Spatiotemporal Analysis of Ecosystem Status in China’s National Key Ecological Function Zones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Ecosystem Macrostructure
2.2.2. Ecosystem Quality Data
- (1)
- Vegetation Coverage
- (2)
- Net primary productivity of vegetation
2.2.3. Ecosystem Services Data
- (1)
- Water conservation services
- (2)
- Soil conservation services
- (3)
- Windbreak and sand fixation services
2.2.4. Ecological Restoration Situation and Degree of Ecological Restoration
3. Results
3.1. Status of Ecosystem Macrostructure Changes in NKEFZ
3.2. Dynamics of Ecological System Quality in NKEFZ
3.2.1. Vegetation Coverage
3.2.2. Net Primary Productivity (NPP) of Vegetation
3.3. Dynamics of Ecosystem Services in NKEFZ
3.3.1. Water Conservation Services
3.3.2. Soil Conservation Services
3.3.3. Windbreak and Sand Fixation Services
3.4. Ecological Restoration Situation of NKEFZ
3.4.1. Ecosystem Quality Restoration Trend
3.4.2. Ecosystem Services Restoration Trend
3.5. Spatial Distribution of Ecological Restoration Degree in NKEFZ
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, B.; Bai, Y.; Xu, X.; Alatalo, J.M. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation. Sci. Total Environ. 2019, 650, 1426–1439. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Shi, D.; Zhou, L.; Fang, R. Identification of ecosystem services supply and demand areas and simulation of ecosystem service flows in Shanghai. Ecol. Indic. 2020, 115, 106418. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Huang, X.F.; Zhou, Y.C. Factors influencing the evolution of human-driven rocky desertification in karst areas. Land Degrad. Dev. 2021, 32, 817–829. [Google Scholar] [CrossRef]
- Liang, W.; Yang, M. Urbanization, economic growth and environmental pollution: Evidence from China. Sustain. Comput. Inform. Syst. 2019, 21, 1–9. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; Garcia, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, 1400253. [Google Scholar] [CrossRef]
- Kotiaho, J.S.; Halme, P.; Kareksela, S.; Olden, A.; Haapalehto, T.; Paivinen, J.; Moilanen, A. Target for ecosystem repair is impractical. Nature 2015, 519, 33. [Google Scholar] [CrossRef]
- Shao, Q.; Fan, J.; Liu, J.; Yang, F.; Liu, H.; Yang, X.; Xu, M.; Hou, P.; Guo, X.; Huang, L.; et al. Approaches for Monitoring and Assessment of Ecological Benefits of National Key Ecological Projects. Adv. Earth Sci. 2017, 32, 1174–1182. [Google Scholar]
- Yu, G.-R.; Wang, Y.-S.; Yang, M. Discussion on the ecological theory and technological approaches of ecosystem quality improvement and stability enhancement. J. Appl. Ecol. 2023, 34, 1–10. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, J. Research on the Conservation and Development of National Key Ecological Function Areas. Environ. Sci. Technol. 2021, 44, 219–229. [Google Scholar]
- Liu, G.; Wen, Y.; Jin, T.; Hao, H.; Liu, S. Designing of Watershed Ecological Compensation Mechanism Based on the Key Ecological Function Zone: A Case Study in the Source Area of Dongjiang River. Adv. Mater. Res. 2013, 807, 962–975. [Google Scholar] [CrossRef]
