Integrating Agricultural and Ecotourism Development: A Crop Cultivation Suitability Framework Considering Tourists’ Landscape Preferences in Qinghai Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Questionnaire Survey of Tourists’ Landscape Preferences
2.3. Environmental Suitability Assessment for Crop Cultivation
Factor Type | Factor Name | Number | Calculation Method | Data Resource |
---|---|---|---|---|
Climate factor | Precipitation (mm) of wettest month | 1 | Average July precipitation from 1988 to 2017. | The 1 km monthly precipitation dataset for China (1901–2017) from the National Tibetan Plateau Data Center [48,49]. |
Monthly precipitation (mm) from April to September (growing season) | 5 | Average monthly precipitation for April, May, June, August, and September from 1988 to 2017. | ||
Total precipitation (mm) from April to September (growing season) | 1 | Sum of average monthly precipitation for April, May, June, July, August, and September from 1988 to 2017. | ||
Temperature of warmest month (°C) | 1 | Average July temperature from 1988 to 2017. | The 1 km monthly mean temperature dataset for China (1901–2017) from the National Tibetan Plateau Data Center [49,50]. | |
Monthly temperature (°C) from April to September (growing season) | 5 | Average monthly temperatures for April, May, June, August, and September from 1988 to 2017. | ||
Temperature (mm) from April to September (growing season) | 1 | Average temperatures for April, May, June, July, August, and September from 1988 to 2017. | ||
≥0 °C accumulated temperature (°C·d) | 1 | The sum of the daily average temperatures above 10 degrees Celsius (≥0 °C) for each day of the year. | Meteorological background datasets for China from the Resource and Environment Science and Data Center (https://www.resdc.cn/ (accessed on 15 October 2021)). | |
≥10 °C accumulated temperature (°C·d) | 1 | The sum of the daily average temperatures above 0 degrees Celsius (≥0 °C) for each day of the year. | ||
Topography factor | Elevation (m) | 1 | —— | Google Earth Engine platform (original data source is the USGS). |
Aspect (°) | 1 | —— | ||
Slope (°) | 1 | —— | ||
Soil factor | Soil pH | 1 | —— | HWSD, Harmonized World Soil Database (https://www.fao.org/soils-portal (accessed on 15 October 2021)). |
Available soil water capacity class | 1 | —— | ||
Soil bulk density (g/cm3) | 1 | —— |
2.4. Landscape Visibility Assessment
2.5. Comprehensive Suitability Zoning Methodology
3. Results
3.1. Validation of Crop Environmental Suitability Assessment
3.2. Environmental Suitability of Rapeseed Growth
3.3. Landscape Accessibility Characterized by Visibility
3.4. Comprehensive Suitability for Integrating Agricultural and Ecotourism Development
4. Discussion
4.1. Crop Cultivation Planning for Integrating Agricultural and Ecotourism Development
4.2. Landscape Preferences of Tourists and Their Contribution to Farmland Accessibility Analysis
4.3. Recommendations for Agricultural and Ecotourism Development Considering Tourists’ Landscape Preferences
4.4. Limitations and Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 8 February 2023).
- Chrysafi, A.; Virkki, V.; Jalava, M.; Sandström, V.; Piipponen, J.; Porkka, M.; Lade, S.J.; La Mere, K.; Wang-Erlandsson, L.; Scherer, L. Quantifying Earth system interactions for sustainable food production via expert elicitation. Nat. Sustain. 2022, 5, 830–842. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Beckmann, M.; Dunnett, S.; Graham, L.; Holland, R.A.; Meyfroidt, P.; Seppelt, R.; Song, X.-P.; Spake, R.; Václavík, T. Identifying agricultural frontiers for modeling global cropland expansion. One Earth 2020, 3, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.A.; Domingo, N.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global food system emissions could preclude achieving the 1.5 and 2 C climate change targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Hu, Y.N.; Dong, J.; Mao, Q.; Liu, Y.; Du, Y.; Wu, J.; Wang, Y. Linking spatial differentiation with sustainability management: Academic contributions and research directions of physical geography in China. Prog. Phys. Geogr. Earth Environ. 2020, 44, 14–30. [Google Scholar] [CrossRef]
