Ground Truth Validation of Sentinel-2 Data Using Mobile Wireless Ad Hoc Sensor Networks (MWSN) in Vegetation Stands
Abstract
:1. Introduction
- Heterogeneity and diversity of the land cover;
- Existing structural gaps within stationary measurement networks, which can be supported temporarily by supplementing and complementing measuring systems for special investigations;
- The differences in spectral and geometric requirements of various RS systems.
2. Material and Methods
2.1. DEMMIN Validation Test Site
2.2. Soil and Vegetation Characteristics
2.3. Close-Range Data and Remote Sensing Data
2.3.1. Mobile Wireless Ad Hoc Sensor Network
2.3.2. Sentinel-2 Data
Band Number (S2A/MWSN) | Central Wavelength S2A (nm) | Channel Bandwidth (FWHM) S2A (nm) | Central Wavelength MWSN (nm) | Channel Bandwidth (FWHM) MWSN (nm) | Spatial Resolution S2A (m) |
---|---|---|---|---|---|
4/1 | 30 | 10 | |||
5/2 | 14 | 20 | |||
6/3 | 14 | 20 | |||
8a/4 | 21 | 20 |
2.4. Pre-Processing of Remote Sensing Data
2.4.1. Geo-Correction and Atmospheric Correction
2.4.2. Sensor System Cross-Calibration
2.4.3. Inter-Calibration of the Close-Range Sensors
2.4.4. Vegetation Indices
3. Results
4. Discussion
5. Conclusions
- Multi-temporal measurements with the same satellite from different orbits (positions);
- Measurements with geostationary satellites at different times of the day;
- Measurements with gonioreflectometer for measuring BRDF;
- Measurements with UAVs in a goniometer-simulating configuration;
- Continuous measurements with ground-based close-range sensor systems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BRDF | Bidirectional reflectance distribution function |
DEMMIN | Durable Environmental Multidisciplinary Monitoring Information Network |
EO | Earth observation |
ESA | European Space Agency |
FOV | Field of view |
FWHM | Full width at half maximum |
LAI | Leaf area index |
MWSN | Mobile wireless sensor network |
NDVI | Normalized difference vegetation index |
NDVImax | Maximum value of the normalized difference vegetation index |
NIR | Near infrared |
RDVI | Renormalized difference vegetation index |
RE | Red edge |
RENDVI | Red edge normalized difference vegetation index |
RS | Remote sensing |
RSR | Relative spectral responses |
S2/S2A | Sentinel-2/Sentinel-2A |
SAVI | Soil-adjusted vegetation index |
SBAF | Spectral band adjustment factor |
TC | Transfer coefficient |
References
- Gascon, F.; Cadau, E.; Colin, O.; Hoersch, B.; Isola, C.; Fernández, B.L.; Martimort, P. Copernicus Sentinel-2 mission: Products, algorithms and Cal/Val. In Proceedings of the Earth Observing Systems XIX, SPIE, San Diego, CA, USA, 17–21 August 2014; Volume 9218, pp. 455–463. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Zacharias, S.; Bogena, H.; Samaniego, L.; Mauder, M.; Fuß, R.; Pütz, T.; Frenzel, M.; Schwank, M.; Baessler, C.; Butterbach-Bahl, K.; et al. A network of terrestrial environmental observatories in Germany. Vadose Zone J. 2011, 10, 955–973. [Google Scholar] [CrossRef]
- Mollenhauer, H.; Kasner, M.; Haase, P.; Peterseil, J.; Wohner, C.; Frenzel, M.; Mirtl, M.; Schima, R.; Bumberger, J.; Zacharias, S. Long-term environmental monitoring infrastructures in Europe: Observations, measurements, scales, and socio-ecological representativeness. Sci. Total. Environ. 2018, 624, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Bogena, H.; Kunkel, R.; Puetz, T.; Vereecken, H.; Krueger, E.; Zacharias, S.; Dietrich, P.; Wollschlaeger, U.; Kunstmann, H.; Papen, H.; et al. Tereno-long-term monitoring network for terrestrial environmental research. Hydrol. Wasserbewirtsch. 2012, 56, 138–143. [Google Scholar]
