Assessment of Runoff Components of River Flow in the Karakoram Mountains, Pakistan, during 1995–2010
Abstract
:1. Introduction
2. Study Region and Meteorological Conditions
3. Data Sets and Methods
3.1. Digital Elevation Models (DEM) Data
3.2. Hydrological and Meteorological Data
3.3. Remote Sensing of Snow Cover
3.4. Methods
3.4.1. Structure of SRM
3.4.2. Calibration and Validation of SRM
3.4.3. Sources of Uncertainty
4. Results
4.1. Trend Analysis of Meteorological and Hydrological Data
4.2. SRM Simulations and Quantification of Runoff Components
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gourbesville, P. Challenges for integrated water resources management. Phys. Chem. Earth Parts ABC 2008, 33, 284–289. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2019, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Mark, B.G.; Baraer, M.; Fernandez, A.; Immerzeel, W.; Moore, R.D.; Weingartner, R. Glaciers as water resources. In The High-Mountain Cryosphere, 1st ed.; Huggel, C., Carey, M., Clague, J., Kääb, A., Eds.; Cambridge University Press: Cambridge, UK, 2015; pp. 184–203. [Google Scholar] [CrossRef]
- Miller, J.D.; Immerzeel, W.W.; Rees, G. Climate Change Impacts on Glacier Hydrology and River Discharge in the Hindu Kush–Himalayas: A Synthesis of the Scientific Basis. Mt. Res. Dev. 2012, 32, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The State and Fate of Himalayan Glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [Green Version]
- IPCC. AR5 Climate Change 2013: The Physical Science Basis—IPCC. 2013. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 14 August 2021).
- IPCC. Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects (GSA). 2014. Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 14 August 2021).
- Bajracharya, S.R.; Maharjan, S.B.; Shrestha, F.; Guo, W.; Liu, S.; Immerzeel, W.; Shrestha, B. The glaciers of the Hindu Kush Himalayas: Current status and observed changes from the 1980s to 2010. Int. J. Water Resour. Dev. 2015, 31, 161–173. [Google Scholar] [CrossRef] [Green Version]
- World Glacier Monitoring Service (WGMS). Fluctuations of Glaciers Database; World Glacier Monitoring Service (WGMS): Zurich, Switzerland, 2017. [Google Scholar] [CrossRef]
- Kaser, G.; Fountain, A.; Jansson, P.; Heucke, E.; Knaus, M. A Manual for Monitoring the Mass Balance of Mountain Glaciers; Unesco: Paris, France, 2003; Volume 137. [Google Scholar]
- Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R.; Clague, J.; Vuille, M.; Buytaert, W.; Cayan, D.; Greenwood, G.; et al. Toward mountains without permanent snow and ice: Mountains without permanent snow and ice. Earths Future 2017, 5, 418–435. [Google Scholar] [CrossRef]
- Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B. (Eds.) The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar] [CrossRef] [Green Version]
- Scott, C.A.; Zhang, F.; Mukherji, A.; Immerzeel, W.; Mustafa, D.; Bharati, L. Water in the Hindu Kush Himalaya. In The Hindu Kush Himalaya Assessment; Wester, P., Mishra, A., Mukherji, A., Shrestha, A.B., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 257–299. [Google Scholar] [CrossRef]
- Dyurgerov, M. Mountain and subpolar glaciers show an increase in sensitivity to climate warming and intensification of the water cycle. J. Hydrol. 2003, 282, 164–176. [Google Scholar] [CrossRef]
- Huss, M.; Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Marzeion, B.; Kaser, G.; Maussion, F.; Champollion, N. Limited influence of climate change mitigation on short-term glacier mass loss. Nat. Clim. Chang. 2018, 8, 305–308. [Google Scholar] [CrossRef]