- Delabre, I.; Rodriguez, L.O.; Smallwood, J.M.; Scharlemann, J.P.; Alcamo, J.; Antonarakis, A.S.; Rowhani, P.; Hazell, R.J.; Aksnes, D.L.; Balvanera, P. Actions on sustainable food production and consumption for the post-2020 global biodiversity framework. Sci. Adv. 2021, 7, eabc8259. [Google Scholar] [CrossRef]
- Xie, W.; Zhu, A.; Ali, T.; Zhang, Z.; Chen, X.; Wu, F.; Huang, J.; Davis, K.F. Crop switching can enhance environmental sustainability and farmer incomes in China. Nature 2023, 616, 300–305. [Google Scholar] [CrossRef]
- Das, M.; Chatterjee, B. Ecotourism: A panacea or a predicament? Tour. Manag. Perspect. 2015, 14, 3–16. [Google Scholar] [CrossRef]
- Weaver, D.B.; Lawton, L.J. Twenty years on: The state of contemporary ecotourism research. Tour. Manag. 2007, 28, 1168–1179. [Google Scholar] [CrossRef]
- Agnoletti, M. Rural landscape, nature conservation and culture: Some notes on research trends and management approaches from a (southern) European perspective. Landsc. Urban Plan. 2014, 126, 66–73. [Google Scholar] [CrossRef]
- Xie, M.; Li, M.; Li, Z.; Xu, M.; Chen, Y.; Wo, R.; Tong, D. Whom do urban agriculture parks provide landscape services to and how? A case study of Beijing, China. Sustainability 2020, 12, 4967. [Google Scholar] [CrossRef]
- MEA. Ecosystems and Human Well-Being: Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Zhan, J.; Chu, X.; Li, Z.; Jia, S.; Wang, G. Incorporating ecosystem services into agricultural management based on land use/cer change in Northeastern China. Technol. Forecast. Soc. 2019, 144, 401–411. [Google Scholar] [CrossRef]
- van Berkel, D.B.; Verburg, P.H. Spatial quantification and valuation of cultural ecosystem services in an agricultural landscape. Ecol. Indic. 2014, 37, 163–174. [Google Scholar] [CrossRef]
- Buijs, A.E.; Pedroli, B.; Luginbühl, Y. From Hiking Through Farmland to Farming in a Leisure Landscape: Changing Social Perceptions of the European Landscape. Landsc. Ecol. 2006, 21, 375–389. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Paydar, M.M.; Triki, C. Implementing sustainable ecotourism in Lafour region, Iran: Applying a clustering method based on SWOT analysis. J. Clean. Prod. 2021, 329, 129716. [Google Scholar] [CrossRef]
- Lun, Y.; Jing, S.; Moucheng, L.; Qingwen, M. Agricultural production under rural tourism on the Qinghai-Tibet Plateau: From the perspective of smallholder farmers. Land Use Policy 2021, 103, 105329. [Google Scholar] [CrossRef]
- Mileti, F.A.; Miranda, P.; Langella, G.; Pacciarelli, M.; De Michele, C.; Manna, P.; Bancheri, M.; Terribile, F. A geospatial decision support system for ecotourism: A case study in the Campania region of Italy. Land Use Policy 2022, 118, 106131. [Google Scholar] [CrossRef]
- Shumakova, O.V.; Blinov, O.A.; Rabkanova, M.A. Cluster as an effective way to organize rural tourism in Siberia (Russia). Actual Probl. Econ. 2016, 1, 168–172. [Google Scholar]
- da Silva, G.J.; Berg, E.C.; Calijuri, M.L.; dos Santos, V.J.; Lorentz, J.F.; Carmo Alves, S.D. Aptitude of areas planned for sugarcane cultivation expansion in the state of São Paulo, Brazil: A study based on climate change effects. Agric. Ecosyst. Environ. 2021, 305, 107164. [Google Scholar] [CrossRef]
- Jaroenkietkajorn, U.; Gheewala, S.H. Land suitability assessment for oil palm plantations in Thailand. Sustain. Prod. Consump. 2021, 28, 1104–1113. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, C.; Shi, X.; Bo, X.; Li, S.; Shang, M.; Chen, F.; Chu, Q. Modeling climatically suitable areas for soybean and their shifts across China. Agric. Syst. 2021, 192, 103205. [Google Scholar] [CrossRef]
- Singh, K.; McClean, C.J.; Büker, P.; Hartley, S.E.; Hill, J.K. Mapping regional risks from climate change for rainfed rice cultivation in India. Agric. Syst. 2017, 156, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wang, C.; Zhao, J.; Wang, K.; Chen, F.; Chu, Q. Increasing inconsistency between climate suitability and production of cotton (Gossypium hirsutum L.) in China. Ind. Crop. Prod. 2021, 171, 113959. [Google Scholar] [CrossRef]
- Maleki, F.; Kazemi, H.; Siahmarguee, A.; Kamkar, B. Development of a land use suitability model for saffron (Crocus sativus L.) cultivation by multi-criteria evaluation and spatial analysis. Ecol. Eng. 2017, 106, 140–153. [Google Scholar] [CrossRef]