- Gaillardet, J.; Braud, I.; Hankard, F.; Anquetin, S.; Bour, O.; Dorfliger, N.; De Dreuzy, J.R.; Galle, S.; Galy, C.; Gogo, S.; et al. OZCAR: The French network of critical zone observatories. Vadose Zone J. 2018, 17, 1–24. [Google Scholar] [CrossRef]
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding forest health with remote sensing-part I—A review of spectral traits, processes and remote-sensing characteristics. Remote Sens. 2016, 8, 1029. [Google Scholar] [CrossRef]
- Ustin, S.L.; Gamon, J.A. Remote sensing of plant functional types. New Phytol. 2010, 186, 795–816. [Google Scholar] [CrossRef]
- Lausch, A.; Borg, E.; Bumberger, J.; Dietrich, P.; Heurich, M.; Huth, A.; Jung, A.; Klenke, R.; Knapp, S.; Mollenhauer, H.; et al. Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data Science Approaches. Remote Sens. 2018, 10, 1120. [Google Scholar] [CrossRef]
- Taramelli, A.; Tornato, A.; Magliozzi, M.L.; Mariani, S.; Valentini, E.; Zavagli, M.; Costantini, M.; Nieke, J.; Adams, J.; Rast, M. An Interaction Methodology to Collect and Assess User-Driven Requirements to Define Potential Opportunities of Future Hyperspectral Imaging Sentinel Mission. Remote Sens. 2020, 12, 1286. [Google Scholar] [CrossRef]
- Asadzadeh, S.; de Souza Filho, C.R. Investigating the capability of WorldView-3 superspectral data for direct hydrocarbon detection. Remote Sens. Environ. 2016, 173, 162–173. [Google Scholar] [CrossRef]
- Hase, N.; Doktor, D.; Rebmann, C.; Dechant, B.; Mollenhauer, H.; Cuntz, M. Identifying the main drivers of the seasonal decline of near-infrared reflectance of a temperate deciduous forest. Agric. For. Meteorol. 2022, 313, 108746. [Google Scholar] [CrossRef]
- Schrön, M.; Zacharias, S.; Womack, G.; Köhli, M.; Desilets, D.; Oswald, S.E.; Bumberger, J.; Mollenhauer, H.; Kögler, S.; Remmler, P.; et al. Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment. Geosci. Instrum. Methods Data Syst. 2018, 7, 83–99. [Google Scholar] [CrossRef]
- Fersch, B.; Francke, T.; Heistermann, M.; Schrön, M.; Döpper, V.; Jakobi, J.; Baroni, G.; Blume, T.; Bogena, H.; Budach, C.; et al. A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany. Earth Syst. Sci. Data 2020, 12, 2289–2309. [Google Scholar] [CrossRef]
- Van den Bossche, J.; Peters, J.; Verwaeren, J.; Botteldooren, D.; Theunis, J.; De Baets, B. Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmos. Environ. 2015, 105, 148–161. [Google Scholar] [CrossRef]
- Tessum, M.W.; Larson, T.; Gould, T.R.; Simpson, C.D.; Yost, M.G.; Vedal, S. Mobile and fixed-site measurements to identify spatial distributions of traffic-related pollution sources in Los Angeles. Environ. Sci. Technol. 2018, 52, 2844–2853. [Google Scholar] [CrossRef]
- Holmgren, J.; Fredriksson, H.; Dahl, M. On the use of active mobile and stationary devices for detailed traffic data collection: A simulation-based evaluation. Int. J. Traffic Transp. Manag. 2021, 3, 1–9. [Google Scholar]
- Koch, K.; Schade, G.W.; Filippi, A.M.; Goessler, G.; Güneralp, B. Low-Key Stationary and Mobile Tools for Probing the Atmospheric UHI Effect. In Spatial Variability in Environmental Science-Patterns, Processes, and Analyses; IntechOpen: London, UK, 2019. [Google Scholar]
