due to extreme high or low values. Minimum values were used for MLRAs 41 and 65.
For MLRA 41, the minimum was chosen in conjunction with a June phenological window
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to highlight the target species mesquite, which is greenest non-riparian vegetation at the
driest time of year in desert scrub landscapes. For MLRA 65, minimum values were used
to compensate for a highly variable topography and transient wetlands that could not be
adequately masked.

Table 4. Multiple linear regression coefficients calculated for the three vegetation indices (WVI,
MSAVI, NDI5), Mean Absolute Error (MAE) for the regression, and the R squared value of the
validation for each MLRA.

MLRA State(s) βWVI βMSAVI2 βNDI5 β0 MAE R2

38 AZ
NM

167.95
270.74

98.86
−296.32

155.79
74.39

−44.01
−11.58

4.60
4.32

0.87
0.44

40 AZ −19.82 227.55 −58.75 −0.23 4.63 0.30

41 AZ 67.93 198.83 −100.78 −6.48 5.32 0.76

42 NM
TX 256.36 −539.26 −149.27 58.45 8.18 0.43

65 NE 121.39
243.10

52.82
−114.39

−51.39
52.79

−15.63
−51.02 2.27 0.95

69 CO 56.42 81.44 −22.25 −6.50 2.53 0.66

70A NM 110.01 189.14 68.10 −43.44 4.73 0.54

70B NM 160.92 189.81 −23.43 −48.87 3.46 0.74

71 NE 123.44 −268.90 −137.88 40.06 2.26 0.98

73 NE
KS 271.28 −43.44 104.75 −79.56 6.59 0.54

81B TX 116.57 −194.38 −89.69 34.55 4.21 0.84

81C TX 285.19 57.93 145.61 −86.80 4.37 0.66

83A TX −93.81 −632.86 −514.25 259.83 4.78 0.80

84B TX
OK

135.50
76.58

−366.66
−302.79

−190.24
−309.20

96.88
76.61

7.82
7.34

0.26
0.92

85 TX
OK

45.08
349.30

−441.34
−360.97

−381.99
−181.73

145.51
−22.39

5.35
5.39

0.82
0.85

In subsequent stages of the workflow, composited vegetation index images were
mosaicked to cover the MLRA and used as input to the multiple linear regression to
generate a woody cover map named for the final year of the 4-year composite period. The
woody cover map was masked using a modified NLCD map to exclude urban, agricultural
fields, water, etc., for each MLRA.

3. Results
3.1. Rangeland Brush Estimation Tool

The Rangeland Brush Estimation Tool (RaBET) is a new woody cover estimation tool
validated at pasture scale and appropriate for field office use in conservation planning
(https://rabetcover.app, accessed on 20 September 2023) developed from work described
above. This online tool is designed to aid users to quantify woody canopy cover, observe
the change in woody cover over time, identify focal areas in need of treatment, and estimate
treatment effectiveness. The interactive features of RaBET include the ability to create or
upload polygons for areas of interest, like pastures, ranches, or treatment areas defined by
the user. The user can fully customize woody canopy cover classes for display. Summary
statistics with graphics for estimations of woody cover change over space and time are also
available for download.

https://rabetcover.app
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3.2. RaBET Validation and Comparison to RAP and LandCART

RaBET maps were validated at pasture-sized sample locations by comparing RaBET,
NAIP, and 10 cm average woody cover values. NAIP samples used to develop multiple
linear regression coefficients were excluded from the calculation of validation results.
RaBET maps were compared with RAP and LandCART at NAIP and 10 cm sample locations
for years shown in Table 2.