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; de Vries, M.V.W.; Mergili, M.; et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.; Lau, W.-M.; Yasunari, T.J. Satellite observations of desert dust-induced Himalayan snow darkening: Dust-induced himalayan snow darkening. Geophys. Res. Lett. 2013, 40, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Painter, T.H.; Deems, J.; Belnap, J.; Hamlet, A.; Landry, C.; Udall, B. Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl. Acad. Sci. USA 2010, 107, 17125–17130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhuri, A.; Bhattacharya, A.; Natsuaki, R.; Hirose, A. Glacier surface velocity estimation using stokes vector correlation. In Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015; pp. 606–609. [Google Scholar] [CrossRef]
- Huang, L.; Li, Z. Comparison of SAR and optical data in deriving glacier velocity with feature tracking. Int. J. Remote Sens. 2011, 32, 2681–2698. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Briggs, K.; Kääb, A.; McMillan, M.; McNabb, R.; Nagler, T.; Nuth, C.; Rastner, P.; Strozzi, T.; et al. Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project. Remote. Sens. Environ. 2017, 203, 256–275. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, W.W.; van Beek, L.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Neppel, L.; Ahmad, B. Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. J. Hydrol. 2011, 409, 104–117. [Google Scholar] [CrossRef]
- Wake, C.P. Glaciochemical Investigations as a Tool for Determining the Spatial and Seasonal Variation of Snow Accumulation in the Central Karakoram, Northern Pakistan. Ann. Glaciol. 1989, 13, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K.; Wake, C.; Young, G.; David, C. Hydrological Investigations at Biafo Glacier, Karakoram Range, Himalaya; an Important Source of Water for the Indus River. Ann. Glaciol. 1989, 13, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Young, G.J.; Hewitt, K. Hydrology research in the upper Indus basin, Karakoram Himalaya, Pakistan. IAHS-AISH Publ. 1989, 190, 139–152. [Google Scholar]
- Archer, D.R.; Fowler, H.J. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. 2004, 8, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. 2010, 115, F03019. [Google Scholar] [CrossRef] [Green Version]
- Archer, D. Contrasting hydrological regimes in the upper Indus Basin. J. Hydrol. 2003, 274, 198–210. [Google Scholar] [CrossRef]
- Muhammad, S.; Tian, L.; Khan, A. Early twenty-first century glacier mass losses in the Indus Basin constrained by density assumptions. J. Hydrol. 2019, 574, 467–475. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, A.F.; Immerzeel, W.; Shrestha, A.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Singh, P. Snow and Glacier Hydrology; Springer: Amsterdam, The Netherlands, 2001; Available online: https://www.springer.com/gp/book/9780792367673 (accessed on 14 August 2021).
- Akhtar, M.; Ahmad, N.; Booij, M.J. The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. J. Hydrol. 2008, 355, 148–163. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Pellicciotti, F.; Bierkens, M.F.P. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci. 2013, 6, 742–745. [Google Scholar] [CrossRef]
- Adnan, M.; Nabi, G.; Kang, S.; Zhang, G.; Adnan, R.M.; Anjum, M.N.; Iqbal, M.; Ali, A.F. Snowmelt Runoff Modelling under Projected Climate Change Patterns in the Gilgit River Basin of Northern Pakistan. Pol. J. Environ. Stud. 2017, 26, 525–542. [Google Scholar] [CrossRef]
- Gao, H.; Zou, X.; Wu, J.; Zhang, Y.; Deng, X.; Hussain, S.; Wazir, M.A.; Zhu, G. Post-20th century near-steady state of Batura Glacier: Observational evidence of Karakoram Anomaly. Sci. Rep. 2020, 10, 987. [Google Scholar] [CrossRef] [Green Version]
- Bashir, F.; Zeng, X.; Gupta, H.; Hazenberg, P. A Hydrometeorological Perspective on the Karakoram Anomaly Using Unique Valley-Based Synoptic Weather Observations: Explaining the Karakoram Anomaly. Geophys. Res. Lett. 2017, 44, 10470–10478. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K. The Karakoram Anomaly? Glacier Expansion 332 and the ‘Elevation Effect,’ Karakoram Himalaya. Mt. Res. Dev. 2005, 25, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K. Tributary glacier surges: An exceptional concentration at Panmah Glacier, Karakoram Himalaya. J. Glaciol. 2007, 53, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Asad, F.; Zhu, H.; Zhang, H.; Liang, E.; Muhammad, S.; Bin Farhan, S.; Hussain, I.; Wazir, M.A.; Ahmed, M.; Esper, J. Are Karakoram temperatures out of phase compared to hemispheric trends? Clim. Dyn. 2016, 48, 3381–3390. [Google Scholar] [CrossRef]
