Fusion of LiDAR and Multispectral Data for Aboveground Biomass Estimation in Mountain Grassland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.2.1. Field Data
2.2.2. LiDAR Data
2.2.3. Multispectral Data
2.3. Topographic Correction of Vegetation Indices
2.4. LiDAR Metrics
2.5. Construction Method of VHI
2.6. Methods of AGB Modelling and Accuracy Assessment
3. Results
3.1. Comparison of Vegetation Indices for AGB Estimation before and after Topographic Correction
3.2. Height and Intensity Data for AGB Estimation
3.3. VHI for AGB Estimation
4. Discussion
4.1. Effect of Topographic Correction for AGB Estimation in Fine Scale
4.2. Advantages of VHI for AGB Estimation
4.3. Analysis of Possible Factors Affecting AGB Estimation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management-A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Jin, Y.X.; Yang, X.C.; Qiu, J.J.; Li, J.Y.; Gao, T.; Wu, Q.; Zhao, F.; Ma, H.L.; Yu, H.D.; Xu, B. Remote Sensing-Based Biomass Estimation and Its Spatio-Temporal Variations in Temperate Grassland, Northern China. Remote Sens. 2014, 6, 1496–1513. [Google Scholar] [CrossRef] [Green Version]
- Lopez, B.; Hines, P.J.; Ash, C. The unrecognized value of grass. Science 2022, 377, 590–591. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.H.; Fang, J.Y.; Yang, Y.H.; Mohammat, A. Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Sci. China Life Sci. 2010, 53, 841–850. [Google Scholar] [CrossRef]
- Kong, B.; Yu, H.; Du, R.X.; Wang, Q. Quantitative Estimation of Biomass of Alpine Grasslands Using Hyperspectral Remote Sensing. Rangel. Ecol. Manag. 2019, 72, 336–346. [Google Scholar] [CrossRef]
- Xia, J.Z.; Ma, M.N.; Liang, T.G.; Wu, C.Y.; Yang, Y.H.; Zhang, L.; Zhang, Y.J.; Yuan, W.P. Estimates of grassland biomass and turnover time on the Tibetan Plateau. Environ. Res. Lett. 2018, 13, 014020. [Google Scholar] [CrossRef]
- Schirpke, U.; Kohler, M.; Leitinger, G.; Fontana, V.; Tasser, E.; Tappeiner, U. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst. Serv. 2017, 26, 79–94. [Google Scholar] [CrossRef]
- Ward, A.; Yin, K.S.; Dargusch, P.; Fulton, E.A.; Aziz, A.A. The Impact of Land Use Change on Carbon Stored in Mountain Grasslands and Shrublands. Ecol. Econ. 2017, 135, 114–124. [Google Scholar] [CrossRef]
- Liang, T.G.; Yang, S.X.; Feng, Q.S.; Liu, B.K.; Zhang, R.P.; Huang, X.D.; Xie, H.J. Multi-factor modeling of above-ground biomass in alpine grassland: A case study in the Three-River Headwaters Region, China. Remote Sens. Environ. 2016, 186, 164–172. [Google Scholar] [CrossRef]
- Quan, X.W.; He, B.B.; Yebra, M.; Yin, C.M.; Liao, Z.M.; Zhang, X.T.; Li, X. A radiative transfer model-based method for the estimation of grassland aboveground biomass. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 159–168. [Google Scholar] [CrossRef]
- Meyer, H.; Lehnert, L.W.; Wang, Y.; Reudenbach, C.; Nauss, T.; Bendix, J. From local spectral measurements to maps of vegetation cover and biomass on the Qinghai-Tibet-Plateau: Do we need hyperspectral information? Int. J. Appl. Earth Obs. Geoinf. 2017, 55, 21–31. [Google Scholar] [CrossRef]