- Viana, M.; Rivas, I.; Reche, C.; Fonseca, A.S.; Pérez, N.; Querol, X.; Alastuey, A.; Álvarez-Pedrerol, M.; Sunyer, J. Field comparison of portable and stationary instruments for outdoor urban air exposure assessments. Atmos. Environ. 2015, 123, 220–228. [Google Scholar] [CrossRef]
- Borg, E. CAL/VAL Site DEMMIN for Remote Sensing. Network of European Regions Using Space Technology; NEREUS Earth Observation/GMES Working Group: Brussels, Belgium, 2010; pp. 13–14. [Google Scholar]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Rouse, J., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium: Volume 1; Freden, S.C., Mercanti, E.P., Becker, M.A., Eds.; Technical Presentations, Section B; NASA Special Publ. Technical Report, NASA-SP-351-VOL-1-SECT-B, A 20; NASA: Washington, DC, USA, 1974; pp. 309–317. [Google Scholar]
- Monsi, M. Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion. Jap. J. Bot. 1953, 14, 22–52. [Google Scholar]
- Yao, Y.; Liu, Q.; Liu, Q.; Li, X. LAI retrieval and uncertainty evaluations for typical row-planted crops at different growth stages. Remote Sens. Environ. 2008, 112, 94–106. [Google Scholar] [CrossRef]
- Zheng, G.; Moskal, L.M. Retrieving leaf area index (LAI) using remote sensing: Theories, methods and sensors. Sensors 2009, 9, 2719–2745. [Google Scholar] [CrossRef] [PubMed]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- de Jong, S.M.; Jetten, V. Estimating spatial patterns of rainfall interception from remotely sensed vegetation indices and spectral mixture analysis. Int. J. Geogr. Inf. Sci. 2007, 21, 529–545. [Google Scholar] [CrossRef]
- Hope, A.; Engstrom, R.; Stow, D. Relationship between AVHRR surface temperature and NDVI in Arctic tundra ecosystems. Int. J. Remote Sens. 2005, 26, 1771–1776. [Google Scholar] [CrossRef]
- Sun, D.; Kafatos, M. Note on the NDVI-LST Relationship and the Use of Temperature-Related Drought Indices Over North America. Geophys. Res. Lett. 2007, 34, L24406. [Google Scholar] [CrossRef]
- Wloczyk, C.; Borg, E.; Richter, R.; Miegel, K. Estimation of instantaneous air temperature above vegetation and soil surfaces from Landsat 7 ETM+ data in northern Germany. Int. J. Remote Sens. 2011, 32, 9119–9136. [Google Scholar] [CrossRef]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Peñuelas, J.; Valentini, R. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef]
- Myneni, R.; Williams, D. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 1994, 49, 200–211. [Google Scholar] [CrossRef]
- Huang, J.; Wang, H.; Dai, Q.; Han, D. Analysis of NDVI data for crop identification and yield estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4374–4384. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Rumpf, T.; Welke, P.; Dehne, H.W.; Plümer, L.; Steiner, U.; Oerke, E.C. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
- Mulders, M.A. Remote Sensing in Soil Science; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Lausch, A.; Baade, J.; Bannehr, L.; Borg, E.; Bumberger, J.; Chabrilliat, S.; Dietrich, P.; Gerighausen, H.; Glässer, C.; Hacker, J.M.; et al. Linking remote sensing and geodiversity and their traits relevant to biodiversity—Part I: Soil characteristics. Remote Sens. 2019, 11, 2356. [Google Scholar] [CrossRef]
- Vermote, E.; Vermeulen, A. Atmospheric correction algorithm: Spectral reflectances (MOD09). ATBD Version 1999, 4, 1–107. [Google Scholar]
