Spatiotemporal Variation of Anticyclonic Eddies in the South China Sea during 1993–2019
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Eddy Detection Method
2.2.1. Topographic Positioning Index Calculation
2.2.2. Eddy Detection Procedure
- (1)
- The closed contours must be circle-like or ellipse-like and pass a shape test with the shape-error ≤55% (circle-like) or 40% (ellipse-like). In this study, the shape-error is defined as the ratio between the areal sum of deviations (the area difference of the closed TPI contour and its fitted circle or ellipse) and the area of that fitted circle (or ellipse).
- (2)
- The number of pixels within the closed contour must be larger than 64 (i.e., area ≥ 400 km2) and less than 10240 (i.e., area ≤ 400,000 km2).
- (3)
- The roundness of the closed contour should be larger than 0.7 and the convexity of the closed contour should be larger than 0.75. Roundness larger than 0.7 would make the closed contour look smoother, and the convexity larger than 0.75 would keep only one eddy in the closed contour [27].
- (4)
- The amplitude (the difference between the mean ADT of the edge and the maximum ADT of the structure within the closed contour) should be larger than 1 cm.
2.2.3. Eddy Tracking Method
2.3. Accuracy and Advantages
2.3.1. Accuracy
2.3.2. Advantages and Limitations
2.4. Statistics of Eddy Characteristics
2.4.1. Eddy Kinetic Energy Calculation
2.4.2. Other Characteristics
3. Results
3.1. Temporal Variations of Anticyclonic Eddy Characteristics
3.1.1. Temporal Variations of Anticyclonic Eddy Number
3.1.2. Temporal Variations of Anticyclonic Eddy Lifetime
3.1.3. Temporal Variations of Anticyclonic Eddy Kinetic Energy
3.1.4. Temporal Variations of Anticyclonic Eddy Amplitude
3.1.5. Temporal Variations of Total Area of Anticyclonic Eddy
3.2. Spatial Distributions of Anticyclonic Eddy Characteristics in the SCS
3.2.1. Spatial Distributions of Anticyclonic Eddy Number and Anticyclonic Eddy Frequency
3.2.2. Spatial Distributions and Variations of Anticyclonic Eddy Lifetime
3.2.3. Spatial Distributions and Variations of AEKE
3.2.4. Spatial Distributions and Variations of Anticyclonic Eddy Amplitude
3.2.5. Spatial Distributions and Variations of Anticyclonic Eddy Radius
4. Discussion
4.1. The Anticyclonic Eddy Number
4.2. Variation of AEKE
4.2.1. Sharp Increase of AEKE in Summer
4.2.2. AEKE Maximum in the Southwest of Taiwan Island
4.3. Temporal Variations of Anticyclonic Eddy Characteristics
4.3.1. General Variation Trends of Annual Mean Anticyclonic Eddy Characteristics in the SCS
4.3.2. Monthly Variations of Anticyclonic Eddy Characteristics
5. Conclusions
- (1)
- The five selected parameters of anticyclonic eddies have similar interannual variation trends, especially during the time from 1993 to 2012. From 1993 to ~2004, these five parameters gradually decreased, and then increased to a maximum in 2012; after 2013, the variation trend is not so clear, though the minimums of most of these parameters appeared in 2015 and the maximums appeared in 2017. As revealed by the correlation coefficient and information flow, the ENSO may be the reason for the transition of the annual variation, and the ENSO had a relatively stronger impact on the variation during 1999–2008.
- (2)
- The wind may be a key factor that influences the anticyclonic eddies in the SCS. For the monthly variation, as the southwest monsoon prevails, the percentage of area with negative WSC occupies more than 50% of the SCS, resulting in active eddy activity in the boreal summer year (from March to September). For the spatial distribution, the combining effects of wind stress curl and western boundary currents (e.g., Vietnam offshore current and Kuroshio) may be the main mechanisms of the large eddy frequency and large AEKE in the east of Vietnam and southwest of Taiwan Island.