- Muhammad, S.; Tian, L. Changes in the ablation zones of glaciers in the western Himalaya and the Karakoram between 1972 and 2015. Remote Sens. Environ. 2016, 187, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, M.A.; Yi, C.; Xu, X.; Li, Y. Glacier status during the period 1973–2014 in the Hunza Basin, Western Karakoram. Quat. Int. 2017, 444, 125–136. [Google Scholar] [CrossRef]
- Gul, C.; Kang, S.; Ghauri, B.; Haq, M.; Muhammad, S.; Ali, S. Using Landsat images to monitor changes in the snow-covered area of selected glaciers in northern Pakistan. J. Mt. Sci. 2017, 14, 2013–2027. [Google Scholar] [CrossRef]
- Baig, S.U.; Khan, H.; Din, A. Spatio-temporal analysis of glacial ice area distribution of Hunza River Basin, Karakoram region of Pakistan. Hydrol. Process. 2018, 32, 1491–1501. [Google Scholar] [CrossRef]
- Shafique, M.; Faiz, B.; Bacha, A. Evaluating Glacier Dynamics Using Temporal Remote Sensing Images: A Case Study Of Hunza Valley, Northern Pakistan. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 1781–1785. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Tian, L.; Nüsser, M. No significant mass loss in the glaciers of Astore Basin (North-Western Himalaya), between 1999 and 2016. J. Glaciol. 2019, 65, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Khattak, M.; Babel, M.; Sharif, M. Hydro-meteorological trends in the upper Indus River basin in Pakistan. Clim. Res. 2011, 46, 103–119. [Google Scholar] [CrossRef]
- Ali, S.H.; Bano, I.; Kayastha, R.; Shrestha, A. Comparative Assessment of Runoff And Its Components in Two Catchments of upper Indus Basin by Using A Semi Distributed Glacio-Hydrological Model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W7, 1487–1494. [Google Scholar] [CrossRef] [Green Version]
- Bin Farhan, S.; Zhang, Y.; Aziz, A.; Gao, H.; Ma, Y.; Kazmi, J.; Shahzad, A.; Hussain, I.; Mansha, M.; Umar, M.; et al. Assessing the impacts of climate change on the high altitude snow- and glacier-fed hydrological regimes of Astore and Hunza, the sub-catchments of Upper Indus Basin. J. Water Clim. Chang. 2018, 11, 479–490. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, B.; Liu, S.; Zhang, X.; Hagemann, S. A modified monthly degree-day model for evaluating glacier runoff changes in China. Part I: Model development: Evaluation of changes in glacier runoff in china. Hydrol. Process. 2011, 26, 1686–1696. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Z.; Li, J. Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM. J. Glaciol. 2017, 63, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Pieczonka, T.; Mukherjee, K.; Shea, J. Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere 2017, 11, 531–539. [Google Scholar] [CrossRef]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Hewitt, K. Glacier Change, Concentration, and Elevation Effects in the Karakoram Himalaya, Upper Indus Basin. Mt. Res. Dev. 2011, 31, 188–200. [Google Scholar] [CrossRef]
- Hewitt, K. Glaciers of the Karakoram Himalaya; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Rittger, K.; Armstrong, R. An Automated Approach for Estimating Snowline Altitudes in the Karakoram and Eastern Himalaya From Remote Sensing. Front. Earth Sci. 2019, 7, 220. [Google Scholar] [CrossRef] [Green Version]
- Quincey, D.J.; Copland, L.; Mayer, C.; Bishop, M.; Luckman, A.; Belò, M. Ice velocity and climate variations for Baltoro Glacier, Pakistan. J. Glaciol. 2009, 55, 1061–1071. [Google Scholar] [CrossRef] [Green Version]
