Mask R-CNN–Based Landslide Hazard Identification for 22.6 Extreme Rainfall Induced Landslides in the Beijiang River Basin, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Source
3. Methodology
3.1. Remote Sensing Characterization of Landslides
3.1.1. Spectral Characteristics
3.1.2. Textural Features
3.1.3. Geometrical Features
3.1.4. Physical Characteristics
3.2. Creation of a Landslide Sample Database
3.3. Deep Learning Models
3.3.1. Fundamentals of Mask R-CNN
3.3.2. Faster R-CNN Model
3.3.3. The U-Net Model
3.3.4. YOLOv3 Model
4. Experiments
4.1. Evaluation Indicators for Recognition Accuracy
4.2. Experimental Design
5. Results
5.1. Comparing Different Deep Learning Models
5.2. Dataset and Sample Processing
5.3. Keys Affecting Recognition Precision
6. Discussion
6.1. Analysis of Identification Results
6.2. Limitations and Future Prospects
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, G.; Zhang, M.; Hu, W. Analysis on the development characteristics and hydrodynamic conditions for the massive debris flow in Tianshui. Northwest Geol. 2014, 47, 185–191. [Google Scholar]
- Liu, J. Study on the Pattern and Mechanism of Large-Scale Landslides in Longnan Mountainous Area; Lanzhou University: Lanzhou, China, 2020. [Google Scholar]
- Guo, Z.; Yin, K.; Gui, L.; Liu, Q.; Huang, F.; Wang, T. Regional rainfall warning system for landslides with creep deformation in three gorges using a statistical black box model. Sci. Rep. 2019, 9, 8962. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Wang, Y. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides 2018, 15, 2357–2372. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, C.; Zhang, X.; Li, L. Bibliometric analysis of landslide research based on the WOS database. Nat. Hazards Res. 2022, 2, 49–61. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Fustos-Toribio, I.; Manque-Roa, N.; Vásquez Antipan, D.; Hermosilla Sotomayor, M.; Letelier Gonzalez, V. Rainfall-induced landslide early warning system based on corrected mesoscale numerical models: An application for the southern Andes. Nat. Hazards Earth Syst. Sci. 2022, 22, 2169–2183. [Google Scholar] [CrossRef]
- Dai, F.; Lee, C. Frequency–volume relation and prediction of rainfall-induced landslides. Eng. Geol. 2001, 59, 253–266. [Google Scholar] [CrossRef]
- Piciullo, L.; Calvello, M.; Cepeda, J.M. Territorial early warning systems for rainfall-induced landslides. Earth-Sci. Rev. 2018, 179, 228–247. [Google Scholar] [CrossRef]
- Lee, M.L.; Ng, K.Y.; Huang, Y.F.; Li, W.C. Rainfall-induced landslides in Hulu Kelang area, Malaysia. Nat. Hazards 2014, 70, 353–375. [Google Scholar] [CrossRef]
- Ray, R.L.; Lazzari, M.; Olutimehin, T. Remote sensing approaches and related techniques to map and study landslides. Landslides-Investig. Monit. 2020, 2, 1–25. [Google Scholar]
- Ahmad, M.N.; Shao, Z.; Aslam, R.W.; Ahmad, I.; Liao, M.; Li, X.; Song, Y. Landslide hazard, susceptibility and risk assessment (HSRA) based on remote sensing and GIS data models: A case study of Muzaffarabad Pakistan. Stoch. Environ. Res. Risk Assess. 2022, 36, 4041–4056. [Google Scholar] [CrossRef]
- Ehteram, M.; Ahmed, A.N.; Sheikh Khozani, Z.; El-Shafie, A. Convolutional Neural Network-Support Vector Machine Model-Gaussian Process Regression: A New Machine Model for Predicting Monthly and Daily Rainfall. Water Resour. Manag. 2023, 37, 3631–3655. [Google Scholar] [CrossRef]
- Sato, H.P.; Hasegawa, H.; Fujiwara, S.; Tobita, M.; Koarai, M.; Une, H.; Iwahashi, J. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides 2007, 4, 113–122. [Google Scholar] [CrossRef]
- Mohan, A.; Singh, A.K.; Kumar, B.; Dwivedi, R. Review on remote sensing methods for landslide detection using machine and deep learning. Trans. Emerg. Telecommun. Technol. 2021, 32, e3998. [Google Scholar] [CrossRef]