- (3)
- Anticyclonic eddies are more active in the area deeper than 2000 m, with higher eddy amplitude, AEKE and other characteristics. In spring, summer and autumn, anticyclonic eddies are active in the east of Vietnam (Box B1 in Figure 12a), the southwest of Taiwan Island (Box B2 in Figure 12a) and the areas near the 2000 m isobaths. In the winter, the west of Luzon Island is the area where the anticyclonic eddies are relatively active, in terms of relatively higher eddy frequency, AEKE and anticyclonic eddy amplitude.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, J.Y.; Kawamura, H.; Hong, H.S.; Qi, Y.Q. A review on the currents in the South China Sea: Seasonal circulation, South China Sea warm current and Kuroshio intrusion. J. Oceanogr. 2000, 56, 607–624. [Google Scholar] [CrossRef]
- Zheng, Q.A.; Xie, L.L.; Zheng, Z.W.; Hu, J.Y. Progress in research of mesoscale eddies in the South China Sea. Adv. Mar. Sci. 2017, 35, 131–158. [Google Scholar] [CrossRef]
- Wang, G.H.; Su, J.L.; Chu, P.C. Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett. 2003, 30, 2121. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Kaneko, A.; Su, J.L. Recent progress in studies of the South China Sea circulation. J. Oceanogr. 2008, 64, 753–762. [Google Scholar] [CrossRef]
- Chen, G.X.; Hou, Y.J.; Chu, X.Q. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res. Oceans 2011, 116, C06018. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M.; de Szoeke, R.A. Global observations of large oceanic eddies. Geophys. Res. Lett. 2007, 34, 87–101. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Mason, E.; Pascual, A.; McWilliams, J.C. A new sea surface height–based code for oceanic mesoscale eddy tracking. J. Atmos. Ocean. Technol. 2014, 31, 1181–1188. [Google Scholar] [CrossRef]
- Faghmous, J.H.; Frenger, I.; Yao, Y.S.; Warmka, R.; Lindell, A.; Kumar, V. A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data 2015, 2, 150028. [Google Scholar] [CrossRef]
- Nencioli, F.; Dong, C.M.; Dickey, T.; Washburn, L.; McWilliams, J.C. A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Ocean. Technol. 2010, 27, 564–579. [Google Scholar] [CrossRef]
- Sadarjoen, I.A.; Post, F.H. Detection, quantification, and tracking of vortices using streamline geometry. Comput. Graph. 2000, 24, 333–341. [Google Scholar] [CrossRef]
- Xu, G.J.; Cheng, C.; Yang, W.X.; Xie, W.H.; Kong, L.M.; Hang, R.L.; Ma, F.; Dong, C.M.; Yang, J.S. Oceanic eddy identification using an AI scheme. Remote Sens. 2019, 11, 1349. [Google Scholar] [CrossRef]
- Lin, P.F.; Wang, F.; Chen, Y.L.; Tang, X.H. Temporal and spatial variation characteristics on eddies in the South China Sea I. Statistical analyses. Acta Oceanol. Sin. 2007, 29, 14–22. [Google Scholar] [CrossRef]
- Xiu, P.; Chai, F.; Shi, L.; Xue, H.J.; Chao, Y. A census of eddy activities in the South China Sea during 1993–2007. J. Geophys. Res. Oceans 2010, 115, C03012. [Google Scholar] [CrossRef]
- Du, Y.Y.; Yi, J.W.; Wu, D.; He, Z.G.; Wang, D.X.; Liang, F.Y. Mesoscale oceanic eddies in the South China Sea from 1992 to 2012: Evolution processes and statistical analysis. Acta Oceanol. Sin. 2014, 33, 36–47. [Google Scholar] [CrossRef]
- He, Q.Y.; Zhan, H.G.; Cai, S.Q.; He, Y.H.; Huang, G.L.; Zhan, W.K. A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports. J. Geophys. Res. Oceans 2018, 123, 4906–4929. [Google Scholar] [CrossRef]
- McGillicuddy, D.J., Jr.; Robinson, A.R. Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res. I Oceanogr. Res. Pap. 1997, 44, 1427–1450. [Google Scholar] [CrossRef]