- Martinec, J.; Rango, A.; Roberts, R. WinSRM User’ s Manual for Windows; New Mexico State University: Las Cruces, NM, USA, 2008; p. 180. [Google Scholar]
- Muhuri, A.; Gascoin, S.; Menzel, L.; Kostadinov, T.S.; Harpold, A.A.; Sanmiguel-Vallelado, A.; Moreno, J.I.L. Performance Assessment of Optical Satellite-Based Operational Snow Cover Monitoring Algorithms in Forested Landscapes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7159–7178. [Google Scholar] [CrossRef]
- Qiao, H.; Zhang, P.; Li, Z.; Liu, C. A New Geostationary Satellite-Based Snow Cover Recognition Method for FY-4A AGRI. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11372–11385. [Google Scholar] [CrossRef]
- Tsai, Y.-L.S.; Dietz, A.; Oppelt, N.; Kuenzer, C. Remote Sensing of Snow Cover Using Spaceborne SAR: A Review. Remote Sens. 2019, 11, 1456. [Google Scholar] [CrossRef] [Green Version]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Martinec, J.; Rango, A.; Roberts, R. Snowmelt runoff model (SRM) user’s manual. In Geographica Bernensia P 35; Updated Edition for Windows; University of Bern: Bern, Switzerland, 2008. [Google Scholar]
- Asaoka, Y.; Kominami, Y. Incorporation of satellite-derived snow-cover area in spatial snowmelt modeling for a large area: Determination of a gridded degree-day factor. Ann. Glaciol. 2013, 54, 205–213. [Google Scholar] [CrossRef]
- McCutchan, M.H. Comparing Temperature and Humidity on a Mountain Slope and in the Free Air Nearby. Mon. Weather Rev. 1983, 111, 836–845. [Google Scholar] [CrossRef]
- Minder, J.R.; Mote, P.; Lundquist, J.D. Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J. Geophys. Res. 2010, 115, D14122. [Google Scholar] [CrossRef] [Green Version]
- Gouvas, M.A.; Sakellariou, N.; Kambezidis, H.D. Estimation of the monthly and annual mean maximum and mean minimum air temperature values in Greece. Meteorol. Atmos. Phys. 2011, 110, 143–149. [Google Scholar] [CrossRef]
- Kattel, D.B.; Yao, T.; Yang, W.; Gao, Y.; Tian, L. Comparison of temperature lapse rates from the northern to the southern slopes of the Himalayas: Temperature lapse rates on the northern slopes of the Himalayas. Int. J. Climatol. 2015, 35, 4431–4443. [Google Scholar] [CrossRef]
- Mayer, C.; Lambrecht, A.; Belò, M.; Smiraglia, C.; Diolaiuti, G. Glaciological characteristics of the ablation zone of Baltoro glacier, Karakoram, Pakistan. Ann. Glaciol. 2006, 43, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, W.W.; Pellicciotti, F.; Shrestha, A.B. Glaciers as a Proxy to Quantify the Spatial Distribution of Precipitation in the Hunza Basin. Mt. Res. Dev. 2012, 32, 30–38. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.; Konz, M.; Shrestha, A.; Bierkens, M.F.P. Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim. Chang. 2012, 110, 721–736. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, M.; Koike, T.; Hirabayashi, Y.; Xue, Y.; Wang, L.; Rasul, G.; Ahmad, B. Integrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region: Integrated snow and glaciermelt model. J. Geophys. Res. Atmospheres 2015, 120, 4889–4919. [Google Scholar] [CrossRef] [Green Version]
- Fowler, H.J.; Archer, D.R. Conflicting Signals of Climatic Change in the Upper Indus Basin. J. Clim. 2006, 19, 4276–4293. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.; Shulmeister, J.; Davies, T. High basal melting rates within high-precipitation temperate glaciers. J. Glaciol. 2011, 57, 789–795. [Google Scholar] [CrossRef]
- Doyle, S.H.; Hubbard, A.; Van De Wal, R.S.W.; Box, J.E.; van As, D.; Scharrer, K.; Meierbachtol, T.W.; Smeets, P.C.J.P.; Harper, J.T.; Johansson, E.; et al. Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nat. Geosci. 2015, 8, 647–653. [Google Scholar] [CrossRef]
- Fox, A. Rain Is Melting Greenland’s Ice, Even in Winter, Raising Fears about Sea Level Rise. Available online: https://www.science.org/content/article/rain-melting-greenland-s-ice-even-winter-raising-fears-about-sea-level-rise (accessed on 7 March 2019).