- Mannschatz, T.; Pflug, B.; Borg, E.; Feger, K.H.; Dietrich, P. Uncertainties of LAI estimation from satellite imaging due to atmospheric correction. Remote Sens. Environ. 2014, 153, 24–39. [Google Scholar] [CrossRef]
- Gong, P.; Pu, R.; Biging, G.S.; Larrieu, M.R. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1355–1362. [Google Scholar] [CrossRef]
- Reid, W.V.; Bréchignac, C.; Tseh Lee, Y. Earth System Research Priorities. Science 2009, 325, 245. [Google Scholar] [CrossRef]
- Richter, D.D., Jr.; Mobley, M.L. Monitoring Earth’s critical zone. Science 2009, 326, 1067–1068. [Google Scholar] [CrossRef] [PubMed]
- Teucher, M.; Thürkow, D.; Alb, P.; Conrad, C. Digital In Situ Data Collection in Earth Observation, Monitoring and Agriculture—Progress towards Digital Agriculture. Remote Sens. 2022, 14, 393. [Google Scholar] [CrossRef]
- Gerighausen, H.; Borg, E.; Fichtelmann, B.; Günther, A.; Vajen, H.H.; Wloczyk, C.; Maass, H. Validation and calibration of remote sensing data products on test site DEMMIN. In Proceedings of the 43. Ziolkowski Conference, 43. Ziolkowski Conference, Kaluga, Russia, 16–18 September 2008. [Google Scholar]
- Borg, E.; Schiller, C.; Daedelow, H.; Fichtelmann, B.; Jahncke, D.; Renke, F.; Tamm, H.P.; Asche, H. Automated generation of value-added products for the validation of remote sensing information based on in-situ data. In Proceedings of the International Conference on Computational Science and Its Applications, Guimarães, Portugal, 30 June–3 July 2014; pp. 393–407. [Google Scholar]
- Götze, M.; Kattanek, W.; Peukert, R.; Chervakova, E.; Töpfer, H.; Dietrich, P.; Bumberger, J.; of Electrical, I.; Engineers, E. A flexible service and communication gateway for monitoring applications. In Proceedings of the 21st International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split-Primosten, Croatia, 18–20 September 2013; pp. 1–5. [Google Scholar]
- Töpfer, H.; Chervakova, E.; Goetze, M.; Hutschenreuther, T.; Nikolić, B.; Dimitrijević, B. Application of wireless sensors within a traffic monitoring system. In Proceedings of the 2015 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26 November 2015; pp. 236–241. [Google Scholar]
- Shelby, Z.; Bormann, C. 6LoWPAN: The Wireless Embedded Internet; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Montenegro, G.; Kushalnagar, N.; Hui, J.; Culler, D. Transmission of IPv6 Packets over IEEE 802.15. 4 Networks. RFC Ser. 4944 2007. [Google Scholar] [CrossRef]
- Mills, D. Simple network time protocol (SNTP) version 4 for IPv4, IPv6 and OSI. RFC Ser. 2030 1996. [Google Scholar] [CrossRef]
- Agre, J.R.; Clare, L.P.; Pottie, G.J.; Romanov, N.P. Development platform for self-organizing wireless sensor networks. In Proceedings of the Unattended Ground Sensor Technologies and Applications, Orlando, FL, USA, 8–9 April 1999; Volume 3713, pp. 257–268. [Google Scholar]
- Akitsu, T.; Nasahara, K.N.; Hirose, Y.; Ijima, O.; Kume, A. Quantum sensors for accurate and stable long-term photosynthetically active radiation observations. Agric. For. Meteorol. 2017, 237, 171–183. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration. Sentinel-2A Launches—Our Compliments & Our Complements. Available online: https://landsat.gsfc.nasa.gov/article/sentinel-2a-launches-our-compliments-our-complements/ (accessed on 9 September 2023).
