Study of the OLR Anomalies before the 2023 Turkey M7.8 Earthquake
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Calculation of the Additive Tectonic Stress from the Celestial Tide-Generating Force
3.2. OLR Data Processing
4. Results
4.1. Analysis of the Additive Tectonic Stress from the Celestial Tide-Generating Force Change in Turkey Earthquake
4.2. Spatial and Temporal Evolution Characteristics of OLR Anomaly in Turkey “Swarm Type” Earthquake
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.Y.; Liu, P.X.; Chen, L.C.; Liu, Q.Y. Evidence from seismological observation for detecting dynamic change in crustal stress by bedrock temperature. Chin. Sci. Bull. 2020, 65, 2395–2405. [Google Scholar] [CrossRef]
- Milne, J. Earthquakes and Other Earth Movements; Kegan Paul, Trench, & Company: London, UK, 1913; p. 213. [Google Scholar]
- Gorny, V.I.; Salman, A.G.; Tronin, A.A.; Shilin, B.V. The Earth’s outgoing IR radiation as an indicator of seismic activity. Proc. Acad. Sci. USSR 1988, 301, 67–69. [Google Scholar]
- Mogi, K. Fundamental Studies on Earthquake Prediction. In A Collection of Papers of International Symposium on ISC-SEP; Seismological Press: Beijing, China, 1984; pp. 619–652. [Google Scholar]
- Qiang, Z.J.; Kong, L.C.; Zheng, L.Z.; Guo, M.H.; Wang, G.P.; Zhao, Y. An experimental study on temperature increasing mechanism of satellitic thermo-infrared. Acta Seismol. Sin. 1997, 10, 101–106. [Google Scholar]
- Qiang, Z.J.; Kong, L.C.; Wang, G.P.; Li, Q.Z.; Lin, C.G.; Xu, X.D. Earth Gas Emis-Sion, Infrared Thermo-Amomaly and Seismicity. Chin. Sci. Bull. 1992, 37, 2259–2262. [Google Scholar]
- Geng, N.G.; Cui, C.Y.; Deng, M.D.; Zhi, Y.Q. Remote sensing rock mechanics and its application prospects. Prog. Geophys. 1993, 8, 1–7. [Google Scholar]
- Deng, M.D.; Geng, N.G.; Cui, C.Y.; Zhi, Y.Q.; Fan, Z.F.; Ji, Q.Q. The study on the variation of thermal state of rocks caused by the variation of stress state of rock. Earthq. Res. China 1997, 13, 179–185. [Google Scholar]
- Wu, L.X.; Cui, C.Y.; Geng, N.G.; Wang, J.Z. Remote sensing rock mechanics (RSRM) and associated experimental studies. Int. J. Rock Mech. Min. Sci. 2000, 37, 879–888. [Google Scholar] [CrossRef]
- Wu, L.X.; Liu, S.J.; Li, J.P.; Dong, Y.Q.; Xu, X.D. Theoretical analysis to impending tectonic earthquake warning based on satellite infrared anomaly. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 3723–3727. [Google Scholar]
- Freund, F. Charge generation and propagation in igneous rocks. J. Geodyn. 2002, 33, 543–570. [Google Scholar]
- Ma, J.; Liu, L.Q.; Liu, P.X.; Ma, S.L. Thermal precursory pattern of fault unstable sliding: An experimental study of en echelon faults. Chin. J. Geophys. 2007, 50, 1141–1149. [Google Scholar]
- Pulinets, S.A. Natural radioactivity, earthquakes, and the ionosphere. EOS Trans. Am. Geophys. Union. 2007, 88, 217–218. [Google Scholar]
- Lisi, M.; Filizzola, C.; Genzano, N.; Grimaldi, C.S.L.; Lacava, T.; Marchese, F.; Mazzeo, G.; Pergola, N.; Tramutoli, V. A study on the Abruzzo 6 April 2009 earthquake by applying the RST approach to 15 years of AVHRR TIR observations. Nat. Hazards Earth Syst. Sci. 2010, 10, 395–406. [Google Scholar] [CrossRef]