- Leshchinsky, B.A.; Olsen, M.J.; Tanyu, B.F. Contour Connection Method for automated identification and classification of landslide deposits. Comput. Geosci. 2015, 74, 27–38. [Google Scholar] [CrossRef]
- Ju, Y.; Xu, Q.; Jin, S.; Li, W.; Su, Y.; Dong, X.; Guo, Q. Loess landslide detection using object detection algorithms in northwest China. Remote Sens. 2022, 14, 1182. [Google Scholar] [CrossRef]
- Zhao, W.; Li, A.; Nan, X.; Zhang, Z.; Lei, G. Postearthquake landslides mapping from Landsat-8 data for the 2015 Nepal earthquake using a pixel-based change detection method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1758–1768. [Google Scholar] [CrossRef]
- Ma, Y. An Automatic Landslide Identification Method Based on Remote Sensing Image Recognition; Tibet University: Lhasa, China, 2022. [Google Scholar]
- Zhang, Q.; Zhao, C. Semiautomatic object-oriented loose landslide recognition based on high resolution remote sensing images in Heifangtai, Gansu. J. Catastrophology 2017, 32, 210–215. [Google Scholar]
- Zhang, P.; Xu, C.; Ma, S.; Shao, X.; Tian, Y.; Wen, B. Automatic extraction of seismic landslides in large areas with complex environments based on deep learning: An example of the 2018 iburi earthquake, Japan. Remote Sens. 2020, 12, 3992. [Google Scholar] [CrossRef]
- Qigen, L.; Zhenhua, Z.; Yingqi, Z.; Ying, W. Object-oriented detection of landslides based on the spectral, spatial and morphometric properties of landslides. Remote Sens. Technol. Appl. 2017, 32, 931–937. [Google Scholar]
- Hui, D.; Maosheng, Z.; Weihong, Z.; Tao, Z. High resolution remote sensing for the identification of loess landslides: Example from Yan’an City. Northwestern Geol. 2019, 52, 231–239. [Google Scholar]
- Yu, B.; Chen, F.; Xu, C. Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015. Comput. Geosci. 2020, 135, 104388. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Proceedings of the European Conference on Computer Vision (ECCV); Springer: Berlin/Heidelberg, Germany, 2022; pp. 801–818. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA, USA, 20–23 June 1995; pp. 2961–2969. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; pp. 779–788. [Google Scholar]
- Ullo, S.L.; Mohan, A.; Sebastianelli, A.; Ahamed, S.E.; Kumar, B.; Dwivedi, R.; Sinha, G.R. A new mask R-CNN-based method for improved landslide detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3799–3810. [Google Scholar] [CrossRef]
- Qi, W.; Wei, M.; Yang, W.; Xu, C.; Ma, C. Automatic mapping of landslides by the ResU-Net. Remote Sens. 2020, 12, 2487. [Google Scholar] [CrossRef]
- Lei, T.; Xue, D.; Lv, Z.; Li, S.; Zhang, Y.; Nandi, A.K. Unsupervised change detection using fast fuzzy clustering for landslide mapping from very high-resolution images. Remote Sens. 2018, 10, 1381. [Google Scholar] [CrossRef]
- Fu, R.; He, J.; Liu, G.; Li, W.; Mao, J.; He, M.; Lin, Y. Fast seismic landslide detection based on improved mask R-CNN. Remote Sens. 2022, 14, 3928. [Google Scholar] [CrossRef]
- Ding, A.; Zhang, Q.; Zhou, X.; Dai, B. Automatic recognition of landslide based on CNN and texture change detection. In Proceedings of the 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuha, China, 11–13 November 2016; pp. 444–448. [Google Scholar]
- Wang, Y.; Wang, X.; Jian, J. Remote sensing landslide recognition based on convolutional neural network. Math. Probl. Eng. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Huang, J.; Xin, L.; Fang, C.; Ru, C.; Huimin, L.; Bowen, D. A deep learning recognition model for landslide terrain based on multi-source data fusion. Chin. J. Geol. Hazard Control 2022, 33, 33–41. [Google Scholar]
- Ghorbanzadeh, O.; Shahabi, H.; Crivellari, A.; Homayouni, S.; Blaschke, T.; Ghamisi, P. Landslide detection using deep learning and object-based image analysis. Landslides 2022, 19, 929–939. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef]
