Investigating the Performance of IGS Real-Time Global Ionospheric Maps under Different Solar Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sets
2.2. Validation against JASON VTEC
2.3. Validation against the GNSS dSTEC
2.4. Validation against the IGS Combined Final GIM
2.5. Statistical Indices
3. Results
3.1. Validation against JASON VTEC
3.2. Validation against the GNSS dSTEC
3.3. Validation against the IGS Combined Final GIM
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernández-Pajares, M.; Roma-Dollase, D.; Krankowski, A.; García-Rigo, A.; Orús-Pérez, R. Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J. Geod. 2017, 91, 1405–1414. [Google Scholar] [CrossRef]
- Roma-Dollase, D.; Hernández-Pajares, M.; Krankowski, A.; Kotulak, K.; Ghoddousi-Fard, R.; Yuan, Y.; Li, Z.; Zhang, H.; Shi, C.; Wang, C.; et al. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J. Geod. 2018, 92, 691–706. [Google Scholar] [CrossRef]
- Caissy, M.; Agrotis, L.; Weber, G.; Hernandez-Pajares, M.; Hugentobler, U. The international GNSS real-time service. GPS World 2012, 23, 52–58. [Google Scholar]
- Schaer, S.; Gurtner, W.; Feltens, J. IONEX: The ionosphere map exchange format version 1. In Proceedings of the IGS AC Workshop, Darmstadt, Germany, 9–11 February 1998. [Google Scholar]
- Schaer, S. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. Ph.D. Thesis, Astronomical Institute, University of Bern, Bern, Switzerland, 1999. [Google Scholar]
- Li, Z.; Wang, N.; HernandezPajares, M.; Yuan, Y.; Krankowski, A.; Liu, A.; Zha, J.; GarciaRigo, A.; Roma-Dollase, D.; Yang, H.; et al. IGS real-time service for global ionospheric total electron content modeling. J. Geod. 2020, 94, 32. [Google Scholar] [CrossRef]
- Ren, X.; Chen, J.; Li, X.; Zhang, X.; Freeshah, M. Performance evaluation of real-time global ionospheric maps provided by different IGS analysis centers. GPS Solut. 2019, 23, 113–117. [Google Scholar] [CrossRef]
- Roma-Dollase, D.; Hernández-Pajares, M.; García Rigo, A.; Krankowski, A.; Fron, A.; Laurichesse, D.; Blot, A.; OrúsPérez, R.; Yuan, Y.; Li, Z.; et al. Looking for optimal ways to combine global ionospheric maps in real-time. In Proceedings of the IGS Workshop 2018, Wuhan, China, 29 October–2 November 2018. [Google Scholar]
- Chen, P.; Liu, H.; Schmidt, M.; Yao, Y.; Yao, W. Near real-time global ionospheric modeling based on an adaptive Kalman filter state error covariance matrix determination method. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Zhang, L.; Yao, Y.; Peng, W.; Shan, L.; He, Y.; Kong, J. Real-time global ionospheric map and its application in single-frequency positioning. Sensors 2019, 19, 1138. [Google Scholar] [CrossRef]
- Abdelazeem, M.; Çelik, R.; El-Rabbany, A. An enhanced real-time regional ionospheric model using IGS real-time service (IGS-RTS) products. J. Navig. 2016, 69, 521–530. [Google Scholar] [CrossRef]
- Liu, H.; Mei, D.; Xu, G.; Yang, P.; Ren, X.; Zhang, X. Evaluation and validation of various rapid GNSS global ionospheric maps over one solar cycle. Adv. Space Res. 2022, 70, 2494–2505. [Google Scholar] [CrossRef]
- Chen, P.; Liu, H.; Ma, Y.; Zheng, N. Accuracy and consistency of different global ionospheric maps released by IGS ionosphere associate analysis centers. Adv. Space Res. 2020, 65, 163–174. [Google Scholar] [CrossRef]
- Li, M.; Yuan, Y.; Wang, N.; Li, Z.; Huo, X. Performance of various predicted GNSS global ionospheric maps relative to GPS and JASON TEC data. GPS Solut. 2018, 22, 55. [Google Scholar] [CrossRef]