- Saraf, A.K.; Choudhury, S. Thermal remote sensing technique in the study of pre-earthquake thermal anomalies. J. Ind. Geophys. Union. 2005, 9, 197–207. [Google Scholar]
- Tramutoli, V.; Cuomo, V.; Filizzola, C.; Pergola, C.; Pietrapertosa, C. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (Izmit) earthquake, August 17, 1999. Remote Sens. Environ. 2005, 96, 409–426. [Google Scholar] [CrossRef]
- Pergola, N.; Aliano, C.; Coviello, I.; Filizzola, C.; Genzano, N.; Lacava, T.; Lisi, M.; Mazzeo, G.; Tramutoli, V. Using RST approach and EOS-MODIS radiances for monitoring seismically active regions: A study on the 6 April 2009 Abruzzo earthquake. Nat. Hazards Earth Syst. Sci. 2010, 10, 239–249. [Google Scholar] [CrossRef]
- Saradjian, M.R.; Akhoondzadeh, M. Thermal anomalies detection before strong earthquakes (M > 6.0) using interquartile, wavelet and Kalman filter methods. Nat. Hazards Earth Syst. Sci. 2011, 11, 1099–1108. [Google Scholar] [CrossRef]
- Jing, F.; Singh, R.P.; Shen, X. Land–atmosphere–meteorological coupling associated with the 2015 Gorkha (M 7.8) and Dolakha (M 7.3) Nepal earthquakes. Geomatics. Nat. Hazards Risk. 2019, 10, 1267–1284. [Google Scholar] [CrossRef]
- Ghosh, S.; Chowdhury, S.; Kundu, S.; Sasmal, S.; Politis, D.Z.; Potirakis, S.M.; Hayakawa, M.; Chakraborty, S.; Chakrabarti, S.K. Unusual Surface Latent Heat Flux Variations and Their Critical Dynamics Revealed before Strong Earthquakes. Entropy. 2022, 24, 23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.F.; Zhang, X.; Guo, Y.X.; Hu, W.Y.; Sun, X.H. Characteristics of thermal infrared anomalies in the middle-eastern segmentof Qilian seismic belt guided by Menyuan M6.9 earthquake. China Earthq. Eng. J. 2022, 44, 398–407. [Google Scholar]
- Wu, L.X.; Mao, W.F.; Liu, S.J.; Xu, Z.Y.; Li, Z.W.; Qi, Y.; Miao, Z.L. Mechanisms of altering infrared-microwave radiation from stressed rock and key issues on crust stress remote sensing. J. Remote Sens. 2018, 22, 146–161. [Google Scholar]
- Jing, F.; Singh, R.P.; Cui, Y.J.; Sun, K. Microwave Brightness Temperature Characteristics of Three Strong Earthquakes in Sichuan Province, China. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 513–522. [Google Scholar] [CrossRef]
- Song, D.M.; Zang, L.; Shan, X.J.; Yuan, Y.; Cui, J.Y.; Shao, H.M.; Shen, C.; Shi, H.T. A study on the algorithm for extracting earthquake thermal infrared anomalies based on the yearly trend of LST. Seismol. Geology. 2016, 38, 680–695. [Google Scholar]
- Meng, Y.F.; Meng, Q.Y.; Zhang, Y.; Zhou, S.J.; Liu, W.B. Correlation between thermal anomalies and earthquakes based on nighttime multi-temporal remote sensing data. Acta Seismol. Sin. 2021, 43, 124–135. [Google Scholar]
- Kang, C.L.; Zhang, Y.M.; Liu, F.D.; Jing, F. Long-Wave-Radiation Patterns prior to the Wenchuan M8.0 Earthquake. Earthquake 2009, 29, 116–120. [Google Scholar]