- Martinec, J.; Rango, A. Parameter values for snowmelt runoff modelling. J. Hydrol. 1986, 84, 197–219. [Google Scholar] [CrossRef]
- Ali, A.F.; Xiao, C.; Zhang, X.; Adnan, M.; Iqbal, M.; Khan, G. Projection of future streamflow of the Hunza River Basin, Karakoram Range (Pakistan) using HBV hydrological model. J. Mt. Sci. 2018, 15, 2218–2235. [Google Scholar] [CrossRef]
Parameter Name | Values Used in the Study | Remarks | |
---|---|---|---|
Recession Constants (x,y) | x = 1.06 | y = 0.02 | Constant for all zones |
Temperature Lapse Rate (TLR) | 0.60 (winter)–0.65 (summer) °C per 100 m | Variable (monthly and by zone) | |
Degree Day Factor | 0.35 to 0.65 mm °C−1 d−1 | Variable (monthly and by zone) | |
Critical Temperature | 1.5 °C | Constant for all zones | |
Runoff Coefficients (Rain) | 0.5 to 0.7 | Variable (monthly and by zone) | |
Runoff Coefficients (Snow) | 0.5 to 0.7 | Variable (monthly and by zone) | |
Rainfall Contributing Area (RCA) | 0 to 1 | variable (by zone) | |
Time Lag | 18 h | Constant for all zones |
S.No | Parameter Name | NSE | %Dv | Remarks |
---|---|---|---|---|
1 | TLR + 10% of TLR | 0.9116 | 20.073% | SRM is most sensitive to changes in TLR. Increase/decrease in TLR brought the worst results, especially in %Dv. |
TLR − 10% of TLR | 0.7702 | −28.843% | ||
2 | DDF + 10% of DDF | 0.9295 | −10.692% | DDF and Cr were the second most sensitive parameters of SRM, affecting %Dv more than the NSE values |
DDF − 10% of DDF | 0.9643 | 08.454% | ||
3 | Cs + 10% of Cs | 0.9295 | −10.661% | |
Cs − 10% of Cs | 0.9643 | 08.423% | ||
4 | Cr + 10% of Cr | 0.9654 | −1.532% | 10% increase or decrease in Cr, Tcrit, and RCA brought no visible changes in NSE and %Dv |
Cr − 10% of Cr | 0.9665 | −0.701% | ||
5 | Tcrit + 10% of Tcrit | 0.9660 | −1.117% | |
Tcrit − 10% of Tcrit | 0.9660 | −1.117% | ||
6 | RCA = 1 | 0.9648 | −1.729% | |
RCA = 0 | 0.9660 | −1.117% |
Year | Annual Rainfall Runoff Only (106 m3) | Total Annual Runoff—Simulated (106 m3) | % Dv is Volumetric Error (Simulated vs. Gauged) | NSE |
---|---|---|---|---|
1995 | 1064.35 | 11,189.79 | −25.63 | 0.85 |
1996 | 1574.51 | 9735.38 | −18.57 | 0.858 |
1997 | 985.07 | 10,735.26 | −69.5 | −0.71 |
1998 | 1380.78 | 10,431.77 | 0.227 | 0.77 |
1999 | 720 | 9371.54 | …… | …… |
2000 | 1459.16 | 12,350.93 | −37.98 | 0.527 |
2001 | 961.16 | 13,042.46 | 16.47 | 0.90 |
2002 | 1387.14 | 9280.66 | −10.33 | 0.91 |
2003 | 1492.29 | 10,721.81 | −10.08 | 0.91 |
2004 | 1328.66 | 8424.89 | −6.22 | 0.893 |
2005 | 1539.08 | 9628.69 | …… | …… |
2006 | 1584.15 | 8460.04 | …… | …… |
2007 | 980.78 | 10,461.66 | …… | …… |
2008 | 978.18 | 11,242.87 | −1.8 | 0.96 |
2009 | 1389.05 | 8768.82 | 10.7 | 0.84 |
2010 | 1543.14 | 7687.94 | 23.37 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haq, M.; Iqbal, M.J.; Alam, K.; Huang, Z.; Blaschke, T.; Qureshi, S.; Muhammad, S. Assessment of Runoff Components of River Flow in the Karakoram Mountains, Pakistan, during 1995–2010. Remote Sens. 2023, 15, 399. https://doi.org/10.3390/rs15020399
Haq M, Iqbal MJ, Alam K, Huang Z, Blaschke T, Qureshi S, Muhammad S. Assessment of Runoff Components of River Flow in the Karakoram Mountains, Pakistan, during 1995–2010. Remote Sensing. 2023; 15(2):399. https://doi.org/10.3390/rs15020399
Chicago/Turabian StyleHaq, Mateeul, Muhammad Jawed Iqbal, Khan Alam, Zhongwei Huang, Thomas Blaschke, Salman Qureshi, and Sher Muhammad. 2023. "Assessment of Runoff Components of River Flow in the Karakoram Mountains, Pakistan, during 1995–2010" Remote Sensing 15, no. 2: 399. https://doi.org/10.3390/rs15020399
APA StyleHaq, M., Iqbal, M. J., Alam, K., Huang, Z., Blaschke, T., Qureshi, S., & Muhammad, S. (2023). Assessment of Runoff Components of River Flow in the Karakoram Mountains, Pakistan, during 1995–2010. Remote Sensing, 15(2), 399. https://doi.org/10.3390/rs15020399