- European Space Agency. SENTINEL-2 MISSION GUIDE. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2 (accessed on 9 September 2023).
- Malenovskỳ, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Slater, P.N.; Biggar, S.F.; Palmer, J.M.; Thome, K.J. Unified approach to absolute radiometric calibration in the solar-reflective range. Remote Sens. Environ. 2001, 77, 293–303. [Google Scholar] [CrossRef]
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.B.; Angal, A.; Choi, T.; Xiong, X.; Doelling, D.R. Applications of spectral band adjustment factors (SBAF) for cross-calibration. IEEE Trans. Geosci. Remote Sens. 2012, 51, 1267–1281. [Google Scholar] [CrossRef]
- Khakurel, P.; Leigh, L.; Kaewmanee, M.; Pinto, C.T. Extended Pseudo Invariant Site-Based Trend-to-Trend Cross-Calibration of Optical Satellite Sensors. Remote Sens. 2021, 13, 1545. [Google Scholar] [CrossRef]
- Teillet, P.; Fedosejevs, G.; Thome, K.; Barker, J.L. Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sens. Environ. 2007, 110, 393–409. [Google Scholar] [CrossRef]
- Thuillier, G.; Hersé, M.; Labs, D.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.C.; Mandel, H. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
- European Space Agency. Sentinel-2 Spectral Response Functions (S2-SRF), Technical Document S2-SRF_COPE-GSEG-EOPG-TN-15-0007_3.1. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses (accessed on 9 September 2023).
- Jin, H.; Eklundh, L. In situ calibration of light sensors for long-term monitoring of vegetation. IEEE Trans. Geosci. Remote Sens. 2014, 53, 3405–3416. [Google Scholar] [CrossRef]
- Dahms, T.; Seissiger, S.; Borg, E.; Vajen, H.; Fichtelmann, B.; Conrad, C. Important variables of a rapideye time series for modelling biophysical parameters of winter wheat. Photogramm.-Fernerkund.-Geoinf. 2016, 2016, 285–299. [Google Scholar] [CrossRef]
- Huete, A. Huete, AR A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Ahamed, T.; Tian, L.; Zhang, Y.; Ting, K. A review of remote sensing methods for biomass feedstock production. Biomass Bioenergy 2011, 35, 2455–2469. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Astropy Collaboration; Price-Whelan, A.M.; Lim, P.L.; Earl, N.; Starkman, N.; Bradley, L.; Shupe, D.L.; Patil, A.A.; Corrales, L.; Brasseur, C.E.; et al. The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package. Astrophys. J. 2022, 935, 167. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Shah, D.; Pandya, M.; Trivedi, H.; Jani, A. Estimating minimum and maximum air temperature using MODIS data over Indo-Gangetic Plain. J. Earth Syst. Sci. 2013, 122, 1593–1605. [Google Scholar] [CrossRef]
- Stisen, S.; Sandholt, I.; Nørgaard, A.; Fensholt, R.; Eklundh, L. Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sens. Environ. 2007, 110, 262–274. [Google Scholar] [CrossRef]
- Czajkowski, K.P.; Mulhern, T.; Goward, S.N.; Cihlar, J.; Dubayah, R.O.; Prince, S.D. Biospheric environmental monitoring at BOREAS with AVHRR observations. J. Geophys. Res. Atmos. 1997, 102, 29651–29662. [Google Scholar] [CrossRef]
- Nieto, H.; Sandholt, I.; Aguado, I.; Chuvieco, E.; Stisen, S. Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula. Remote Sens. Environ. 2011, 115, 107–116. [Google Scholar] [CrossRef]