- Sinde-Gonzalez, I.; Gil-Docampo, M.; Arza-Garcia, M.; Grefa-Sanchez, J.; Yanez-Simba, D.; Perez-Guerrero, P.; Abril-Porras, V. Biomass estimation of pasture plots with multitemporal UAV-based photogrammetric surveys. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102355. [Google Scholar] [CrossRef]
- Kulawardhana, R.W.; Popescu, S.C.; Feagin, R.A. Fusion of lidar and multispectral data to quantify salt marsh carbon stocks. Remote Sens. Environ. 2014, 154, 345–357. [Google Scholar] [CrossRef]
- Luo, S.Z.; Wang, C.; Xi, X.H.; Pan, F.F.; Peng, D.L.; Zou, J.; Nie, S.; Qin, H.M. Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation. Ecol. Indic. 2017, 73, 378–387. [Google Scholar] [CrossRef]
- Han, W.Q.; Zhao, S.H.; Feng, X.Z.; Chen, L. Extraction of multilayer vegetation coverage using airborne LiDAR discrete points with intensity information in urban areas: A case study in Nanjing City, China. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 56–64. [Google Scholar] [CrossRef]
- Luo, S.Z.; Chen, J.M.; Wang, C.; Gonsamo, A.; Xi, X.H.; Lin, Y.; Qian, M.J.; Peng, D.L.; Nie, S.; Qin, H.M. Comparative Performances of Airborne LiDAR Height and Intensity Data for Leaf Area Index Estimation. Ieee J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 300–310. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Maimaitiyiming, M.; Hartling, S.; Peterson, K.T.; Maw, M.J.W.; Shakoor, N.; Mockler, T.; Fritschi, F.B. Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 27–41. [Google Scholar] [CrossRef]
- Luo, S.Z.; Wang, C.; Xi, X.H.; Zeng, H.C.; Li, D.; Xia, S.B.; Wang, P. Fusion of Airborne Discrete-Return LiDAR and Hyperspectral Data for Land Cover Classification. Remote Sens. 2016, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.G.; Popescu, S. Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sens. Environ. 2009, 113, 1628–1645. [Google Scholar] [CrossRef]
- Garcia, M.; Riano, D.; Chuvieco, E.; Danson, F.M. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens. Environ. 2010, 114, 816–830. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Nelson, R.F.; Naesset, E.; Orka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.; Gobakken, T. Lidar sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012, 121, 196–209. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.Z.; Wang, C.; Xi, X.H.; Pan, F.F.; Qian, M.J.; Peng, D.L.; Nie, S.; Qin, H.M.; Lin, Y. Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 107–117. [Google Scholar] [CrossRef]
- Maesano, M.; Khoury, S.; Nakhle, F.; Firrincieli, A.; Gay, A.; Tauro, F.; Harfouche, A. UAV-Based LiDAR for High-Throughput Determination of Plant Height and Above-Ground Biomass of the Bioenergy Grass Arundo donax. Remote Sens. 2020, 12, 464. [Google Scholar] [CrossRef]
- Zhang, X.; Bao, Y.H.; Wang, D.L.; Xin, X.P.; Ding, L.; Xu, D.W.; Hou, L.L.; Shen, J. Using UAV LiDAR to Extract Vegetation Parameters of Inner Mongolian Grassland. Remote Sens. 2021, 13, 656. [Google Scholar] [CrossRef]
- Zhao, X.X.; Su, Y.J.; Hu, T.Y.; Cao, M.Q.; Liu, X.Q.; Yang, Q.L.; Guan, H.C.; Liu, L.L.; Guo, Q.H. Analysis of UAV lidar information loss and its influence on the estimation accuracy of structural and functional traits in a meadow steppe. Ecol. Indic. 2022, 135, 108515. [Google Scholar] [CrossRef]