- Chen, S.; Hou, M.Y.; Wang, X.Y.; Yao, S.B. Transfer payment in national key ecological functional areas and economic development: Evidence from a quasi-natural experiment in China. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, H.; Xiao, Y.; Sun, C.; Luan, Z. Synergic relationship between transfer payment to national key ecological function areas and eco-environmental protection. Acta Ecol. Sin. 2019, 39, 9271–9280. [Google Scholar]
- Qin, B.; Yu, Y.; Ge, L.; Yang, L.; Guo, Y. Does Eco-Compensation Alleviate Rural Poverty? New Evidence from National Key Ecological Function Areas in China. Int. J. Environ. Res. Public Health 2022, 19, 10899. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, J.; Zhang, J.; Li, Z.; Geng, Y.; Guo, Y. Assessing Controversial Desertification Prevention Policies in Ecologically Fragile and Deeply Impoverished Areas: A Case Study of Marginal Parts of the Taklimakan Desert, China. Land 2021, 10, 641. [Google Scholar] [CrossRef]
- Chen, H.; Hou, M.; Xi, Z.; Zhang, X.; Yao, S. Co-benefits of the National Key Ecological Function Areas in China for carbon sequestration and environmental quality. Front. Ecol. Evol. 2023, 11, 1093135. [Google Scholar] [CrossRef]
- Zhang, R.-b.; Zhong, C.-b. The establishment of the national key ecological functional zone and the county’s ecological green development. Front. Ecol. Evol. 2023, 11, 1144245. [Google Scholar] [CrossRef]
- Pan, F.J.; Song, M.J.; Wan, Q.; Yuan, L.L. A conservation planning framework for China’s national key ecological function area based on ecological risk assessment. Environ. Monit. Assess. 2022, 194, 74. [Google Scholar] [CrossRef]
- Liu, L.; Cao, W.; Wu, D.; Huang, L. Temporal and Spatial Variations of Ecosystem Services in National Key Ecological Function Zones. Sci. Geogr. Sin. 2018, 38, 1508–1515. [Google Scholar]
- Liu, H.; Gao, J.; Liu, X.; Zhang, H.; Xu, X. Monitoring and assessment of the ecosystem services value in the national key ecological function zones. Acta Ecol. Sin. 2020, 40, 1865–1876. [Google Scholar]
- Zhou, S.; Sun, P.; Zhao, K.; Wang, F.; Zuo, X. Implementation effects of the grazing withdrawal project in national key ecological function zones: A case study of Yanchi County in Ningxia Hui Autonomous Region. Pratacultural Sci. 2020, 37, 201–212. [Google Scholar]
- Hou, P.; Zhai, J.; Cao, W.; Yang, M.; Cai, M.; Li, J. Evaluation on ecosystem changes and protection of the national key ecological function zones in mountainous areas of central Hainan Island. Acta Geogr. Sin. 2018, 73, 429–441. [Google Scholar]
- Zhang, Y.; Wu, X. Urban green development level and spatio-temporal difference of cities in the National Key Ecological Function Zones and adjacent non-ecological function zones. Acta Ecol. Sin. 2022, 42, 5761–5777. [Google Scholar]
- Liu, S.; Zhang, J.; Zhang, J.; Guo, Y. Simultaneously tackling ecological degradation and poverty challenges: Evidence from desertified areas in northern China. Sci. Total Environ. 2022, 815, 152927. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Shao, Q.; Liu, S.; Ning, J.; Liu, G.; Yang, F.; Zhang, X.; Niu, L.; Huang, H.; Fan, J.; Liu, J. Assessment of ecological benefits of key national ecological projects in China in 2000–2019 using remote sensing. Acta Geogr. Sin. 2022, 77, 2133–2153. [Google Scholar]
- Xu, J.; Liu, H.; Nie, P.; Jin, Z.; Zhai, D.; Gao, X. Spatiotemporal analysis of environmental air quality in counties of national key ecological function areas. Acta Ecol. Sin. 2022, 42, 4362–4368. [Google Scholar]