- Tercan, E.; Dereli, M.A. Development of a land suitability model for citrus cultivation using GIS and multi-criteria assessment techniques in Antalya province of Turkey. Ecol. Indic. 2020, 117, 106549. [Google Scholar] [CrossRef]
- Ungaro, F.; Häfner, K.; Zasada, I.; Piorr, A. Mapping cultural ecosystem services: Connecting visual landscape quality to cost estimations for enhanced services provision. Land Use Policy 2016, 54, 399–412. [Google Scholar] [CrossRef]
- Schirpke, U.; Meisch, C.; Marsoner, T.; Tappeiner, U. Revealing spatial and temporal patterns of outdoor recreation in the European Alps and their surroundings. Ecosyst. Serv. 2018, 31, 336–350. [Google Scholar] [CrossRef]
- Inglis, N.C.; Vukomanovic, J. Climate change disproportionately affects visual quality of cultural ecosystem services in a mountain region. Ecosyst. Serv. 2020, 45, 101190. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Q.; Xu, P.; Wang, Y. Incorporating Rarity and Accessibility Factors into the Cultural Ecosystem Services Assessment in Mountainous Areas: A Case Study in the Upper Reaches of the Minjiang River. Sustainability 2019, 11, 2203. [Google Scholar] [CrossRef]
- Fallon, L.D.; Kriwoken, L.K. Community involvement in tourism infrastructure—The case of the Strahan Visitor Centre, Tasmania. Tour. Manag. 2003, 24, 289–308. [Google Scholar] [CrossRef]
- Yang, G.; Yu, Z.; Zhang, J.; Søderkvist Kristensen, L. From preference to landscape sustainability: A bibliometric review of landscape preference research from 1968 to 2019. Ecosyst. Health Sust. 2021, 7, 1948355. [Google Scholar] [CrossRef]
- Asur, F.; Deniz Sevimli, S.; Yazici, K. Visual preferences assessment of landscape character types using data mining methods (Apriori algorithm): The case of Altınsaç and Inkoy (Van/Turkey). J. Agric. Sci. Technol. 2020, 22, 247–260. [Google Scholar]
- Yazici, K.; Asur, F. Assessment of landscape types and aesthetic qualities by visual preferences (Tokat, Turkey). J. Environ. Prot. Ecol. 2021, 22, 340–349. [Google Scholar]
- Malça, J.; Coelho, A.; Freire, F.J. Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations. Appl. Energy 2014, 114, 837–844. [Google Scholar] [CrossRef]
- Wang, H.; Zhan, J.; Wang, C.; Liu, W.; Yang, Z.; Liu, H.; Bai, C. Greening or browning? The macro variation and drivers of different vegetation types on the Qinghai-Tibetan Plateau from 2000 to 2021. Front. Plant Sci. 2022, 13, 1045290. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Jiang, L.; Mason, A.S.; Xiao, M.; Zhu, L.; Li, L.; Zhou, Q.; Shen, C.; Huang, C. Research progress and strategies for multifunctional rapeseed: A case study of China. J. Integr. Agric. 2016, 15, 1673–1684. [Google Scholar] [CrossRef]
- Cao, H.; Li, F.; Zhao, K.; Qian, C.; Xiang, T. From value perception to behavioural intention: Study of Chinese smallholders’ pro-environmental agricultural practices. J. Environ. Manag. 2022, 315, 115179. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). Available online: https://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 13 September 2022).
- Wu, B.; Zhou, L.; Qi, S.; Jin, M.; Hu, J.; Lu, J. Effect of habitat factors on the understory plant diversity of Platycladus orientalis plantations in Beijing mountainous areas based on MaxEnt model. Ecol. Indic. 2021, 129, 107917. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Peterson, A.T.; Nakazawa, Y. Environmental data sets matter in ecological niche modelling: An example with Solenopsis invicta and Solenopsis richteri. Glob. Ecol. Biogeogr. 2008, 17, 135–144. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Peer J. 2017, 5, e4095. [Google Scholar] [CrossRef] [PubMed]
- Hanley, J.A.; Mcneil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 173, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Swets, J. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Qiu, Y.; Chen, X.; Chen, J.; Yang, W.; Liu, Y.; Peng, L.; Shen, M.; Cao, X. Mapping rapeseed in China during 2017–2021 using Sentinel data: An automated approach integrating rule-based sample generation and a one-class classifier (RSG-OC). GIScience Remote Sens. 2023, 60, 2163576. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Precipitation Dataset for China (1901–2017). Available online: https://data.tpdc.ac.cn/ (accessed on 1 June 2022).
