Long-Term Dynamics of Sandy Vegetation and Land in North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.3. Sandy Desertification Monitoring
2.4. Sandy Classification
2.5. Stability Identification of Sandy Land Distribution Positions
3. Results
3.1. NDVI-Detected Vegetation Activity Dynamics in the NSL over 1982–2018
3.2. FVC-Dectected Desertification Dynamics in the NSL over 1982–2018
3.3. Area Changes in Four Sandy Land Types over 1982–2018
3.3.1. Comparative Verification of the Distribution Area of the Four Types of Sandy Land
3.3.2. Analysis of Spatiotemporal Variation Characteristics of the Four Types of Sandy Land
3.3.3. Stability Analysis of Distribution Positions of Different Types of Sandy Land
4. Discussion
4.1. Advantages and Limitations
4.2. Future Applications
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Scuderi, L.; Paillou, P.; Liu, Z.; Li, H.; Ren, X. Quaternary environmental changes in the drylands of China—A critical review. Quat. Sci. Rev. 2011, 30, 3219–3233. [Google Scholar] [CrossRef]
- D’Odorico, P.; Bhattachan, A.; Davis, K.F.; Ravi, S.; Runyan, C.W. Global desertification: Drivers and feedbacks. Adv. Water Resour. 2013, 51, 326–344. [Google Scholar] [CrossRef]
- Wu, G.-L.; Zhang, M.-Q.; Liu, Y.; López-Vicente, M. Litter cover promotes biocrust decomposition and surface soil functions in sandy ecosystem. Geoderma 2020, 374, 114429. [Google Scholar] [CrossRef]
- Longjun, C. UN Convention to Combat Desertification. In Encyclopedia of Environmental Health (Second Edition); Elsevier: Amsterdam, The Netherlands, 2019; pp. 238–251. ISBN 9780444639523. [Google Scholar] [CrossRef]
- Verón, S.R.; Paruelo, J.M.; Oesterheld, M. Assessing desertification. J. Arid Environ. 2006, 66, 751–763. [Google Scholar] [CrossRef]
- Hernandez-Clemente, R.; Hornero, A. Monitoring and assessment of desertification using remote sensing. Ecosistemas 2021, 30, 2240. [Google Scholar] [CrossRef]
- Sterk, G.; Boardman, J.; Verdoodt, A. Desertification: History, Causes and Options for Its Control. Land Degrad. Dev. 2016, 27, 1783–1787. [Google Scholar] [CrossRef]
- The World Bank. Agriculture and Rural Development Gender Gender in Agriculture Sourcebook; The World Bank: Washington, DC, USA, 2009; Volume 14, ISBN 9780821375877. [Google Scholar]
- Zhao, H.; Zhai, X.; Li, S.; Wang, Y.; Xie, J.; Yan, C. The continuing decrease of sandy desert and sandy land in northern China in the latest 10 years. Ecol. Indic. 2023, 154, 110699. [Google Scholar] [CrossRef]
- Yan, C.Z.; Wang, T.; Song, X.; Xie, J.L. Temporal and spatial changes in the pattern of sandy desert and sandy land in northern China from 1975 to 2010 based on an analysis of Landsat images. Int. J. Remote Sens. 2017, 38, 3551–3563. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Feng, K.; Wang, T.; Liu, S.; Kang, W.; Chen, X.; Guo, Z.; Zhi, Y. Monitoring Desertification Using Machine-Learning Techniques with Multiple Indicators Derived from MODIS Images in Mu Us Sandy Land, China. Remote Sens. 2022, 14, 2663. [Google Scholar] [CrossRef]
- Meng, Q.; Wu, Z.-T.; Du, Z.-Q.; Zhang, H. Variation in fractional vegetation cover and its attribution analysis of different regions of Beijing-Tianjin Sand Source Region, China. Chin. J. Appl. Ecol. 2021, 32, 2895–2905. [Google Scholar] [CrossRef]
- Wang, X.; Song, J.; Xiao, Z.; Wang, J.; Hu, F. Desertification in the Mu Us Sandy Land in China: Response to climate change and human activity from 2000 to 2020. Geogr. Sustain. 2022, 3, 177–189. [Google Scholar] [CrossRef]
- Yu, X.; Lei, J.; Gao, X. An over review of desertification in Xinjiang, Northwest China. J. Arid. Land 2022, 14, 1181–1195. [Google Scholar] [CrossRef]
- Wei, W.; Guo, Z.; Shi, P.; Zhou, L.; Wang, X.; Li, Z.; Pang, S.; Xie, B. Spatiotemporal changes of land desertification sensitivity in northwest China from 2000 to 2017. J. Geogr. Sci. 2021, 31, 46–68. [Google Scholar] [CrossRef]
- You, Y.; Zhou, N.; Wang, Y. Comparative study of desertification control policies and regulations in representative countries of the Belt and Road Initiative. Glob. Ecol. Conserv. 2021, 27, e01577. [Google Scholar] [CrossRef]
- Duan, H.; Wang, T.; Xue, X.; Yan, C. Dynamic monitoring of aeolian desertification based on multiple indicators in Horqin Sandy Land, China. Sci. Total. Environ. 2019, 650, 2374–2388. [Google Scholar] [CrossRef] [PubMed]
- Zerrouki, Y.; Harrou, F.; Zerrouki, N.; Dairi, A.; Sun, Y. Desertification Detection Using an Improved Variational Autoencoder-Based Approach Through ETM-Landsat Satellite Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 202–213. [Google Scholar] [CrossRef]