- Li, Z.; Wang, N.; Li, M.; Zhou, K.; Yuan, Y.; Yuan, H. Evaluation and analysis of the global ionospheric TEC map in the frame of International GNSS Services. Chin. J. Geophys. 2017, 60, 3718–3729. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Q. Global ionosphere mapping and differential code bias estimation during low and high solar activity periods with GIMAS software. Remote Sens. 2018, 10, 705. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod. 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Nie, Z.; Yang, H.; Zhou, P.; Gao, Y.; Wang, Z. Quality assessment of CNES real-time ionospheric products. GPS Solut. 2019, 23, 11. [Google Scholar] [CrossRef]
- Goss, A.; Schmidt, M.; Erdogan, E.; Seitz, F. Global and regional high-resolution VTEC modelling using a two-step B-spline Approach. Remote Sens. 2020, 12, 1198. [Google Scholar] [CrossRef]
- Liu, Q.; Hernández-Pajares, M.; Yang, H.; Monte-Moreno, M.; Roma-Dollase, D.; García-Rigo, A.; Li, Z.; Wang, N.; Laurichesse, D.; Blot, A.; et al. The cooperative IGS RT-GIMs: A reliable estimation of the global ionospheric electron content distribution in real time. Earth Syst. Sci. Data 2021, 13, 4567–4582. [Google Scholar] [CrossRef]
- Li, Z.; Wang, N.; Liu, A.; Yuan, Y.; Wang, L.; Hernández-Pajares, M.; Krankowski, A.; Yuan, H. Status of CAS global ionospheric maps after the maximum of solar cycle 24. Satell. Navig. 2021, 2, 19. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Shen, Y.; Li, W.; Xu, F.; Li, X. Evaluation of foF2 and hmF2 Parameters of IRI-2016 Model in Different Latitudes over China under High and Low Solar Activity Years. Remote Sens. 2022, 14, 860. [Google Scholar] [CrossRef]
- SILSO. World Data Center—Sunspot Number and Long-Term Solar Observations. Royal Observatory of Belgium, On-Line Sunspot Number Catalogue. Available online: http://www.sidc.be/SILSO/ (accessed on 3 September 2023).
- Wang, N.; Li, Z. Benefits of IGS RTS for real time ionospheric space weather monitoring. In Proceedings of the IGS Workshop, Wuhan, China, 29 October–2 November 2018. [Google Scholar]
- Sanz, J.; Juan, J.; Rovira-Garcia, A.; González-Casado, G. GPS differential code biases determination: Methodology and analysis. GPS Solut. 2017, 21, 1549–1561. [Google Scholar] [CrossRef]
- Brunini, C.; Meza, A.; Bosch, W. Temporal and spatial variability of the bias between Topex- and GPS-derived total electron content. J. Geod. 2005, 79, 175–188. [Google Scholar] [CrossRef]
- Yasyukevich, Y.; Afraimovich, E.; Palamartchouk, K.; Tatarinov, P. Cross testing of ionosphere models IRI-2001 and IRI-2007, data from satellite altimeters (Topex/Poseidon and JASON-1) and global ionosphere maps. Adv. Space Res. 2010, 46, 990–1007. [Google Scholar] [CrossRef]
- Todorova, S.; Hobiger, T.; Schuh, H. Using the global navigation satellite system and satellite altimetry for combined Global Ionosphere Maps. Adv. Space Res. 2008, 42, 727–736. [Google Scholar] [CrossRef]
- Erdogan, E.; Schmidt, M.; Goss, A.; Görres, B.; Seitz, F. Realtime monitoring of ionosphere VTEC using multi-GNSS carrier-phase observations and B-splines. Space Weather 2021, 19, e2021SW002858. [Google Scholar] [CrossRef]
- Tang, L.; Chen, G. Equatorial plasma bubble detection using vertical TEC from altimetry satellite. Space Weather 2022, 20, e2022SW003142. [Google Scholar] [CrossRef]
- Feltens, J.; Angling, M.; Jackson-Booth, N.; Jakowski, N.; Hoque, M.; Hernández-Pajares, M.; Aragón-Àngel, A.; Orús, R.; Zandbergen, R. Comparative testing of four ionospheric models driven with GPS measurements. Radio Sci. 2011, 46, RS0D12. [Google Scholar] [CrossRef]
- Ciraolo, L.; Azpilicueta, F.; Brunini, C.; Meza, A.; Radicella, S. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geod. 2007, 81, 111–120. [Google Scholar] [CrossRef]
- Goss, A.; Hernández-Pajares, M.; Schmidt, M.; Roma-Dollase, D.; Erdogan, E.; Seitz, F. High-resolution ionosphere corrections for single-frequency positioning. Remote Sens. 2021, 13, 12. [Google Scholar] [CrossRef]
- Gu, S.; Gan, C.; He, C.; Lyu, H.; Hernandez-Pajares, M.; Lou, Y.; Geng, J.; Zhao, Q. Quasi-4-dimension ionospheric modeling and its application in PPP. Satell. Navig. 2022, 3, 24. [Google Scholar] [CrossRef]