- Ishihara, M.; Inoue, Y.; Ono, K.; Shimizu, M.; Matsuura, S. The Impact of Sunlight Conditions on the Consistency of Vegetation Indices in Croplands—Effective Usage of Vegetation Indices from Continuous Ground-Based Spectral Measurements. Remote Sens. 2015, 7, 14079–14098. [Google Scholar] [CrossRef]
- Hatfield, J.; Gitelson, A.; Schepers, J.; Walthall, C. Application of spectral remote sensing for agronomic decisions. Agron. J. 2008, 100, S117–S131. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+ SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Verhoef, W. Earth observation modeling based on layer scattering matrices. Remote Sens. Environ. 1985, 17, 165–178. [Google Scholar] [CrossRef]
- Govender, M.; Chetty, K.; Bulcock, H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water Sa 2007, 33, 145–151. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Li, Z.; Guo, X. A suitable vegetation index for quantifying temporal variation of leaf area index (LAI) in semiarid mixed grassland. Can. J. Remote Sens. 2010, 36, 709–721. [Google Scholar] [CrossRef]
- Epiphanio, J.N.; Huete, A.R. Dependence of NDVI and SAVI on sun/sensor geometry and its effect on fAPAR relationships in Alfalfa. Remote Sens. Environ. 1995, 51, 351–360. [Google Scholar] [CrossRef]
- Holzer-Popp, T.; Bittner, M.; Borg, E.; Dech, S.; Erbertseder, T.; Fichtelmann, B.; Schroedter, M. Process for Correcting Atmospheric Influences in Multispectral Optical Remote Sensing. U.S. Patent No. 6,484,099 B1, 19 November 2002. [Google Scholar]
- Schmitt, M.; Bahn, M.; Wohlfahrt, G.; Tappeiner, U.; Cernusca, A. Land use affects the net ecosystem CO2 exchange and its components in mountain grasslands. Biogeosciences 2010, 7, 2297–2309. [Google Scholar] [CrossRef]
- Kim, S.i.; Ahn, D.S.; Han, K.S.; Yeom, J.M. Improved Vegetation Profiles with GOCI Imagery Using Optimized BRDF Composite. J. Sens. 2016, 2016, 7165326. [Google Scholar] [CrossRef]
- Uudus, B.; Park, K.A.; Kim, K.R.; Kim, J.; Ryu, J.H. Diurnal variation of NDVI from an unprecedented high-resolution geostationary ocean colour satellite. Remote Sens. Lett. 2013, 4, 639–647. [Google Scholar] [CrossRef]
- Thierfelder, T.K.; Grayson, R.B.; von Rosen, D.; Western, A.W. Inferring the location of catchment characteristic soil moisture monitoring sites. Covariance structures in the temporal domain. J. Hydrol. 2003, 280, 13–32. [Google Scholar] [CrossRef]
- Rose, K.C.; Graves, R.A.; Hansen, W.D.; Harvey, B.J.; Qiu, J.; Wood, S.A.; Ziter, C.; Turner, M.G. Historical foundations and future directions in macrosystems ecology. Ecol. Lett. 2017, 20, 147–157. [Google Scholar] [CrossRef]
- Weber, U.; Attinger, S.; Baschek, B.; Boike, J.; Borchardt, D.; Brix, H.; Brüggemann, N.; Bussmann, I.; Dietrich, P.; Fischer, P.; et al. MOSES: A novel observation system to monitor dynamic events across Earth compartments. Bull. Am. Meteorol. Soc. 2021, 103, 1–23. [Google Scholar] [CrossRef]
- Schimel, D.; Hargrove, W.; Hoffman, F.; MacMahon, J. NEON: A hierarchically designed national ecological network. Front. Ecol. Environ. 2007, 5, 59. [Google Scholar] [CrossRef]