- Sidiropoulos, P.; Dalezios, N.R.; Loukas, A.; Mylopoulos, N.; Spiliotopoulos, M.; Faraslis, I.N.; Alpanakis, N.; Sakellariou, S. Quantitative Classification of Desertification Severity for Degraded Aquifer Based on Remotely Sensed Drought Assessment. Hydrology 2021, 8, 47. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Li, S.; Lei, J. Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020. Ecol. Indic. 2021, 129, 107908. [Google Scholar] [CrossRef]
- Rivera-Marin, D.; Dash, J.; Ogutu, B. The use of remote sensing for desertification studies: A review. J. Arid. Environ. 2022, 206, 104829. [Google Scholar] [CrossRef]
- Chi, Y.; Liu, D. Mapping the Spatiotemporal Pattern of Sandy Island Ecosystem Health during the Last Decades Based on Remote Sensing. Remote Sens. 2022, 14, 5208. [Google Scholar] [CrossRef]
- Wu, J.; Gao, Z.; Liu, Q.; Li, Z.; Zhong, B. Methods for sandy land detection based on multispectral remote sensing data. Geoderma 2018, 316, 89–99. [Google Scholar] [CrossRef]
- Yi, Y.; Shi, M.; Wu, J.; Yang, N.; Zhang, C.; Yi, X. Spatio-Temporal Patterns and Driving Forces of Desertification in Otindag Sandy Land, Inner Mongolia, China, in Recent 30 Years. Remote Sens. 2023, 15, 279. [Google Scholar] [CrossRef]
- Ji, X.; Yang, J.; Liu, J.; Du, X.; Zhang, W.; Liu, J.; Li, G.; Guo, J. Analysis of Spatial-Temporal Changes and Driving Forces of Desertification in the Mu Us Sandy Land from 1991 to 2021. Sustainability 2023, 15, 10399. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, B.; Zhang, M.; Zeng, H.; Yang, L.; Tian, F.; Ma, Z.; Wu, H. Indices enhance biological soil crust mapping in sandy and desert lands. Remote Sens. Environ. 2022, 278, 113078. [Google Scholar] [CrossRef]
- Wang, X.; Ge, Q.; Geng, X.; Wang, Z.; Gao, L.; Bryan, B.A.; Chen, S.; Su, Y.; Cai, D.; Ye, J.; et al. Unintended consequences of combating desertification in China. Nat. Commun. 2023, 14, 1139. [Google Scholar] [CrossRef] [PubMed]
- DiTraglia, F.J.; Gerlach, J.R. Portfolio selection: An extreme value approach. J. Bank. Finance 2013, 37, 305–323. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Yan, C.; Qi, Y. 1:100,000 Desert (Sand) Distribution Dataset in China. A Big Earth Data Platform for Three Poles. Available online: http://60.245.210.47/en/data/122c9ac2-53ee-4b9a-ae87-1a980b131c9b/?q= (accessed on 25 September 2023).
- Symeonakis, E.; Karathanasis, N.; Koukoulas, S.; Panagopoulos, G. Monitoring Sensitivity to Land Degradation and Desertification with the Environmentally Sensitive Area Index: The Case of Lesvos Island. Land Degrad. Dev. 2016, 27, 1562–1573. [Google Scholar] [CrossRef]
- Karamesouti, M.; Panagos, P.; Kosmas, C. Model-based spatio-temporal analysis of land desertification risk in Greece. Catena 2018, 167, 266–275. [Google Scholar] [CrossRef]
- Xu, D.; You, X.; Xia, C. Assessing the spatial-temporal pattern and evolution of areas sensitive to land desertification in North China. Ecol. Indic. 2019, 97, 150–158. [Google Scholar] [CrossRef]
Class | Thresholds of FVC | ||||
---|---|---|---|---|---|
CD | VH | GIMMS3g | SPOT | MODIS | |
MS | (0.0, 0.13] | (0.0, 0.1] | (0.0, 0.07] | (0.0, 0.08] | (0.0, 0.04] |
SMS | (0.13, 0.2] | (0.1, 0.28] | (0.07, 0.2] | (0.08, 0.21] | (0.04, 0.13] |
SFS | (0.2, 0.39] | (0.28, 0.52] | (0.2, 0.37] | (0.21, 0.42] | (0.13, 0.26] |
FS | (0.39, 1) | (0.52, 1) | (0.37, 1) | (0.42, 1) | (0.26, 1) |
Data | Sandy Land | ||||
---|---|---|---|---|---|
MS | SMS | SFS | FS | Total Area | |
CD | 52.90 (43.09%) | 15.53 (12.64%) | 24.26 (19.76%) | 30.09 (24.51%) | 122.78 |
VH | 40.15 (32.84%) | 31.48 (25.75%) | 25.32 (20.71%) | 25.29 (20.69%) | 122.25 |
GIMMS3g | 39.30 (32.23%) | 28.83 (23.65%) | 21.57 (17.69%) | 32.23 (26.43%) | 121.94 |
SPOT | 39.2 1 (32.01%) | 29.34 (23.96%) | 24.76 (20.22%) | 29.17 (23.82%) | 122.48 |
MODIS | 41.44 (33.67%) | 30.82 (25.04%) | 22.06 (17.92%) | 28.78 (23.38%) | 123.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z. Long-Term Dynamics of Sandy Vegetation and Land in North China. Remote Sens. 2023, 15, 4803. https://doi.org/10.3390/rs15194803
Wang Z. Long-Term Dynamics of Sandy Vegetation and Land in North China. Remote Sensing. 2023; 15(19):4803. https://doi.org/10.3390/rs15194803
Chicago/Turabian StyleWang, Zhaosheng. 2023. "Long-Term Dynamics of Sandy Vegetation and Land in North China" Remote Sensing 15, no. 19: 4803. https://doi.org/10.3390/rs15194803
APA StyleWang, Z. (2023). Long-Term Dynamics of Sandy Vegetation and Land in North China. Remote Sensing, 15(19), 4803. https://doi.org/10.3390/rs15194803