- Vaillancourt, R.D.; Marra, J.; Seki, M.P.; Parsons, M.L.; Bidigare, R.R. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean. Deep-Sea Res. I Oceanogr. Res. Pap. 2003, 50, 829–847. [Google Scholar] [CrossRef]
- Wang, L.; Huang, B.Q.; Laws, E.A.; Zhou, K.B.; Liu, X.; Xie, Y.Y.; Dai, M.H. Anticyclonic eddy edge effects on phytoplankton communities and particle export in the northern South China Sea. J. Geophys. Res. Oceans 2018, 123, 7632–7650. [Google Scholar] [CrossRef]
- Jing, Z.Y.; Qi, Y.Q.; Fox-Kemper, B.; Du, Y.; Lian, S.M. Seasonal thermal fronts on the northern South China Sea shelf: Satellite measurements and three repeated field surveys. J. Geophys. Res. Oceans 2016, 121, 1914–1930. [Google Scholar] [CrossRef]
- Weiss, A.D. Topographic Position and Landforms Analysis. In Proceedings of the ESRI International User Conference, San Diego, CA, USA, 9–13 July 2001. [Google Scholar]
- Huang, Z.; Feng, M. Remotely sensed spatial and temporal variability of the Leeuwin Current using MODIS data. Remote Sens. Environ. 2015, 166, 214–232. [Google Scholar] [CrossRef]
- Xie, S.Y.; Huang, Z.; Wang, X.H.; Leplastrier, A. Quantitative Mapping of the East Australian Current Encroachment Using Time Series Himawari-8 Sea Surface Temperature Data. J. Geophys. Res. Oceans 2020, 125, e2019JC015647. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, X.H. Mapping the spatial and temporal variability of the upwelling systems of the Australian south-eastern coast using 14-year of MODIS data. Remote Sens. Environ. 2019, 227, 90–109. [Google Scholar] [CrossRef]
- Huang, Z.; Hu, J.Y.; Shi, W.A. Mapping the coastal upwelling east of Taiwan using geostationary satellite data. Remote Sens. 2021, 13, 170. [Google Scholar] [CrossRef]
- Shi, W.A.; Huang, Z.; Hu, J.Y. 2021. Using TPI to map spatial and temporal variations of significant coastal upwelling in the Northern South China Sea. Remote Sens. 2021, 13, 1065. [Google Scholar] [CrossRef]
- Faghmous, J.H.; Uluyol, M.; Styles, L.; Le, M.; Mithal, V.; Boriah, S.; Kumar, V. Multiple hypothesis object tracking for unsupervised self-learning: An ocean eddy tracking application. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, Bellevue, WA, USA, 14–18 July 2013. [Google Scholar]
- Pegliasco, C.; Delepoulle, A.; Mason, E.; Morrow, R.; Faugère, Y.; Dibarboure, G. META3.1exp: A new Global Mesoscale Eddy Trajectories Atlas derived from altimetry. Earth Syst. Sci. Data Discuss. 2021, 14, 1087–1107. [Google Scholar] [CrossRef]
- Chen, G.; Yang, J.; Han, G.Y. Eddy morphology: Egg-like shape, overall spinning, and oceanographic implications. Remote Sens. Environ. 2021, 257, 112348. [Google Scholar] [CrossRef]
- Li, Q.Y.; Sun, L.; Lin, S.F. GEM: A dynamic tracking model for mesoscale eddies in the ocean. Ocean Sci. 2016, 12, 1249–1267. [Google Scholar] [CrossRef]
- Keppler, L.; Cravatte, S.; Chaigneau, A.; Pegliasco, C.; Gourdeau, L.; Singh, A. Observed characteristics and vertical structure of mesoscale eddies in the southwest tropical Pacific. J. Geophys. Res. Oceans 2018, 123, 2731–2756. [Google Scholar] [CrossRef]
- Laxenaire, R.; Speich, S.; Blanke, B.; Chaigneau, A.; Pegliasco, C.; Stegner, A. Anticyclonic eddies connecting the western boundaries of Indian and Atlantic Oceans. J. Geophys. Res. Oceans 2018, 123, 7651–7677. [Google Scholar] [CrossRef]
- Pegliasco, C.; Chaigneau, A.; Morrow, R.; Dumas, F. Detection and tracking of mesoscale eddies in the Mediterranean Sea: A comparison between the Sea Level Anomaly and the Absolute Dynamic Topography fields. Adv. Space Res. 2021, 68, 401–419. [Google Scholar] [CrossRef]