- Gao, X.; Chen, T.; Niu, R.; Plaza, A. Recognition and mapping of landslide using a fully convolutional DenseNet and influencing factors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7881–7894. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, J.; Wang, H.; Tan, T.; Cui, M.; Huang, Z.; Wang, P.; Zhang, L. Multi-species individual tree segmentation and identification based on improved mask R-CNN and UAV imagery in mixed forests. Remote Sens. 2022, 14, 874. [Google Scholar] [CrossRef]
- Feng, W.; Bai, H.; Lan, B.; Wu, Y.; Wu, Z.; Yan, L.; Ma, X. Spatial–temporal distribution and failure mechanism of group-occurring landslides in Mibei village, Longchuan County, Guangdong, China. Landslides 2022, 19, 1957–1970. [Google Scholar] [CrossRef]
- Sui, H.; Huang, L.; Liu, C. Detecting building façade damage caused by Earthquake using CBAM-improved mask R-CNN. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 1660–1668. [Google Scholar]
- Liu, Y.; Yao, X.; Gu, Z.; Zhou, Z.; Liu, X.; Chen, X.; Wei, S. Study of the automatic recognition of landslides by using InSAR images and the improved mask R-CNN model in the Eastern Tibet Plateau. Remote Sens. 2022, 14, 3362. [Google Scholar] [CrossRef]
- Jiang, W.; Xi, J.; Li, Z.; Zang, M.; Chen, B.; Zhang, C.; Liu, Z.; Gao, S.; Zhu, W. Deep Learning for Landslide Detection and Segmentation in High-Resolution Optical Images along the Sichuan-Tibet Transportation Corridor. Remote Sens. 2022, 14, 5490. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, F.; Xia, J.; Wu, C. Landslide extraction using Mask R-CNN with background-enhancement method. Remote Sens. 2022, 14, 2206. [Google Scholar] [CrossRef]
- Lixin, W. Lessons learnt from the defence against the “22-6” Beijiang River deluge. China Water Resources 2022. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SLZG202222005&DbName=CJFQ2022 (accessed on 17 May 2023).
- Yan, L.; Gong, Q.; Wang, F.; Chen, L.; Li, D.; Yin, K. Integrated Methodology for Potential Landslide Identification in Highly Vegetation-Covered Areas. Remote Sens. 2023, 15, 1518. [Google Scholar] [CrossRef]
- Bai, H.; Feng, W.; Yi, X.; Fang, H.; Wu, Y.; Deng, P.; Dai, H.; Hu, R. Group-occurring landslides and debris flows caused by the continuous heavy rainfall in June 2019 in Mibei Village, Longchuan County, Guangdong Province, China. Nat. Hazards 2021, 108, 3181–3201. [Google Scholar] [CrossRef]
- Ji, S.; Yu, D.; Shen, C.; Li, W.; Xu, Q. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides 2020, 17, 1337–1352. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Yin, K.; Luo, H.; Li, J. Landslide identification using machine learning. Geosci. Front. 2021, 12, 351–364. [Google Scholar] [CrossRef]
- Xie, B. Research on Segmentation Algorithm for Wood Defect Detection Based on Improved Mask R-CNN; Harbin Institute of Technology: Harbin, China, 2022. [Google Scholar]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; pp. 2117–2125. [Google Scholar]
- Zhong, Z.; Sun, L.; Huo, Q. Improved localization accuracy by LocNet for Faster R-CNN based text detection in natural scene images. Pattern Recognit. 2019, 96, 106986. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. In Proceedings of the Part III 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Kou, X.; Liu, S.; Cheng, K.; Qian, Y. Development of a YOLO-V3-based model for detecting defects on steel strip surface. Measurement 2021, 182, 109454. [Google Scholar] [CrossRef]
- AlDahoul, N.; Ahmed, A.N.; Allawi, M.F.; Sherif, M.; Sefelnasr, A.; Chau, K.-w.; El-Shafie, A. A comparison of machine learning models for suspended sediment load classification. Eng. Appl. Comput. Fluid Mech. 2022, 16, 1211–1232. [Google Scholar] [CrossRef]