Map validation and comparison results are summarized in Figure 8. RaBET MAE
varied by MLRA and ranged between 2.29% and 14.26%, with especially large errors in
MLRAs 73, 84B, and 85, where RAP MAE was smaller than RaBET. The remaining 12 MLRA
MAEs were smaller for RaBET than for RAP and LandCART. RAP had smaller MAEs than
LandCART for all MLRAs.
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Figure 8. Validation and comparisons for RaBET, RAP, and LandCART (LC) woody cover maps for
all MLRAs. Reference NAIP sample average woody cover is plotted against average map woody
cover by sample with the 1:1 line reference line shown: samples falling closer to the 1:1 line indicate
more accurate map results. Average sample mean absolute error (MAE) is summarized for all 3 maps
in the upper left corner of each MLRA panel: (a) 38; (b) 40; (c) 41; (d) 42; (e) 65; (f) 69; (g) 70A; (h) 70B;
(i) 71; (j) 73; (k) 81B; (l) 81C; (m) 83A; (n) 84B; (o) 85.
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Transect Line Comparisons for MLRA 65 and MLRA 71

In efforts to validate results, satellite-based maps are often compared to ground-based
transects. MLRA 65 and MLRA 71 had large field campaigns of transect data collection,
and comparisons of those data were made with RaBET, RAP, and LandCART maps from
2018 in MLRA 65 and 2021 in MLRA 71 (Figure 9a,c). RaBET had smaller MAE than RAP or
LandCART; however, no map showed good relationships with ground-based woody cover.
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Figure 9. Comparison of site average map woody cover for ground-based transect sites and 10 cm
directly read sites. Ground-based site average woody cover is plotted against average map woody
cover by site with the 1:1 reference line shown: (a) MLRA 65 and (c) MLRA 71. Directly read site
average woody cover is plotted against average map woody cover by site with the 1:1 reference line
shown: (b) MLRA 65 and (d) MLRA 71. Samples falling closer to the 1:1 line indicate more accurate
map results. Average sample mean absolute error (MAE) is summarized for all 3 maps in the upper
left corner of each panel.

Traditional field campaigns like those described are costly and time-consuming. There-
fore, the use of fine-resolution (10 cm) aerial imagery as a substitute was explored. Transect
lines from the ground-based sampling design were read directly from the imagery collected
in 2020 for MLRA 65 and 2022 for MLRA 71. Directly read woody cover was compared
with RaBET, RAP, and LandCART maps from 2018 in MLRA 65 and 2021 in MLRA 71
(Figure 9b,d). The relationships between directly read woody cover vs. map woody cover
were better than ground-based vs. map woody cover. Out of the three maps, RaBET had
the smallest MAE. No ground-based sampling data were available for MLRA 41, but a com-
parison of directly read and RaBET map data showed an MAE of 6.55 (Figure 10). Directly
read woody cover was also compared to ground-based woody cover and correlations of
81% and 84% were found for MLRA 65 and MLRA 71, respectively.
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MLRA 41 in Arizona (AZ). Directly read site average woody cover is plotted against average map
woody cover by site with the 1:1 reference line shown. Average site mean absolute error percent
(MAE) is displayed in the upper left corner of the panel.

4. Discussion
4.1. Motivation for the Project

Encroachment of woody species into perennial grasslands is a critical threat to grass-
land conservation in rangeland ecosystems. The expansion of these species into areas where
they were previously minor components is well documented [4,39–42]; however, planning
conservation treatments, monitoring outcomes, and conducting accurate assessments pose
significant challenges, particularly when dealing with vast expanses of land while having
limited resources [9–11,43].

In many cases, to meet program or planning deadlines, the field inventory does not
take place; the planner estimates the amount and the extent of brush to treat and assigns a
payment rate based on a non-defensible ocular estimate. This results in a lack of documen-
tation of the true extent/degree of the concern, potentially inflated payment rates offered
to the producer, unrealistic treatment objectives, and inadequate operation/maintenance
plans to provide for long-term success.

Conservationists and land managers need an inexpensive, effective means of monitor-
ing and documenting the effects of brush management conservation methods for decreasing
degradation in rangeland systems. The key may be remote sensing-based geospatial tools
that estimate woody canopy cover over time and produce rapid, accurate, cost-effective,
reproducible assessments over vast and inaccessible areas [44–46]. RaBET was specifically
developed to meet these needs.