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Mean Temperature Dataset for China (1901–2017). Available online: https://data.tpdc.ac.cn/ (accessed on 1 June 2022).
- Alphan, H.; Aşur, F. indicators, s. Geospatial analysis of lake scenery as an indicator for the environment: The City of Van (Turkey) and its surroundings. Environ. Sustain. Indic. 2021, 9, 100091. [Google Scholar] [CrossRef]
- Nutsford, D.; Reitsma, F.; Pearson, A.L.; Kingham, S. Personalising the viewshed: Visibility analysis from the human perspective. Appl. Geogr. 2015, 62, 1–7. [Google Scholar] [CrossRef]
- Inglis, N.C.; Vukomanovic, J.; Costanza, J.; Singh, K.K.; Planning, U. From viewsheds to viewscapes: Trends in landscape visibility and visual quality research. Landsc. Urban Plan. 2022, 224, 104424. [Google Scholar] [CrossRef]
- Scarfò, F.; Mercurio, R.; del Peso, C. Assessing visual impacts of forest operations on a landscape in the Serre Regional Park of southern Italy. Landsc. Ecol. Eng. 2011, 9, 1–10. [Google Scholar] [CrossRef]
- Qinghai Provincial Bureau of Statistics. List of Class a Scenic Spots in Qinghai Province (2008–2019). Available online: https://data.tpdc.ac.cn/ (accessed on 5 September 2022).
- Lin, J.; Li, H.; Zeng, Y.; He, X.; Zhuang, Y.; Liang, Y.; Lu, S. Estimating potential illegal land development in conservation areas based on a presence-only model. J. Environ. Manag. 2022, 321, 115994. [Google Scholar] [CrossRef]
- Manna, P.; Bonfante, A.; Colandrea, M.; Di Vaio, C.; Langella, G.; Marotta, L.; Mileti, F.A.; Minieri, L.; Terribile, F.; Vingiani, S.; et al. A geospatial decision support system to assist olive growing at the landscape scale. Comput. Electron. Agric. 2020, 168, 105143. [Google Scholar] [CrossRef]
- Kremen, C.K.; Williams, N.M.; Thorp, R.W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl Acad. Sci. USA 2002, 99, 16812–16816. [Google Scholar] [CrossRef] [PubMed]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Rollin, O.; Pérez-Méndez, N.; Bretagnolle, V.; Henry, M. Preserving habitat quality at local and landscape scales increases wild bee diversity in intensive farming systems. Agric. Ecosyst. Environ. 2019, 275, 73–80. [Google Scholar] [CrossRef]
- Rodríguez-Entrena, M.; Colombo, S.; Arriaza, M. The landscape of olive groves as a driver of the rural economy. Land Use Policy 2017, 65, 164–175. [Google Scholar] [CrossRef]
- Yin, N.W.; Wang, S.X.; Jia, L.D.; Zhu, M.C.; Yang, J.; Zhou, B.J.; Yin, J.M.; Lu, K.; Wang, R.; Li, J.N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC-HESI-MS/MS. J. Agric. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, S.; Yuan, G.; Ma, X.; Heng, S.; Yi, B.; Ma, C.; Shen, J.; Tu, J.; Fu, T.; et al. Gene silencing of BnaA09.ZEP and BnaC09.ZEP confers orange color in Brassica napus flowers. Plant J. 2020, 104, 932–949. [Google Scholar] [CrossRef]
- Qinghai Provincial Bureau of Statistics. Statistic Bulletin on the Development of Society and Economy in Qinghai (2019). Available online: http://tjj.qinghai.gov.cn (accessed on 5 September 2022).
- Qinghai Culture and Tourism Department. Qinghai Tourism Development Plan for the 14th Five-Year Plan. Available online: http://whlyt.qinghai.gov.cn/zwgk/gknr/ghjh/14904.html (accessed on 13 September 2022).