- Jee, G.; Lee, H.; Solomon, S. Global ionospheric total electron contents (TECs) during the last two solar minimum periods. J. Geophys. Res. Space Phys. 2014, 119, 2090–2100. [Google Scholar] [CrossRef]
- Juan, J.; Rius, A.; Hernandez-Pajares, M.; Sanz, J. A two-layer model of the ionosphere using global positioning system data. Geophys. Res. Lett. 1997, 24, 393–396. [Google Scholar] [CrossRef]
- Ghoddousi-Fard, R. On the estimation of regional covariance functions of TEC variations over Canada. Adv. Space Res. 2020, 65, 943–958. [Google Scholar] [CrossRef]
- Zhao, J.; Hernández-Pajares, M.; Li, Z.; Wang, N.; Yuan, H. Integrity investigation of global ionospheric TEC maps for high-precision positioning. J. Geod. 2021, 95, 35. [Google Scholar] [CrossRef]
- Banville, S.; Collins, P.; Zhang, W.; Langley, R. Global and regional ionospheric corrections for faster PPP convergence. Navigation 2014, 61, 115–124. [Google Scholar] [CrossRef]
- Xiang, Y.; Gao, Y.; Li, Y. Reducing convergence time of precise point positioning with ionospheric constraints and receiver differential code bias modeling. J. Geod. 2020, 94, 1–13. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, Y.; Krankowski, A.; Li, Z.; Li, A.; Kotulak, K.; Fron, A. The combined real-time global ionospheric map for operational ionospheric space weather monitoring. In Proceedings of the 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), Gran Canaria, Spain, 29 May–3 June 2022; pp. 1–3. [Google Scholar] [CrossRef]
Item | CAS | WHU | IGS |
---|---|---|---|
GIM ID | CRTG | WRTG | IRTG |
Software | GIM_AOE | RT-GIMAS | UPC-IonSAT |
Spatial resolution | 5° × 2.5° | 5° × 2.5° | 5° × 2.5° |
Temporal resolution | 5 min | 5 min | 20 min |
Format | IONEX | IONEX | IONEX |
Broadcast frequency | 1 min | 1 min | 15 s |
Shell/Layer Height | 400 km | 450 km | 450 km |
GNSS observation | GPS + GLONASS + BDS + Galileo | GPS | Weighed |
Method | Spherical harmonic (15 × 15) + prediction model | Spherical harmonic (15 × 15) | |
DCBs computation | Same time as local VTEC, corrected by the 3-day solution of satellite and receiver DCBs | Directly use previous DCBs estimated simultaneously with WHU rapid GIM products | N/A |
URL | ftp://ftp.gipp.org.cn/product/ionex/ (accessed on 3 September 2023) | ftp://igs.gnsswhu.cn/pub/whu/MGEX/realtime-ionex (accessed on 3 September 2023) | http://chapman.upc.es/irtg/ (accessed on 3 September 2023) |
References | [6,24] | [16] | [20] |
GIM ID | Index | 2019 | 2020 | 2021 | 2022 | Average |
---|---|---|---|---|---|---|
CRTG | MEAN | −0.64 | −0.75 | −0.48 | −0.73 | −0.64 |
STD | 1.56 | 1.61 | 2.06 | 3.64 | 2.05 | |
RMS | 1.69 | 1.78 | 2.12 | 3.71 | 2.15 | |
IRTG | MEAN | / | / | −0.90 | −1.25 | −1.08 |
STD | / | / | 1.78 | 3.08 | 2.56 | |
RMS | / | / | 1.99 | 3.33 | 2.78 | |
WRTG | MEAN | / | / | −0.89 | −0.65 | −0.72 |
STD | / | / | 2.08 | 3.60 | 3.23 | |
RMS | / | / | 2.26 | 3.66 | 3.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Ren, X.; Xu, G. Investigating the Performance of IGS Real-Time Global Ionospheric Maps under Different Solar Conditions. Remote Sens. 2023, 15, 4661. https://doi.org/10.3390/rs15194661
Liu H, Ren X, Xu G. Investigating the Performance of IGS Real-Time Global Ionospheric Maps under Different Solar Conditions. Remote Sensing. 2023; 15(19):4661. https://doi.org/10.3390/rs15194661
Chicago/Turabian StyleLiu, Hang, Xiaodong Ren, and Guozhen Xu. 2023. "Investigating the Performance of IGS Real-Time Global Ionospheric Maps under Different Solar Conditions" Remote Sensing 15, no. 19: 4661. https://doi.org/10.3390/rs15194661
APA StyleLiu, H., Ren, X., & Xu, G. (2023). Investigating the Performance of IGS Real-Time Global Ionospheric Maps under Different Solar Conditions. Remote Sensing, 15(19), 4661. https://doi.org/10.3390/rs15194661