4.2. Comparison of RaBET, RAP, and LandCART Map Products

RaBET, RAP, and LandCART map comparisons with classified pasture-sized NAIP
imagery samples showed RaBET generally performed better than RAP and LandCART,
with smaller MAE values (Figure 8). Studies have indicated that when working with
smaller numbers of training samples, multiple linear regression performed better than
advanced machine learning methods, while machine learning was preferred when large
numbers of samples were available [47–49]. Our comparisons demonstrated that more
novel machine learning methods will not always produce superior results. Figure 8 shows
that regression with smaller numbers of training samples resulted in more accurate woody
cover estimates for 80% of the MLRAs. The differences may be more strongly related to
training sample size rather than number. RaBET used pasture-sized input, while samples
for RAP and LandCART were essentially point data. The areas sampled for RaBET ranged
from approximately 16 ha to 81 ha, whereas training sample areas used by RAP and
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LandCART (0.25 ha) were much smaller than a typical pasture. Such small sample sizes,
even in large numbers, do not represent the landscape heterogeneity crucial for planning
purposes.

RaBET addresses MLRA-specific landscapes and woody cover by employing phe-
nology windows to enhance target/background contrast. Appropriate seasonal remote
sensing data can reduce the influence of grass background greenness [50,51]. Where RaBET
had especially large MAEs (MLRAs 73, 84B, 85), it is likely that multiple woody species
were captured within the selected phenological window (Figure 8). In the future, this may
be corrected using different windows and multiple ecoregion subdivisions for regression
development. RaBET MAE was less than RAP and LandCART in the southwestern MLRAs
(41, 42, 38, 40), which are characterized by multiple small-leaved woody species that are
hard to distinguish, even in NAIP imagery. This may be due to the larger pasture-sized
samples used by RaBET, which result in a better chance of capturing landscape variability.

4.3. Comparison of Map Validation Methods

When using remotely sensed data, the subject of “ground truthing” is often a consider-
ation. It is common practice to collect ground-based transect data to compare with remote
sensing-based vegetation cover estimates, and numerous studies have found approximate
equivalence between plant canopy cover measured on the ground and that measured
in image data [44,52–54]. In contrast, some studies showed the image-assessed canopy
to be substantially different from the ground-assessed canopy [55,56]. The results from
common field canopy measurement methods, including line or line-point intercept, cannot
be assumed as “ground truth” due to a variety of biases that can be present [55]. In addition,
this methodology relies solely on localized data acquired at specific moments of time and
rarely adequately represents the spatial or spectral characteristics of the landscape.

The collection of traditional ground-based transect data is expensive and difficult
to obtain due to the need for people, time, access, and transportation. In addition, these
surveys can be inconsistent in covering areas the size of MLRAs [57,58]. As shown in
Figure 9, all three tool maps had poor agreement with ground-based data. This may be
the result of several factors. The field campaigns were carried out using large numbers of
people (24 for MLRA 65 and 19 for MLRA 71) with varied experience and training. Having
multiple people involved in data collection increases the potential for inter-observer bias as
measurements are read and recorded. Topography and land ownership were also factors.
Land access played a large role in where samples could be collected and topographic relief
often caused alterations to transect layout and line lengths as read, particularly in MLRA
65. Preliminary training sessions were provided before collection in MLRA 71, and most
collectors were employed by NRCS. This may have decreased some of the possible bias
seen in MLRA 65 and resulted in slightly better results (Figure 9a,c).

Fine resolution imagery-based transect data can provide substantial benefits over
traditionally collected field data. MLRA-wide imagery can be acquired over extensive areas
in a single day (Figure 3), whereas it takes months to obtain similar coverage using ground-
based methods (Figure 5). In the example of MLRA 41, with a team of four to six people
reading ground transects and one person processing the data, collecting and processing
data for one site takes approximately three hours plus travel time. This means that only
two to three sites can be read in an eight-hour day, depending on travel time. Therefore,
a maximum of fifteen sites can be completed during a five-day work week. In contrast,
three people directly reading transect data from fine resolution (10 cm) imagery and one
person processing the data requires approximately one hour per site. Thus, 24 sites could be
read in an eight-hour day, leading to 120 sites being completed in the same five-day work
week. This methodology was employed for MLRA 41 [59] and found to have satisfactory
results with an MAE of 6.55 when 10 cm directly read woody cover was compared to
map woody cover (Figure 10). These results, combined with correlations found between
ground-based and 10 cm image-based woody cover (81% and 84% for MLRAs 65 and 71,
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respectively), show the promise of fine resolution imagery to bypass the limitations of
traditional ground-based methods.