- Dong, C.M.; Liu, L.X.; Nencioli, F.; Bethel, B.J.; Liu, Y.; Xu, G.J.; Ma, J.; Ji, J.L.; Sun, W.J.; Shan, H.X.; et al. The near-global ocean mesoscale eddy atmospheric-oceanic-biological interaction observational dataset. Sci. Data 2022, 9, 436. [Google Scholar] [CrossRef]
- Qi, Y.F.; Mao, H.B.; Du, Y.; Li, X.P.; Yang, Z.; Xu, K.; Yang, Y.; Zhong, W.X.; Zhong, F.C.; Yu, L.H.; et al. A lens-shaped, cold-core anticyclonic surface eddy in the northern South China Sea. Front. Mar. Sci. 2022, 9, 976273. [Google Scholar] [CrossRef]
- Sun, W.J.; Liu, Y.; Chen, G.X.; Tan, W.; Lin, X.Y.; Guan, Y.P.; Dong, C.M. Three-dimensional properties of mesoscale cyclonic warm-core and anticyclonic cold-core eddies in the South China Sea. Acta Oceanol. Sin. 2021, 40, 17–29. [Google Scholar] [CrossRef]
- Cheng, X.H.; Qi, Y.Q. Variations of eddy kinetic energy in the South China Sea. J. Oceanogr. 2010, 66, 85–94. [Google Scholar] [CrossRef]
- Fang, W.D.; Guo, Z.X.; Huant, Y.T. Observational study of the circulation in the southern South China Sea. Chin. Sci. Bull. 1998, 43, 898–905. [Google Scholar] [CrossRef]
- Cai, S.Q.; Su, J.L.; Gan, Z.J.; Liu, Q.Y. The numerical study of the South China Sea upper circulation characteristics and its dynamic mechanism, in winter. Cont. Shelf Res. 2002, 22, 2247–2264. [Google Scholar] [CrossRef]
- Fang, G.H.; Wang, G.; Fang, Y.; Fang, W.D. A review on the South China Sea western boundary current. Acta Oceanol. Sin. 2012, 31, 1–10. [Google Scholar] [CrossRef]
- Lin, H.Y.; Hu, J.Y.; Zheng, Q.A. Satellite altimeter data analysis of the South China Sea and the northwest Pacific Ocean: Statistical features of oceanic mesoscale eddies. J. Oceanogr. Taiwan Strait. 2012, 31, 105–113. [Google Scholar] [CrossRef]
- Feng, B.X.; Liu, H.L.; Lin, P.F.; Wang, Q. Meso-scale eddy in the South China Sea simulated by an eddy-resolving ocean model. Acta Oceanol. Sin. 2017, 36, 9–25. [Google Scholar] [CrossRef]
- Chen, G.X.; Hou, Y.J.; Chu, X.Q.; Qi, P.; Hu, P. The variability of eddy kinetic energy in the South China Sea deduced from satellite altimeter data. Chin. J. Oceanol. Limnol. 2009, 27, 943–954. [Google Scholar] [CrossRef]
- Xie, J.; Counillon, F.; Zhu, J.; Bertino, L. An eddy resolving tidal-driven model of the South China Sea assimilating along-track SLA data using the EnOI. Ocean Sci. 2011, 7, 609–627. [Google Scholar] [CrossRef]
- Wang, H.; Wang, D.K.; Liu, G.M.; Wu, H.D.; Li, M. Seasonal variation of eddy kinetic energy in the South China Sea. Acta Oceanol. Sin. 2012, 31, 1–15. [Google Scholar] [CrossRef]
- Batteen, M.L.; Rutherford, M.J.; Bayler, E.J. A numerical study of wind- and thermal-forcing effects on the ocean circulation off Western Australia. J. Phys. Oceanogr. 1992, 22, 1406–1433. [Google Scholar] [CrossRef]
- Yoshida, S.; Qiu, B.; Hacker, P. Wind-generated eddy characteristics in the lee of the island of Hawaii. J. Geophys. Res. Oceans 2010, 115, C03019. [Google Scholar] [CrossRef]
- Wang, G.H.; Chen, D.K.; Su, J.L. Generation and life cycle of the dipole in the South China Sea summer circulation. J. Geophys. Res. Oceans 2006, 111, C06002. [Google Scholar] [CrossRef]
- Stammer, D.; Wunsch, C. Temporal changes in eddy energy of the oceans. Deep Sea Res. Part II Top. Stud. Oceanogr. 1999, 46, 77–108. [Google Scholar] [CrossRef]
- Stammer, D.; Böning, C.; Dieterich, C. The role of variable wind forcing in generating eddy energy in the North Atlantic. Prog. Oceanogr. 2001, 48, 289–311. [Google Scholar] [CrossRef]
- Cai, S.Q.; Long, X.M.; Wang, S.G. A model study of the summer Southeast Vietnam Offshore Current in the southern South China Sea. Cont. Shelf Res. 2007, 27, 2357–2372. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Hu, J.Y.; Chen, Z.Z.; Zhu, J.; Yang, L.Q.; Chen, X.R.; Wu, X.W. A strong Kuroshio intrusion into the South China Sea and its accompanying cold-core anticyclonic eddy in winter 2020–2021. Remote Sens. 2021, 13, 2645. [Google Scholar] [CrossRef]