- Chen, C.; Li, W.-B.; Zheng, L.; Guan, C. Exploring the impacts of spatial regulation on environmentally sustainable development: A new perspective of quasi-experimental evaluation based on the National Key Ecological Function Zones in China. Sustain. Dev. 2023. early view. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010-2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Kuang, W.; Zhang, S.; Du, G.; Yan, C.; Wu, S.; Li, R.; Lu, D.; Pan, T.; Ning, J.; Guo, C.; et al. Remotely sensed mapping and analysis of spatio-temporal patterns of land use change across China in 2015–2020. Acta Geogr. Sin. 2022, 77, 1056–1071. [Google Scholar]
- Bai, Y. Analysis of vegetation dynamics in the Qinling-Daba Mountains region from MODIS time series data. Ecol. Indic. 2021, 129, 108029. [Google Scholar] [CrossRef]
- Liu, G.; Shao, Q.; Fan, J.; Ning, J.; Rong, K.; Huang, H.; Liu, S.; Zhang, X.; Niu, L.; Liu, J. Change Trend and Restoration Potential of Vegetation Net Primary Productivity in China over the Past 20 Years. Remote Sens. 2022, 14, 1634. [Google Scholar] [CrossRef]
- Hamel, P.; Valencia, J.; Schmitt, R.; Shrestha, M.; Piman, T.; Sharp, R.P.; Francesconi, W.; Guswa, A.J. Modeling seasonal water yield for landscape management: Applications in Peru and Myanmar. J. Environ. Manag. 2020, 270, 110792. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Sun, W.; Shao, Q.; Liu, J. Assessment of Soil Conservation Function of the Ecosystem Services on the Loess Plateau. J. Nat. Resour. 2014, 29, 365–376. [Google Scholar]
- Yang, Y.Y.; Zhao, R.Y.; Shi, Z.; Rossel, R.A.V.; Wan, D.; Liang, Z.Z. Integrating multi-source data to improve water erosion mapping in Tibet, China. Catena 2018, 169, 31–45. [Google Scholar] [CrossRef]
- Liu, B.Y.; Nearing, M.A.; Shi, P.J.; Jia, Z.W. Slope length effects on soil loss for steep slopes. Soil Sci. Soc. Am. J. 2000, 64, 1759–1763. [Google Scholar] [CrossRef]
- Sun, W.; Shao, Q.; Liu, J. Soil erosion and its response to the changes of precipitation and vegetation cover on the Loess Plateau. J. Geogr. Sci. 2013, 23, 1091–1106. [Google Scholar] [CrossRef]
- Du, H.Q.; Liu, X.F.; Jia, X.P.; Li, S.; Fan, Y.W. Assessment of the effects of ecological restoration projects on soil wind erosion in northern China in the past two decades. Catena 2022, 215, 106360. [Google Scholar] [CrossRef]
- Zhang, X.; Shao, Q.; Ning, J.; Yang, X.; Gong, G.; Liu, G. Effect of Vegetation Restoration on Soil Wind Erosion and Vegetation Restoration Potential in The Three-North Afforestation Program. J. Geo-Inf. Sci. 2022, 24, 2153–2170. [Google Scholar]
- Liu, G.; Shao, Q.; Fan, J.; Ning, J.; Huang, H.; Liu, S.; Zhang, X.; Niu, L.; Liu, J. Spatio-Temporal Changes, Trade-Offs and Synergies of Major Ecosystem Services in the Three-River Headwaters Region from 2000 to 2019. Remote Sens. 2022, 14, 5349. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Sun, G.; Gao, H.; Hao, L. Comments on “Large-scale afforestation significantly increases permanent surface water in China’s vegetation restoration regions” by Zeng, Y., Yang, X., Fang, N., & Shi, Z. (2020). Agricultural and Forest Meteorology, 290, 108001. Agric. For. Meteorol. 2021, 296, 108213. [Google Scholar] [CrossRef]