4.4. Contributions to Land Management

This work was developed to fulfill a need for the USDA-NRCS Conservation Effects
Assessment Project (CEAP) [60], which is a multi-agency response to a request from
Congress to provide accountability for public dollars spent. That request sought better
transparency in reporting and documenting conservation practice effects that the public
could understand and support.

Advances in sensor and camera technology and data distribution have made it possible
to detect lower levels of vegetation cover at accuracies higher than previously possible [61].
By using high-resolution imagery paired with Landsat satellite imagery, and adapting
regression relationships to landscapes present within specific MLRAs, RaBET provides
accurate maps of the complete range of woody vegetation cover values (0–90+%) that allow
for proactive, rather than only reactive, responses to woody encroachment. In addition,
RaBET can be used to document and track woody cover levels before treatment and for
many years after treatment, or simply track natural changes over time. Outputs of ready-
made graphics and tabular statistics from the change analysis can be added directly into
required documentation, streamlining the reporting process.

4.5. Applying Remote Sensing for Woody Vegetation Mapping

When attempting to solve a problem using remotely sensed data, there are several
important factors that must be considered: the scale of the problem (time and space); the
final product to be delivered (an application versus a manuscript); the characteristics of the
study area; available resources (data, computing, budgetary, personnel, expertise). These
factors will dictate the best method to solve the problem.

For this work, a method was needed that could be adapted to various MLRA land-
scapes. Regression offered the flexibility to be tailored to the wide range in climate, soils,
and topography that result in diverse rangeland landscapes. Using 4-year Landsat vegeta-
tion index composites helped to fill in data gaps and smoothed precipitation influences that
can occur with within a single year and across landscapes [62]. However, the trade-off in
using 4-year composites is that identifying dates of vegetation change (e.g., brush removal,
fire) can become more difficult.

Focusing only on woody vegetation canopy cover allowed us to utilize a streamlined
approach. No ancillary datasets were required (e.g., precipitation, soils, elevation); maps of
existing vegetation were not needed; and very basic supervised classification (woody vs.
non-woody) could be used.

We believe this method could be used with other satellite image data (e.g., Sentinel-2
https://sentinel.esa.int/web/sentinel/home, accessed on 13 October 2023 or Harmonized
Landsat and Sentinel-2 https://hls.gsfc.nasa.gov, accessed on 13 October 2023), with a
source of high-resolution color-infrared imagery for training samples and validation data.
In this work, NAIP imagery was used due to its no-cost, wall-to-wall coverage of the United
States. Acquisition times were sometimes suboptimal, leading to increased challenges
for personnel classifying training samples, but the NAIP data were satisfactory for our
purposes. Other sources of high-resolution imagery could also be used with this method.
On the commercial side, Planet SkySat imagery (https://planet.com, accessed on 13 October
2023) is 0.5 m resolution and can be tasked for acquisitions globally. Privately contracted
aerial flights are another resource and provide the ability to specify acquisition timing
and spatial resolution. Finally, when possible, it is ideal to have local expert knowledge
of project landscapes for guidance in high-resolution image interpretation and product
validation.

https://sentinel.esa.int/web/sentinel/home
https://hls.gsfc.nasa.gov
https://planet.com
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5. Conclusions

Over 160 million hectares of rangelands in the central and western United States
depend on effective management of woody species, including eradication, to preserve and
improve clean water, reduce disaster risk, support productive and stable soils, continuous
food supply, and many other goods and services. Until now, there has been no consistent,
effective means for land managers to document and assess the success of their efforts to
manage woody species. We developed RaBET to answer this need. Using transparent,
repeatable methods, RaBET delivers woody canopy cover maps at field scales suited for
conservation planning by land managers on rangelands.

This work found that when compared to more novel machine learning methods, a
simpler multiple linear regression method worked better for quantifying woody canopy
cover on heterogenous landscapes. When compared to traditional ground-based methods
of acquiring map validation data, reading woody cover measurements directly from fine-
resolution imagery showed promise for decreasing the amount of time and resources
needed to collect these data.

Future research will explore the use of data fusion methods to identify and create
species-specific maps of woody species encroaching on rangeland.
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