- Karan, M.; Liddell, M.; Prober, S.M.; Arndt, S.; Beringer, J.; Boer, M.; Cleverly, J.; Eamus, D.; Grace, P.; Van Gorsel, E.; et al. The Australian SuperSite Network: A continental, long-term terrestrial ecosystem observatory. Sci. Total Environ. 2016, 568, 1263–1274. [Google Scholar] [CrossRef]
Profile | Topsoil Sediment | Organic Content |
---|---|---|
1 | slightly loamy sand | (2–4%) |
2 | slightly loamy sand with fine and medium gravel | (<1%) |
3 | slightly silty sand | (<1%) |
4 | medium sand, slightly silty sand | (<1%) |
5 | medium sand with fine sand, fine gravel, and medium gravel | (<1%) |
6 | slightly silty sand with fine and medium gravel | (<1%) |
7 | slightly silty sand with fine gravel | (<1%) |
8 | moderately silty sand | (<1%) |
9 | moderately loamy sand | (<1%) |
Satellite Data | Data Recording | Usability | Comment |
---|---|---|---|
S2A L1C | 29 May 2016 | no | cloudy (≥40% coverage) and the transect is not covered by the scene |
S2A L1C | 8 June 2016 | no | the transect is not covered by the scene |
S2A L1C | 11 June 2016 | yes | these data are used in the manuscript |
S2A L1C | 18 June 2016 | no | cloudy (≥50% coverage) and the transect is not covered by the scene |
LANDSAT-8 L1 | 30 May 2016 | no | haze over the transect |
LANDSAT-8 L1 | 6 June 2016 | yes | not comparable to S2A (different angles of view cause different spectral information due to BRDF effects) |
LANDSAT-8 L1 | 18 June 2016 | no | cloudy (≥40% coverage) |
Index | Equation | Remarks | Reference |
---|---|---|---|
NDVI | most commonly used vegetation index to describe the vegetation state | Rouse Jr et al. [23] | |
SAVI | intended to minimize the effects of soil background on the vegetation signal | Huete [65] | |
RENDV | sensitive to vegetation in red edge | Gitelson and Merzlyak [66], Ahamed et al. [67] | |
RDVI | sensitive to vegetation cover fraction variation | Roujean and Breon [68] | |
Symbol | Explanation | ||
R | Red | ||
Near Infrared | |||
L | soil adjustment factor | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollenhauer, H.; Borg, E.; Pflug, B.; Fichtelmann, B.; Dahms, T.; Lorenz, S.; Mollenhauer, O.; Lausch, A.; Bumberger, J.; Dietrich, P. Ground Truth Validation of Sentinel-2 Data Using Mobile Wireless Ad Hoc Sensor Networks (MWSN) in Vegetation Stands. Remote Sens. 2023, 15, 4663. https://doi.org/10.3390/rs15194663
Mollenhauer H, Borg E, Pflug B, Fichtelmann B, Dahms T, Lorenz S, Mollenhauer O, Lausch A, Bumberger J, Dietrich P. Ground Truth Validation of Sentinel-2 Data Using Mobile Wireless Ad Hoc Sensor Networks (MWSN) in Vegetation Stands. Remote Sensing. 2023; 15(19):4663. https://doi.org/10.3390/rs15194663
Chicago/Turabian StyleMollenhauer, Hannes, Erik Borg, Bringfried Pflug, Bernd Fichtelmann, Thorsten Dahms, Sebastian Lorenz, Olaf Mollenhauer, Angela Lausch, Jan Bumberger, and Peter Dietrich. 2023. "Ground Truth Validation of Sentinel-2 Data Using Mobile Wireless Ad Hoc Sensor Networks (MWSN) in Vegetation Stands" Remote Sensing 15, no. 19: 4663. https://doi.org/10.3390/rs15194663
APA StyleMollenhauer, H., Borg, E., Pflug, B., Fichtelmann, B., Dahms, T., Lorenz, S., Mollenhauer, O., Lausch, A., Bumberger, J., & Dietrich, P. (2023). Ground Truth Validation of Sentinel-2 Data Using Mobile Wireless Ad Hoc Sensor Networks (MWSN) in Vegetation Stands. Remote Sensing, 15(19), 4663. https://doi.org/10.3390/rs15194663