- Liang, X.S. Unraveling the cause-effect relation between time series. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2014, 90, 052150. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.J.; Chai, F.; Pettigrew, N.; Xu, D.Y.; Shi, M.C.; Xu, J.P. Kuroshio intrusion and the circulation in the South China Sea. J. Geophys. Res. Oceans 2004, 109, C02017. [Google Scholar] [CrossRef]
- Nan, F.; Xue, H.J.; Yu, F. Kuroshio intrusion into the South China Sea: A review. Prog. Oceanogr. 2015, 137, 314–333. [Google Scholar] [CrossRef]
- Shaw, P.T. The seasonal variation of the intrusion of the Philippine Sea water into the South China Sea. J. Geophys. Res. Oceans 1991, 96, 821–827. [Google Scholar] [CrossRef]
- Wu, C.R.; Hsin, Y.C. The forcing mechanism leading to the Kuroshio intrusion into the South China Sea. J. Geophys. Res. Oceans 2012, 117, C07015. [Google Scholar] [CrossRef]
- Jia, Y.L.; Chassignet, E.P. Seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon Strait. J. Oceanogr. 2011, 67, 601–611. [Google Scholar] [CrossRef]
- Yin, Y.Q.; Lin, X.P.; Li, Y.Z.; Zeng, X.M. Seasonal variability of Kuroshio intrusion northeast of Taiwan Island as revealed by self-organizing map. Chin. J. Oceanol. Limnol. 2014, 32, 1435–1442. [Google Scholar] [CrossRef]
- Zhong, Y.S.; Zhou, M.; Waniek, J.J.; Zhou, L.; Zhang, Z.R. Seasonal variation of the surface Kuroshio intrusion into the South China Sea evidenced by satellite geostrophic streamlines. J. Phys. Oceanogr. 2021, 51, 2705–2718. [Google Scholar] [CrossRef]
- Huang, Z.D.; Liu, H.L.; Hu, J.Y.; Lin, P.F. A double-index method to classify Kuroshio intrusion paths in the Luzon Strait. Adv. Atmos. Sci. 2016, 33, 715–729. [Google Scholar] [CrossRef]
- Tuo, P.F.; Yu, J.Y.; Hu, J.Y. The changing influences of ENSO and the Pacific meridional mode on mesoscale eddies in the South China Sea. J. Clim. 2019, 32, 685–700. [Google Scholar] [CrossRef]
- An, M.X.; Liu, J.; Liu, J.S.; Sun, W.J.; Yang, J.S.; Tan, W.; Liu, Y.; Sian, K.; Ji, J.L.; Dong, C.M. Comparative analysis of four types of mesoscale eddies in the North Pacific subtropical countercurrent region—Part I spatial characteristics. Front. Mar. Sci. 2022, 9, 1004300. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zheng, Q.A.; Li, X.F. Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning. Geophys. Res. Lett. 2021, 48, e2021GL094772. [Google Scholar] [CrossRef]
Spring | Summer | Autumn | Winter | |
---|---|---|---|---|
Values of information flow from NWSC to AEKE in Box E2 | 0.0002 | 0.0013 | −0.0025 | −0.0023 |
Values of information flow from KWI to AEKE in Box E1 | 0.0274 | −0.0565 | 0.0237 | 0.2069 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Hu, J. Spatiotemporal Variation of Anticyclonic Eddies in the South China Sea during 1993–2019. Remote Sens. 2023, 15, 4720. https://doi.org/10.3390/rs15194720
Shi W, Hu J. Spatiotemporal Variation of Anticyclonic Eddies in the South China Sea during 1993–2019. Remote Sensing. 2023; 15(19):4720. https://doi.org/10.3390/rs15194720
Chicago/Turabian StyleShi, Weian, and Jianyu Hu. 2023. "Spatiotemporal Variation of Anticyclonic Eddies in the South China Sea during 1993–2019" Remote Sensing 15, no. 19: 4720. https://doi.org/10.3390/rs15194720
APA StyleShi, W., & Hu, J. (2023). Spatiotemporal Variation of Anticyclonic Eddies in the South China Sea during 1993–2019. Remote Sensing, 15(19), 4720. https://doi.org/10.3390/rs15194720