- Khalifa, N.E.; Loey, M.; Mirjalili, S. A comprehensive survey of recent trends in deep learning for digital images augmentation. Artif. Intell. Rev. 2022, 55, 2351–2377. [Google Scholar] [CrossRef]
- Hou, H.; Chen, M.; Tie, Y.; Li, W. A universal landslide detection method in optical remote sensing images based on improved YOLOX. Remote Sens. 2022, 14, 4939. [Google Scholar] [CrossRef]
Data | Resolution | Date | Source |
---|---|---|---|
Panchromatic images | 2 m | 2022 | https://www.cresda.com/ (accessed on 5 January 2023) |
Multispectral images | 8 m | 2022 | https://www.cresda.com/ (accessed on 5 January 2023) |
Normalized difference Vegetation index | 30 m | 2022 | https://www.resdc.cn/DOI (accessed on 7 January 2023) |
Digital elevation model | 12.5 m | https://www.resdc.cn/ (accessed on 7 January 2023) | |
Rainfall | 1 km | 2022 | https://pmm.nasa.gov/precipitation-measurement-missions (accessed on 6 January 2023) |
Basin boundaries | https://www.hydrosheds.org (accessed on 8 January 2023) | ||
Stratigraphic lithology | 1:500,000 | http://geodata.ngac.cn (accessed on 7 January 2023) |
No. | Deep Learning Model | Training Dataset |
---|---|---|
1 | Mask R-CNN | A |
2 | Mask R-CNN | B |
3 | Faster-CNN | A |
4 | Faster-CNN | B |
5 | U-Net | A |
6 | U-Net | B |
7 | YOLOv3 | A |
8 | YOLOv3 | B |
No. | Deep Learning Model | Training Dataset |
---|---|---|
I | Mask R-CNN | Original satellite images + landslide-inducing factors + textural features + geometric features + physical features |
II | Mask R-CNN | Original satellite images + textural features + geometric features + physical features |
III | Mask R-CNN | Original satellite images + landslide-inducing factors + geometric features + physical features |
IV | Mask R-CNN | Original satellite images + landslide-inducing factors + textural features + physical features |
V | Mask R-CNN | Original satellite images + landslide-inducing factors + textural features + geometric features |
VI | Mask R-CNN | Original satellite images |
Model | Precision/% | Recall/% | Accuracy/% |
---|---|---|---|
1 | 75.51 | 78.69 | 78.13 |
2 | 87.31 | 86.54 | 91.29 |
3 | 72.84 | 73.65 | 76.37 |
4 | 81.71 | 84.39 | 85.58 |
5 | 65.72 | 70.46 | 68.94 |
6 | 78.47 | 81.73 | 82.46 |
7 | 64.29 | 67.05 | 66.78 |
8 | 73.33 | 76.53 | 77.85 |
Angle/° | Precision/% | Recall/% | Accuracy/% |
---|---|---|---|
0° | 81.91 | 84.07 | 87.28 |
30° | 85.17 | 87.34 | 90.55 |
60° | 86.67 | 87.73 | 91.71 |
90° | 87.31 | 86.54 | 91.29 |
120° | 85.48 | 86.03 | 90.26 |
150° | 84.84 | 85.27 | 88.53 |
180° | 83.66 | 84.82 | 89.85 |
Lab No. | Precision/% | Recall/% | Accuracy/% |
---|---|---|---|
I | 81.91 | 84.07 | 87.28 |
II | 76.52 | 79.48 | 82.18 |
III | 75.11 | 78.82 | 81.04 |
IV | 78.16 | 82.85 | 85.35 |
V | 79.84 | 84.01 | 86.16 |
VI | 72.04 | 74.95 | 79.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Li, H.; Yuan, S.; Gong, Q.; Wang, J.; Zhang, B. Mask R-CNN–Based Landslide Hazard Identification for 22.6 Extreme Rainfall Induced Landslides in the Beijiang River Basin, China. Remote Sens. 2023, 15, 4898. https://doi.org/10.3390/rs15204898
Wu Z, Li H, Yuan S, Gong Q, Wang J, Zhang B. Mask R-CNN–Based Landslide Hazard Identification for 22.6 Extreme Rainfall Induced Landslides in the Beijiang River Basin, China. Remote Sensing. 2023; 15(20):4898. https://doi.org/10.3390/rs15204898
Chicago/Turabian StyleWu, Zhibo, Hao Li, Shaoxiong Yuan, Qinghua Gong, Jun Wang, and Bing Zhang. 2023. "Mask R-CNN–Based Landslide Hazard Identification for 22.6 Extreme Rainfall Induced Landslides in the Beijiang River Basin, China" Remote Sensing 15, no. 20: 4898. https://doi.org/10.3390/rs15204898
APA StyleWu, Z., Li, H., Yuan, S., Gong, Q., Wang, J., & Zhang, B. (2023). Mask R-CNN–Based Landslide Hazard Identification for 22.6 Extreme Rainfall Induced Landslides in the Beijiang River Basin, China. Remote Sensing, 15(20), 4898. https://doi.org/10.3390/rs15204898