- Wen, J.G.; Liu, Q.H.; Liu, Q.; Xiao, Q.; Li, X.W. Parametrized BRDF for atmospheric and topographic correction and albedo estimation in Jiangxi rugged terrain, China. Int. J. Remote Sens. 2009, 30, 2875–2896. [Google Scholar] [CrossRef]
- Hao, D.L.; Wen, J.G.; Xiao, Q.; Wu, S.B.; Lin, X.W.; Dou, B.C.; You, D.Q.; Tang, Y. Simulation and Analysis of the Topographic Effects on Snow-Free Albedo over Rugged Terrain. Remote Sens. 2018, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.; Lin, T.; Ranson, K. The lambertian assumption and landsat data. Photogramm. Eng. Remote Sens. 1980, 46, 1183. [Google Scholar]
- Li, A.N.; Wang, Q.F.; Bian, J.H.; Lei, G.B. An Improved Physics-Based Model for Topographic Correction of Landsat TM Images. Remote Sens. 2015, 7, 6296–6319. [Google Scholar] [CrossRef] [Green Version]
- Yin, G.F.; Li, A.N.; Zhao, W.; Jin, H.A.; Bian, J.H.; Wu, S.B.A. Modeling Canopy Reflectance Over Sloping Terrain Based on Path Length Correction. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4597–4609. [Google Scholar] [CrossRef]
- Couturier, S.; Gastellu-Etchegorry, J.P.; Martin, E.; Patino, P. Building a Forward-Mode Three-Dimensional Reflectance Model for Topographic Normalization of High-Resolution (1–5 m) Imagery: Validation Phase in a Forested Environment. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3910–3921. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G.Y. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, G.F.; Li, A.N.; Wu, S.B.; Fan, W.L.; Zeng, Y.L.; Yan, K.; Xu, B.D.; Li, J.; Liu, Q.H. PLC: A simple and semi-physical topographic correction method for vegetation canopies based on path length correction. Remote Sens. Environ. 2018, 215, 184–198. [Google Scholar] [CrossRef]
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the Slope-Aspect Correction of Multispectral Scanner Data. Can. J. Remote Sens. 1981, 8, 84–106. [Google Scholar] [CrossRef] [Green Version]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain. Ieee Trans. Geosci. Remote Sens. 2005, 43, 2148–2159. [Google Scholar] [CrossRef]
- Gu, D.; Gillespie, A. Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun–Canopy–Sensor Geometry. Remote Sens. Environ. 1998, 64, 166–175. [Google Scholar] [CrossRef]
- Jimenez-Berni, J.A.; Deery, D.M.; Rozas-Larraondo, P.; Condon, A.G.; Rebetzke, G.J.; James, R.A.; Bovill, W.D.; Furbank, R.T.; Sirault, X.R.R. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR. Front. Plant Sci. 2018, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.H.; Zhao, C.J.; Yang, H.; Yang, G.J.; Han, L.; Li, Z.H.; Feng, H.K.; Xu, B.; Wu, J.T.; Lei, L. Estimation of maize above-ground biomass based on stem-leaf separation strategy integrated with LiDAR and optical remote sensing data. PeerJ 2019, 7, e7593. [Google Scholar] [CrossRef] [Green Version]
- Michez, A.; Lejeune, P.; Bauwens, S.; Herinaina, A.A.L.; Blaise, Y.; Munoz, E.C.; Lebeau, F.; Bindelle, J. Mapping and Monitoring of Biomass and Grazing in Pasture with an Unmanned Aerial System. Remote Sens. 2019, 11, 473. [Google Scholar] [CrossRef] [Green Version]
- Nandy, S.; Srinet, R.; Padalia, H. Mapping Forest Height and Aboveground Biomass by Integrating ICESat-2, Sentinel-1 and Sentinel-2 Data Using Random Forest Algorithm in Northwest Himalayan Foothills of India. Geophys. Res. Lett. 2021, 48. [Google Scholar] [CrossRef]
- Zhou, W.; Li, H.R.; Xie, L.J.; Nie, X.M.; Wang, Z.; Du, Z.P.; Yue, T.X. Remote sensing inversion of grassland aboveground biomass based on high accuracy surface modeling. Ecol. Indic. 2021, 121, 107215. [Google Scholar] [CrossRef]
- Xu, K.X.; Su, Y.J.; Liu, J.; Hu, T.Y.; Jin, S.C.; Ma, Q.; Zhai, Q.P.; Wang, R.; Zhang, J.; Li, Y.M.; et al. Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data. Ecol. Indic. 2020, 108, 105747. [Google Scholar] [CrossRef]
- Zeng, W.S.; Zhang, L.J.; Chen, X.Y.; Cheng, Z.C.; Ma, K.X.; Li, Z.H. Construction of compatible and additive individual-tree biomass models for Pinus tabulaeformis in China. Can. J. For. Res. 2017, 47, 467–475. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.K.; Yue, J.B.; Li, Z.H.; Yang, G.J.; Song, X.Y.; Yang, X.D.; Zhao, Y. Remote-sensing estimation of potato above-ground biomass based on spectral and spatial features extracted from high-definition digital camera images. Comput. Electron. Agric. 2022, 198, 107089. [Google Scholar] [CrossRef]
- Blesius, L.; Weirich, F. The use of the Minnaert correction for land-cover classification in mountainous terrain. Int. J. Remote Sens. 2005, 26, 3831–3851. [Google Scholar] [CrossRef]
- Chen, R.; Yin, G.F.; Zhao, W.; Xu, B.D.; Zeng, Y.L.; Liu, G.X.; Verger, A. TCNIRv: Topographically Corrected Near-Infrared Reflectance of Vegetation for Tracking Gross Primary Production Over Mountainous Areas. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4409310. [Google Scholar] [CrossRef]
- Zhu, G.L.; Liu, Y.B.; Ju, W.M.; Chen, J.M. Evaluation of topographic effects on four commonly used vegetation indices. J. Remote Sens. 2013, 17, 211–221. [Google Scholar]
- Wang, C.; Menenti, M.; Stoll, M.P.; Feola, A.; Belluco, E.; Marani, M. Separation of Ground and Low Vegetation Signatures in LiDAR Measurements of Salt-Marsh Environments. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2014–2023. [Google Scholar] [CrossRef]
- Hopkinson, C.; Chasmer, L.E.; Sass, G.; Creed, I.F.; Sitar, M.; Kalbfleisch, W.; Treitz, P. Vegetation class dependent errors in lidar ground elevation and canopy height estimates in a boreal wetland environment. Can. J. Remote Sens. 2005, 31, 191–206. [Google Scholar] [CrossRef]
Parameters | Mean | Max | Min | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|---|
Mean height of the grass (m) | 0.353 | 0.843 | 0.154 | 0.130 | 0.368 |
AGB (g/m2) | 770 | 1923 | 175 | 394 | 0.512 |
Slope (°) | 15.629 | 33.000 | 0 | 7.879 | 0.504 |
FVC (%) | 79.0 | 100 | 48.3 | 13.6 | 0.172 |
Correction Method | Expression |
---|---|
PLC | |
C | |
SCS + C | |
Teillet regression |
Height Metrics | Intensity Metrics | Description |
---|---|---|
Hmean | Imean | Captures the difference in LiDAR height and intensity of the different grass components |
Hmax | Imax | |
Hmin | Imin | |
Hp95, Hp90, Hp75, Hp50, Hp25, Hp10, Hp5 | Ip95, Ip90, Ip75, Ip50, Ip25, Ip10, Ip5 | |
Hsd | Isd | Characterizes the grass structure based on height and intensity |
Hcv | Icv |
Methods | Definition | Characteristics |
---|---|---|
R2 | : measured AGB. : predicted AGB. : number of observations. | |
MAE | R2 indicates the degree of fit between the predicted and the measured value; MAE and RMSE indicate the error between the predicted value and the measured value, although RMSE is more sensitive to outliers; MPSE indicates the deviation ratio of the prediction value. | |
RMSE | ||
MPSE |
Input Variables | Model Name | Model Equation | R2 | MAE (g/m2) | RMSE (g/m2) | MPSE (%) |
---|---|---|---|---|---|---|
T-RVI | Linear | 0.334 | 237 | 320 | 31.1 | |
Power | 0.334 | 238 | 320 | 31.1 | ||
Polynomial | 0.320 | 242 | 324 | 32.6 | ||
Logarithmic | 0.353 | 238 | 316 | 32.3 | ||
Exponential | 0.338 | 244 | 320 | 31.8 | ||
Hp50 | Linear | 0.194 | 261 | 356 | 33.6 | |
Power | 0.282 | 251 | 332 | 32.2 | ||
Polynomial | 0.225 | 257 | 352 | 40.4 | ||
Logarithmic | 0.325 | 245 | 322 | 32.7 | ||
Exponential | 0.081 | 289 | 404 | 36.2 | ||
Imax | Linear | 0.271 | 272 | 335 | 38.2 | |
Power | 0.253 | 271 | 339 | 35.1 | ||
Polynomial | 0.274 | 266 | 334 | 34.9 | ||
Logarithmic | 0.275 | 266 | 334 | 34.7 | ||
Exponential | 0.278 | 265 | 333 | 34.6 | ||
VHI | Linear | 0.455 | 221 | 290 | 29.1 | |
Power | 0.515 | 211 | 273 | 27.7 | ||
Polynomial | 0.517 | 212 | 273 | 27.8 | ||
Logarithmic | 0.496 | 214 | 278 | 30.7 | ||
Exponential | 0.379 | 234 | 309 | 30.6 | ||
T-RVI + Hp50 + Imax | SMR | 0.452 | 221 | 291 | 31.3 | |
SVR | / | 0.445 | 214 | 294 | 29.8 | |
RF | / | 0.459 | 217 | 288 | 27.8 | |
T-RVI + Hp50 + Imax + VHI | SMR | 0.489 | 211 | 281 | 27.9 | |
SVR | / | 0.476 | 208 | 288 | 29.4 | |
RF | / | 0.484 | 216 | 282 | 27.7 |
Original VI | C | PLC | SCS + C | T | |
---|---|---|---|---|---|
EVI2 | 0.1834 | 0.0328 | 0.1834 | 0.1190 | 0.0004 |
NDVI | 0.1833 | 0.0328 | 0.1835 | 0.1189 | 0.0004 |
RVI | 0.1834 | 0.0328 | 0.1835 | 0.1189 | 0.0004 |
Input Variables | Model | R2 | MAE (g/m2) | RMSE (g/m2) | MPSE (%) |
---|---|---|---|---|---|
VH | Logarithmic | 0.413 | 224 | 300 | 29.9 |
CVMVI | Logarithmic | 0.389 | 227 | 307 | 31.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, A.; Wang, X.; Zhang, M.; Guo, J.; Xing, X.; Yang, D.; Zhang, H.; Hou, Z.; Jia, Z.; Yang, X. Fusion of LiDAR and Multispectral Data for Aboveground Biomass Estimation in Mountain Grassland. Remote Sens. 2023, 15, 405. https://doi.org/10.3390/rs15020405
Chen A, Wang X, Zhang M, Guo J, Xing X, Yang D, Zhang H, Hou Z, Jia Z, Yang X. Fusion of LiDAR and Multispectral Data for Aboveground Biomass Estimation in Mountain Grassland. Remote Sensing. 2023; 15(2):405. https://doi.org/10.3390/rs15020405
Chicago/Turabian StyleChen, Ang, Xing Wang, Min Zhang, Jian Guo, Xiaoyu Xing, Dong Yang, Huilong Zhang, Zhiyan Hou, Ze Jia, and Xiuchun Yang. 2023. "Fusion of LiDAR and Multispectral Data for Aboveground Biomass Estimation in Mountain Grassland" Remote Sensing 15, no. 2: 405. https://doi.org/10.3390/rs15020405
APA StyleChen, A., Wang, X., Zhang, M., Guo, J., Xing, X., Yang, D., Zhang, H., Hou, Z., Jia, Z., & Yang, X. (2023). Fusion of LiDAR and Multispectral Data for Aboveground Biomass Estimation in Mountain Grassland. Remote Sensing, 15(2), 405. https://doi.org/10.3390/rs15020405