- Van Zanten, B.T.; Verburg, P.H.; Koetse, M.J.; van Beukering, P. Preferences for European agrarian landscapes: A meta-analysis of case studies. Landsc. Urban Plan. 2014, 132, 89–101. [Google Scholar] [CrossRef]
- Cai, K.; Huang, W.; Lin, G.J.U.F.; Greening, U. Bridging landscape preference and landscape design: A study on the preference and optimal combination of landscape elements based on conjoint analysis. Urban For. Urban Green. 2022, 73, 127615. [Google Scholar] [CrossRef]
- Sevenant, M.; Antrop, M. The use of latent classes to identify individual differences in the importance of landscape dimensions for aesthetic preference. Land Use Policy 2010, 27, 827–842. [Google Scholar] [CrossRef]
- Ayuga-Téllez, E.; Ramírez-Montoro, J.J.; Grande-Ortiz, M.Á.; Muñoz-Violero, D. Differences in Visual Preference in Rural Landscapes on the Plain of La Mancha in Spain. Sustainability 2021, 13, 13799. [Google Scholar] [CrossRef]
- Qi, J.; Zhou, Y.; Zeng, L.; Tang, X. Aesthetic heterogeneity on rural landscape: Pathway discrepancy between perception and cognition. J. Rural Stud. 2022, 92, 383–394. [Google Scholar] [CrossRef]
- Gan, Y.; Zheng, Y.; Zhang, L. Audio-Visual Analysis of Visitors’ Landscape Preference for City Parks: A Case Study from Zhangzhou, China. Forests 2022, 13, 1376. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.J. Demographic groups’ differences in visual preference for vegetated landscapes in urban green space. Sustain. Cities Soc. 2017, 28, 350–357. [Google Scholar] [CrossRef]
- Wen, J.; Kozak, M.; Yang, S.; Liu, F. COVID-19: Potential effects on Chinese citizens’ lifestyle and travel. Tour. Rev. 2020, 76, 74–87. [Google Scholar] [CrossRef]
Demographic Factor | Type | Frequency | Percentage (%) |
---|---|---|---|
Gender | Male | 58 | 50.43 |
Female | 57 | 49.57 | |
Age | ≤25 | 31 | 26.96 |
26–40 | 44 | 38.26 | |
41–50 | 26 | 22.61 | |
≥51 | 14 | 12.17 | |
Marital status | Married | 68 | 59.13 |
Unmarried | 47 | 40.87 | |
Education | Junior high school and below | 12 | 10.43 |
High school | 34 | 29.57 | |
Bachelor’s degree | 53 | 46.09 | |
Master degree and above | 16 | 13.91 | |
Income | ≤2000 | 23 | 20.00 |
2001–6000 | 40 | 34.78 | |
6001–10,000 | 32 | 27.83 | |
≥10,001 | 20 | 17.39 | |
Family size | ≤2 | 4 | 3.48 |
3 | 61 | 53.04 | |
≥4 | 50 | 43.48 |
Environmental Suitability Zone Type | p-Values Range | Proportion of Study Area | Proportion of Farmland in the Study Area |
---|---|---|---|
Optimum area | 0.52 ≤ p < 1 | 5.38% | 26.52% |
Suitable area | 0.36 ≤ p < 0.52 | 9.49% | 33.13% |
Medium suitable area | 0.20 ≤ p < 0.36 | 8.72% | 19.27% |
Low suitable area | 0.05 ≤ p < 0.20 | 15.28% | 14.68% |
Unsuitable area | 0 ≤ p < 0.05 | 61.13% | 6.40% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhan, J.; Wang, C.; Blinov, O.A.; Asiedu Kumi, M.; Liu, W.; Chu, X.; Teng, Y.; Liu, H.; Yang, Z.; et al. Integrating Agricultural and Ecotourism Development: A Crop Cultivation Suitability Framework Considering Tourists’ Landscape Preferences in Qinghai Province, China. Remote Sens. 2023, 15, 4685. https://doi.org/10.3390/rs15194685
Wang H, Zhan J, Wang C, Blinov OA, Asiedu Kumi M, Liu W, Chu X, Teng Y, Liu H, Yang Z, et al. Integrating Agricultural and Ecotourism Development: A Crop Cultivation Suitability Framework Considering Tourists’ Landscape Preferences in Qinghai Province, China. Remote Sensing. 2023; 15(19):4685. https://doi.org/10.3390/rs15194685
Chicago/Turabian StyleWang, Huihui, Jinyan Zhan, Chao Wang, Oleg Anatolyevich Blinov, Michael Asiedu Kumi, Wei Liu, Xi Chu, Yanmin Teng, Huizi Liu, Zheng Yang, and et al. 2023. "Integrating Agricultural and Ecotourism Development: A Crop Cultivation Suitability Framework Considering Tourists’ Landscape Preferences in Qinghai Province, China" Remote Sensing 15, no. 19: 4685. https://doi.org/10.3390/rs15194685