Projected Changes in Precipitation Based on the CMIP6 Optimal Multi-Model Ensemble in the Pearl River Basin, China
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Data
2.3. Methodology
2.3.1. Model Evaluation Metrics
2.3.2. Comprehensive Rating Metrics
2.3.3. Bias Correction
2.3.4. Assessment of Predictions of Future Changes in Precipitation
3. Results
3.1. Evaluation of CMIP6 Models
3.1.1. Climatology
3.1.2. Spatial Variation
3.1.3. Interannual Variability
3.1.4. Overall Model Performance
3.2. GCMs Correction
3.3. Future Changes in Annual Precipitation
3.3.1. Interannual Variability in the Projected Changes
3.3.2. Spatial Distribution of the Projected Changes
3.3.3. Uncertainties of the Projected Changes
4. Discussion
5. Conclusions
- The evaluation showed that most of the CMIP6 models had a dry bias in the PRB. For a given single model, performance varied greatly between indices. According to all indices, the NorESM2-MM, TaiESM1, EC-Earth3-Veg, KACE-1-0-G, EC-Earth3, CMCC-ESM2, IPSL-CM6A-LR, MPI-ESM1-2-LR, MRI-ESM2-0, and NorESM2-LM models exhibited good performances in the PRB, with CRI values exceeding the median (0.48).
- We determined the optimal ensemble to perform precipitation simulation in the PRB. When the ensemble number was set to 4 (NorESM2-MM, TaiESM1, EC-Earth3-Veg, and KACE-1-0-G), precipitation in the PRB could be best simulated, and the CRI value (0.92) was higher than that of any single model and all other ensembles, including the MME. In addition, the QM method could effectively correct the bias of the selected models, having a better performance than before bias correction in all metrics. The corrected precipitation outputs can be used to model regional hydrological models and simulate and predict the potential changes in runoff under different scenarios in the future.
- The annual precipitation in the PRB from 2025 to 2100 showed a significant increasing trend under all three scenarios. Annual precipitation is projected to increase by 22.42, 19.08, and 36.92 mm/decade under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 pathways, respectively. By the end of the 21st century, mean precipitation in the PRB will increase by 13%, 9.4%, and 20.1% under the SSP1-2.6, SSP2-4.5 and SSP5-8.5 pathways, respectively; the increases will be higher the western area of the basin, namely the Xijiang River Basin.
- Uncertainties are inevitable in precipitation projections. In this paper, the BMME approach was adopted to reduce such uncertainties, but there is still room for improvement. To further improve the accuracy of precipitation projections, more methods (such as assigning weight by considering the skill of the models) should be compared in future studies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ajami, H. Geohydrology: Global Hydrological Cycle.Encyclopedia of Geology (Second Edition). 2021, pp. 393–398. Available online: https://www.semanticscholar.org/paper/Geohydrology%3A-Global-Hydrological-Cycle-Ajami/0ba3f562bb27d6e074c907ce6bddeeef330d0a0e (accessed on 3 July 2022).
- Held, I.M.; Soden, B.J. Robust Responses of the Hydrological Cycle to Global Warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Solomon, S.C.; Qin, D.-h.; Manning, M.R.; Chen, Z.R.; Marquis, M.; Averyt, K.B.; Tignor, M.M.B.; Miller, H.L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. 2007. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf (accessed on 3 July 2022).
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global Increasing Trends in Annual Maximum Daily Precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Xiong, L.; Yu, K.; Zhang, H.; Zhang, L. Annual runoff change in the headstream of Yangtze River and its relation to precipitation and air temperature. Hydrol. Res. 2013, 44, 850. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Aalbers, E.E.; Larsen, J.R.; Trancoso, R.; Woods, R.A. Recent changes in extreme floods across multiple continents. Environ. Res. Lett. 2017, 12, 114035. [Google Scholar] [CrossRef]
- Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. Atmos. 2011, 116, D12115. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Guo, S.; Liao, W.; Zeng, Z.; Chen, X. Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: A case study in Dongguan City, China. J. Hydrol. 2017, 547, 428–442. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, X.X.; Higgitt, D.L.; Chen, C.-T.A.; Han, J.; Sun, H. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Glob. Planet. Chang. 2008, 60, 365–380. [Google Scholar] [CrossRef]
- Chen, Y.D.; Zhang, Q.; Xu, C.-Y.; Lu, X.; Zhang, S. Multiscale streamflow variations of the Pearl River basin and possible implications for the water resource management within the Pearl River Delta, China. Quat. Int. 2010, 226, 44–53. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, Q.; Shi, P.; Gu, X.; Zheng, Y. Spatiotemporal Characteristics of Extreme Precipitation Regimes and Related Driving Factors in the Pearl River Basin. Sci. Geogr. Sin. 2017, 37, 283–291. [Google Scholar]
- Liu, L.; Jiang, T.; Yuan, F. Observed (1961–2007) and Projected (2011–2060) Climate Change in the Pearl River Basin. Adv. Clim. Chang. Res. 2009, 5, 209–214. [Google Scholar]
- Chen, Y.D.; Zhang, Q.; Xiao, M.; Singh, V.P. Transition probability behaviors of drought events in the Pearl River basin, China. Stoch. Environ. Res. Risk Assess. 2017, 31, 159–170. [Google Scholar] [CrossRef]
- Su, C.; Chen, X. Covariates for nonstationary modeling of extreme precipitation in the Pearl River Basin, China. Atmos. Res. 2019, 229, 224–239. [Google Scholar] [CrossRef]
- Xu, K.; Qin, G.; Niu, J.; Wu, C.; Huang, G.; Wang, P. Comparative analysis of meteorological and hydrological drought over the Pearl River basin in southern China. Hydrol. Res. 2018, 50, nh2018178. [Google Scholar] [CrossRef]
- Zhi-Yong, W.; Gui-Hua, L.; Zhi-Yu, L.; Jin-Xing, W.; Heng, X. Trends of Extreme Flood Events in the Pearl River Basin during 1951–2010. Adv. