An In-Vehicle Smartphone RTK/DR Positioning Method Combined with OSM Road Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Smartphone RTK Model
2.2. Smartphone DR Model
2.3. Corrected Heading Angle Method
2.4. RTK/DR Positioning Method
3. Results
3.1. Experimental Program
3.2. Effect of Heading Angle Correction
3.3. Statistics and Analysis of Smartphone Positioning Error
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, B.; Tao, X.; Zhao, J.; Ke, M.; Wang, H.; Deng, W. An Integrated GNSS/UWB/DR/VMM Positioning Strategy for Intelligent Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 10842–10853. [Google Scholar] [CrossRef]
- Yan, G.; Wang, J.; Zhou, X. High-Precision Simulator for Strapdown Inertial Navigation Systems Based on Real Dynamics from GNSS and IMU Integration. In China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III; Sun, J., Liu, J., Fan, S., Lu, X., Eds.; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2015; Volume 342, pp. 789–799. [Google Scholar] [CrossRef]
- Liu, X.; Sun, X.; Xia, X. LiDAR Point’s Elliptical Error Model and Laser Positioning for Autonomous Vehicles. Meas. Sci. Technol. 2021, 32, 035107. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, H. Performance analysis on vehicle GNSS/INS integrated navigation system aided by odometer. J. Geod. Geodyn. 2018, 38, 206–210. [Google Scholar]
- Chang, L.; Niu, X.; Liu, T. GNSS/IMU/ODO/LiDAR-SLAM Integrated Navigation System Using IMU/ODO Pre-Integration. Sensors 2020, 20, 4702. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Chen, B.; Liu, Y. Android smartphone GNSS high-precision real-time dynamic positioning. Acta Geod. Cartogr. Sin. 2021, 50, 18–26. [Google Scholar]
- Paziewski, J.; Fortunato, M.; Mazzoni, A.; Odolinski, R. An Analysis of Multi-GNSS Observations Tracked by Recent Android Smartphones and Smartphone-Only Relative Positioning Results. Measurement 2021, 175, 109162. [Google Scholar] [CrossRef]
- Paziewski, J.; Sieradzki, R.; Baryla, R. Signal Characterization and Assessment of Code GNSS Positioning with Low-Power Consumption Smartphones. GPS Solut. 2019, 23, 98. [Google Scholar] [CrossRef] [Green Version]
- Lachapelle, G.; Gratton, P.; Horrelt, J.; Lemieux, E.; Broumandan, A. Evaluation of a Low Cost Hand Held Unit with GNSS Raw Data Capability and Comparison with an Android Smartphone. Sensors 2018, 18, 4185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groves, P.D.; Adjrad, M. RETRACTED ARTICLE: Likelihood-Based GNSS Positioning Using LOS/NLOS Predictions from 3D Mapping and Pseudoranges. GPS Solut. 2017, 21, 1805–1816. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.-T.; Gu, Y.; Huang, Y.; Kamijo, S. Urban Pedestrian Navigation Using Smartphone-Based Dead Reckoning and 3-D Map-Aided GNSS. IEEE Sens. J. 2016, 16, 1281–1293. [Google Scholar] [CrossRef]
- Jeon, J.; Hwang, Y.; Jeong, Y.; Park, S.; Kweon, I.S.; Choi, S.B. Lane Detection Aided Online Dead Reckoning for GNSS Denied Environments. Sensors 2021, 21, 6805. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cai, B.G.; Wen, Y.H.; Wang, J. Integrating DSRC and Dead-Reckoning for Cooperative Vehicle Positioning under GNSS-Challenged Vehicular Environments. IJAHUC 2015, 19, 111. [Google Scholar] [CrossRef]
- Wang, J.; Bai, M.; Huang, Y.; Chen, Z.; Zhan, Y.; Xia, X. Study on GNSS/DR Integrated Navigation. In Proceedings of the 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 4973–4979. [Google Scholar] [CrossRef]
- Zhang, Q.; Niu, X. Research on Accuracy Enhancement of Low-Cost MEMS INS/GNSS Integration for Land Vehicle Navigation. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018; pp. 891–898. [Google Scholar] [CrossRef]
- Salib, A.; Moussa, M.; Moussa, A.; El-Sheimy, N. Visual Odometry/Inertial Integration for Enhanced Land Vehicle Navigation in GNSS Denied Environment. In Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, 18 November–16 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Zeng, Q.; Zeng, S.; Liu, J.; Chen, R.; Meng, Q.; Wang, J. Heading correction method for smartphone based on gravity assisting and simulated zero-velocity updating. J. Chin. Inert. Technol. 2018, 26, 289–294. [Google Scholar]
- Peng, Y. Research on Multi-Sensor Fusion Positioning Algorithm of GNSS/INS/camera Lane Line; Wuhan University: Wuhan, China, 2020. [Google Scholar]
- Peng, Y.; Pan, S.; Gao, W.; Qiao, L.; Tan, Y.; Sun, Y. Heading angle estimation for vehicles based online detection and digital map matching. J. Electron. Meas. Instrum. 2022, 36, 194–201. [Google Scholar]
- Xu, Q.; Li, X.; Sun, Z.; Hu, W.; Chang, B. A Novel Heading Angle Estimation Methodology for Land Vehicles Based on Deep Learning and Enhanced Digital Map. IEEE Access 2019, 7, 138567–138578. [Google Scholar] [CrossRef]
- Kong, Q. Quality Analysis on Crowd Sourcing Geographic Data with OSM Road Network Data; Shandong University of Science and Technology: Qingdao, China, 2020. [Google Scholar]
- Liu, Y. Research on High Precision Real-Time Fusion Positioning and Indoor and Outdoor Switching of Android Smartphone; Southeast University: Nanjing, China, 2021. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, F.; Li, P.; Zuo, X. Real-time quality control procedure for GNSS precise point positioning. Geomat. Inf. Sci. Wuhan Univ. 2012, 37, 940–944+1013. [Google Scholar]
- Li, J. Research on OpenStreetMap Based Map Matching Algorithm and Its Implementation; Beijing University of Technology: Beijing, China, 2017. [Google Scholar]
- Xu, J.; Ta, N.; Xing, C.; Zhang, Y. Online Map Matching Algorithm Using Segment Angle Based on Hidden Markov Model. In Proceedings of the 2017 14th Web Information Systems and Applications Conference (WISA), Liuzhou, China, 11–12 November 2017; pp. 50–55. [Google Scholar] [CrossRef]
Test Number | Heading Angle Error RMS (Degrees) | Horizontal Positioning Error RMS (m) | ||
---|---|---|---|---|
DR | DR_r | DR | DR_r | |
P30-1 | 106.181 | 2.215 | 200.854 | 5.668 |
P30-2 | 32.702 | 2.103 | 217.430 | 6.636 |
P30-3 | 7.690 | 2.081 | 106.629 | 4.356 |
P30-4 | 5.265 | 1.629 | 42.187 | 4.832 |
P40-1 | 29.006 | 2.346 | 183.660 | 5.506 |
P40-2 | 11.792 | 2.293 | 93.313 | 5.761 |
P40-3 | 7.966 | 1.808 | 86.463 | 5.064 |
P40-4 | 4.609 | 1.539 | 46.276 | 5.622 |
Test Number | Heading Angle Error RMS (Degrees) | Accuracy Change | Velocity Error RMS (m/s) | Accuracy Change | ||
---|---|---|---|---|---|---|
RTK | RTK/DR | RTK | RTK/DR | |||
P30-1 | 2.392 | 2.215 | 7.4% | 2.804 | 2.813 | −0.3% |
P30-2 | 2.334 | 2.103 | 9.9% | 0.242 | 0.245 | −1.1% |
P30-3 | 2.897 | 2.081 | 28.2% | 0.804 | 0.805 | −0.7% |
P30-4 | 2.353 | 1.629 | 30.8% | 0.313 | 0.314 | −0.2% |
P40-1 | 2.820 | 2.346 | 16.8% | 2.743 | 2.745 | −0.1% |
P40-2 | 2.896 | 2.293 | 20.8% | 0.276 | 0.263 | 4.7% |
P40-3 | 2.977 | 1.808 | 39.3% | 0.502 | 0.499 | 0.7% |
P40-4 | 2.195 | 1.539 | 29.9% | 0.255 | 0.255 | 0.0% |
Test Number | RTK (m) | RTK/DR (m) | RTK/DR Accuracy Variation | ||||||
---|---|---|---|---|---|---|---|---|---|
Lateral | Forward | Horizontal | Lateral | Forward | Horizontal | Lateral | Forward | Horizontal | |
P30-1 | 1.166 | 1.122 | 1.619 | 1.049 | 1.129 | 1.542 | 10.0% | −0.6% | 4.7% |
P30-2 | 0.834 | 0.742 | 1.116 | 0.768 | 0.745 | 1.070 | 7.9% | −0.5% | 4.1% |
P30-3 | 1.041 | 0.868 | 1.356 | 0.990 | 0.871 | 1.319 | 4.9% | −0.3% | 2.7% |
P30-4 | 0.957 | 0.934 | 1.337 | 0.908 | 0.935 | 1.304 | 5.0% | −0.1% | 2.5% |
P40-1 | 1.732 | 1.121 | 2.063 | 1.066 | 1.131 | 1.554 | 38.4% | −0.8% | 24.6% |
P40-2 | 0.888 | 0.618 | 1.082 | 0.692 | 0.623 | 0.931 | 22.0% | −0.8% | 13.9% |
P40-3 | 1.852 | 1.435 | 2.343 | 0.910 | 1.440 | 1.704 | 50.8% | −0.4% | 27.3% |
P40-4 | 0.926 | 0.526 | 1.065 | 0.724 | 0.529 | 0.896 | 21.8% | −0.5% | 15.8% |
Smartphone Model | RTK (m) | RTK/DR (m) | ||||
---|---|---|---|---|---|---|
Lateral | Forward | Horizontal | Lateral | Forward | Horizontal | |
P30 | 1.012 | 0.852 | 1.323 | 0.902 | 0.859 | 1.245 |
P40 | 2.042 | 1.016 | 2.281 | 0.742 | 1.027 | 1.267 |
Test Number | Total Number of Epochs | Number of Stop Epochs | Horizontal Position Accuracy | |
---|---|---|---|---|
DR | RTK/DR | |||
P30-1 | 1111 | 255 | 1.739 | 2.017 |
P30-2 | 1194 | 203 | 1.216 | 1.382 |
P30-3 | 1170 | 332 | 1.669 | 1.673 |
P30-4 | 984 | 221 | 1.725 | 1.773 |
P40-1 | 1073 | 428 | 1.619 | 2.737 |
P40-2 | 1179 | 436 | 1.093 | 1.455 |
P40-3 | 1160 | 390 | 2.630 | 3.817 |
P40-4 | 980 | 269 | 1.063 | 1.496 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Gao, C.; Shang, R.; Zhang, R.; Gan, L.; Liu, Q.; Wang, J. An In-Vehicle Smartphone RTK/DR Positioning Method Combined with OSM Road Network. Remote Sens. 2023, 15, 398. https://doi.org/10.3390/rs15020398
Wang F, Gao C, Shang R, Zhang R, Gan L, Liu Q, Wang J. An In-Vehicle Smartphone RTK/DR Positioning Method Combined with OSM Road Network. Remote Sensing. 2023; 15(2):398. https://doi.org/10.3390/rs15020398
Chicago/Turabian StyleWang, Fuyou, Chengfa Gao, Rui Shang, Ruicheng Zhang, Lu Gan, Qi Liu, and Jianchao Wang. 2023. "An In-Vehicle Smartphone RTK/DR Positioning Method Combined with OSM Road Network" Remote Sensing 15, no. 2: 398. https://doi.org/10.3390/rs15020398
APA StyleWang, F., Gao, C., Shang, R., Zhang, R., Gan, L., Liu, Q., & Wang, J. (2023). An In-Vehicle Smartphone RTK/DR Positioning Method Combined with OSM Road Network. Remote Sensing, 15(2), 398. https://doi.org/10.3390/rs15020398