- Gao, H.; Liu, J.; Gao, G.; Xia, J. Ecological and hydrological perspectives of the water retention concept. Acta Geogr. Sin. 2023, 78, 139–148. [Google Scholar]
- Wong, C.P.; Jiang, B.; Kinzig, A.P.; Lee, K.N.; Ouyang, Z. Linking ecosystem characteristics to final ecosystem services for public policy. Ecol. Lett. 2015, 18, 108–118. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; Garcia, L.C.; Loyola, R.; Rodrigues, R.R.; Pillar, V.D.; Lewinsohn, T.M. A critical analysis of the Native Vegetation Protection Law of Brazil (2012): Updates and ongoing initiatives. Nat. Conserv. 2016, 14, 1–15. [Google Scholar] [CrossRef]
- He, Z.C.; Xiao, L.S.; Guo, Q.H.; Liu, Y.; Mao, Q.Z.; Kareiva, P. Evidence of causality between economic growth and vegetation dynamics and implications for sustainability policy in Chinese cities. J. Clean. Prod. 2020, 251, 119550. [Google Scholar] [CrossRef]
- de Oliveira Folharini, S.; de Melo, S.N.; Ramos, R.G.; Brown, J.C. Land use and green crime: Assessing the edge effect. Land Use Policy 2023, 129, 106636. [Google Scholar] [CrossRef]
Ecological Restoration Situation | Evaluation Criteria | |
---|---|---|
2000–2010 | 2010–2019 | |
Continuously improving | p > 0.05 | p > 0.05 |
Initially improve and then stabilize | p > 0.05 | −0.05 ≤ p ≤ 0.05 |
Initially improve and then worsen | p > 0.05 | p < −0.05 |
Initially stabilize and then improve | −0.05 ≤ p ≤ 0.05 | p > 0.05 |
Maintain stability | −0.05 ≤ p ≤ 0.05 | −0.05 ≤ p ≤ 0.05 |
Initially stabilize and then worsen | −0.05 ≤ p ≤ 0.05 | p < −0.05 |
Initially worsen and then improve | p < −0.05 | p > 0.05 |
Initially worsen and then stabilize | p < −0.05 | −0.05 ≤ p ≤ 0.05 |
Continuously worsening | p < −0.05 | p < −0.05 |
Number | Evaluation Criteria | The Degree of Ecological Restoration |
---|---|---|
1 | Si ≥ 3 | Essentially stable |
2 | Si < 3 and Wi = 2 | Slightly worsened |
3 | Si < 3 and Wi = 3 | Moderately worsened |
4 | Si < 3 and Wi = 4 | Significantly worsened |
5 | Bi = 4 | High level of improved |
6 | Bi = 3 | Relatively high level of improved |
7 | Si < 3 and Wi < 2 and Bi = 2 | Moderate level of improved |
8 | Si < 3 and Wi < 2 and Bi = 1 | Partial elements improved while others worsened |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Shao, Q.; Wang, B.; Niu, X.; Ning, J.; Chen, M.; Zhang, T.; Liu, G.; Liu, S.; Niu, L.; et al. Spatiotemporal Analysis of Ecosystem Status in China’s National Key Ecological Function Zones. Remote Sens. 2023, 15, 4641. https://doi.org/10.3390/rs15184641
Zhang X, Shao Q, Wang B, Niu X, Ning J, Chen M, Zhang T, Liu G, Liu S, Niu L, et al. Spatiotemporal Analysis of Ecosystem Status in China’s National Key Ecological Function Zones. Remote Sensing. 2023; 15(18):4641. https://doi.org/10.3390/rs15184641
Chicago/Turabian StyleZhang, Xiongyi, Quanqin Shao, Bing Wang, Xiang Niu, Jia Ning, Meiqi Chen, Tingjing Zhang, Guobo Liu, Shuchao Liu, Linan Niu, and et al. 2023. "Spatiotemporal Analysis of Ecosystem Status in China’s National Key Ecological Function Zones" Remote Sensing 15, no. 18: 4641. https://doi.org/10.3390/rs15184641
APA StyleZhang, X., Shao, Q., Wang, B., Niu, X., Ning, J., Chen, M., Zhang, T., Liu, G., Liu, S., Niu, L., & Huang, H. (2023). Spatiotemporal Analysis of Ecosystem Status in China’s National Key Ecological Function Zones. Remote Sensing, 15(18), 4641. https://doi.org/10.3390/rs15184641