- Chakraborty, S.; Sasmal, S.; Chakrabarti, S.K.; Bhattacharya, A. Observational signatures of unusual outgoing longwave radiation (OLR) and atmospheric gravity waves (AGW) as precursory effects of May 2015 Nepal earthquakes. J. Geodyn. 2018, 113, 43–51. [Google Scholar] [CrossRef]
- Qi, Y.; Wu, L.X.; He, M.; Mao, W.F. Spatio-temporally weighted two-step method for retrieving seismic MBT anomaly: May 2008 Wenchuan earthquake sequence being a case. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 382–391. [Google Scholar] [CrossRef]
- Ren, J.; Kang, C.L.; Ma, W.Y.; Yang, T.Q.; Lin, X.Y. Preliminary study on the tidal force and Outgoing Longwave Radiation change. Earthq. Res. China 2015, 31, 447–455. [Google Scholar]
- Wu, L.X.; Qin, K.; Liu, S.J. Progress in Analysis to Remote Sensed Thermal Abnormity with Fault Activity and Seismogenic Process. Acta Geodaetica et Cartographica Sin. 2017, 46, 1470–1481. [Google Scholar]
- Su, B.; Li, H.; Ma, W.Y.; Zhao, J.; Yao, Q.; Cui, J.; Yue, C.; Kang, C.L. The Outgoing Longwave Radiation Analysis of Medium and Strong Earthquakes. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 6962–6973. [Google Scholar] [CrossRef]
- Heaton, T.H. Tidal triggering of earthquakes. Geophys. J. Int. 1975, 43, 307–326. [Google Scholar] [CrossRef]
- Emter, D. Tidal triggering of earthquakes and volcanic events. In Lecture Notes in Earth Sciences; Springer Verlag: Berlin, Germany, 1997; Volume 66, pp. 293–309. [Google Scholar]
- Tanaka, S.; Ohtake, M.; Sato, H. Tidal triggering of earthquakes in Japan related to the regional tectonic stress. Earth Planets Space 2004, 56, 511–515. [Google Scholar] [CrossRef]
- Sun, C.Q.; Yan, C.H.; Wu, X.P.; Xu, Y.J. The effect of Tidal Triggering on Seismic Fault in Eastern Tibetan Plateau and Its Neighboring Areas. Chin. J. Geophys. 2014, 57, 2054–2064. [Google Scholar]
- Xie, C.D.; Lei, X.L.; Wu, X.P.; Fu, H.; Xiong, Z.Y.; Hu, X.L.; Li, S. Effect of tidal stress on fault nucleation and failure of the 2007 M s 6.4 Ning’er earthquake. Sci. China Earth Sci. 2016, 59, 397–407. [Google Scholar] [CrossRef]
- Chen, X.Z. The tidal triggering of earthquakes. Prog. Earthq. Sci. 2021, 51, 145–160. [Google Scholar]
- Ma, W.Y.; Xu, X.D.; Zhang, X.C.; Wu, H.F.; Xu, B.H. A preliminary study on the use of NCEP temperature images and astro-tidal-triggering to forecast short-impending earthquake. Seismol. Geol. 2006, 28, 447–455. [Google Scholar]
- Ma, W.Y.; Ma, W.M.; Zhao, H.; Li, H. Temperature changing process of the Hokkaido (Japan) earthquake on 25 September 2003. Nat. Hazards Earth Syst. Sci. 2008, 8, 985–989. [Google Scholar] [CrossRef]
- Ma, W.Y.; Wang, H.; Li, F.S.; Ma, W.M. Relation between the celestial tide-generating stress and the temperature variations of the Abruzzo M=6.3 earthquake in April 2009. Nat. Hazards Earth Syst. Sci. 2012, 12, 819–827. [Google Scholar] [CrossRef]
- Ma, W.Y.; Zhang, X.D.; Liu, J.; Yao, Q.; Zhou, B.; Yue, C.; Kang, C.L.; Lu, X. Influences of multiple layers of air temperature differences on tidal forces and tectonic stress before, during and after the Jiu jiang earthquake. Remote Sens. Environ. 2018, 210, 159–165. [Google Scholar]
- Zhang, Y.; Meng, Q.Y.; Wang, Z.; Lu, X.; Hu, D. Temperature Variations in Multiple Air Layers before the Mw 6.2 2014 Ludian Earthquake, Yunnan, China. Remote Sens. 2021, 13, 884. [Google Scholar] [CrossRef]
- Duman, T.Y.; Çan, T.; Emre, Ö.; Kadirioğlu, F.T.; Baştürk, N.B.; Kılıç, T.; Arslan, S.; Özalp, S.; Kartal, R.F.; Kalafat, D.; et al. Seismotectonic database of Turkey. Bull. Earthq. Eng. 2018, 16, 3277–3316. [Google Scholar] [CrossRef]
- Meng, J.N.; Sinoplu, O.; Zhou, Z.P.; Tokay, B.; Kusky, T.; Bozkurt, E.; Wang, L. Greece and Turkey Shaken by African tectonic retreat. Sci. Rep. 2021, 11, 6486. [Google Scholar] [CrossRef]
- Wu, Q.P. Gravitology and Solid Earth Tide; Earthquake Publisher: Beijing, China, 1997; pp. 152–212. [Google Scholar]
- Wu, L.X.; Liu, S.J.; Wu, Y.H.; Wang, C.Y. Precursors for rock fracturing and failure-Part II: IRR T-Curve abnormalities. Int. J. Rock Mech. Min. Sci. 2006, 43, 483–493. [Google Scholar] [CrossRef]
- Liu, S.J.; Wu, L.X.; Zhang, Y.B. Temporal-Spatial Evolution Features of Infrared Thermal Images Before Rock Failure. J. Northeast. Univ. Nat. Sci. 2009, 30, 1034–1038. [Google Scholar]
- Ren, Y.Q.; Liu, P.X.; Ma, J.; Chen, S.Y. Experimental study on evolution of thermal field of en echelon fault during the meta-instability stage. Chin. J. Geophys. 2013, 56, 2348–2357. [Google Scholar]
- Wei, L.J.; Guo, J.F.; Cui, H.; Li, H.B.; Qiang, Z.J. Satellite Thermal Infrared Anomaly: A Short-term and Impending Earthquake Precursor before the Wenchuan Ms8.0 Earthquake in Sichuan, China. Acta Geosci. Sin. 2008, 29, 583–591. [Google Scholar]
- Ma, W.Y.; Kang, C.L.; Xie, T.; Ren, J.; Zhong, X.H. The changes of the tidal force and the outgoing long-wave radiation of Lushan (China) MS 7.0 earthquake. Prog. Geophys. 2014, 29, 2047–2050. [Google Scholar]
- Ma, W.Y.; Kang, C.L.; Liu, J.; Yue, C.; Lu, X. Evolution characteristics of multiple stratification air temperature in vertical of Kunlun Mountains Ms8.1 earthquake. J. Remote Sens. 2018, 22, 174–180. [Google Scholar]
- Xu, L.; Aoki, Y.; Wang, J.; Cui, Y.; Chen, Q.; Yang, Y.; Yao, Z. The 2023 Mw 7.8 and 7.6 Earthquake Doublet in Southeast Türkiye: Coseismic and Early Postseismic Deformation, Faulting Model, and Potential Seismic Hazard. Seismol. Res. Lett. 2023, 1–12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Cui, J.; Zhang, Y.; Zhu, J.; Huang, Y.; Wang, L.; Shen, X. Study of the OLR Anomalies before the 2023 Turkey M7.8 Earthquake. Remote Sens. 2023, 15, 5078. https://doi.org/10.3390/rs15215078
Liu J, Cui J, Zhang Y, Zhu J, Huang Y, Wang L, Shen X. Study of the OLR Anomalies before the 2023 Turkey M7.8 Earthquake. Remote Sensing. 2023; 15(21):5078. https://doi.org/10.3390/rs15215078
Chicago/Turabian StyleLiu, Jun, Jing Cui, Ying Zhang, Jie Zhu, Yalan Huang, Lin Wang, and Xuhui Shen. 2023. "Study of the OLR Anomalies before the 2023 Turkey M7.8 Earthquake" Remote Sensing 15, no. 21: 5078. https://doi.org/10.3390/rs15215078
APA StyleLiu, J., Cui, J., Zhang, Y., Zhu, J., Huang, Y., Wang, L., & Shen, X. (2023). Study of the OLR Anomalies before the 2023 Turkey M7.8 Earthquake. Remote Sensing, 15(21), 5078. https://doi.org/10.3390/rs15215078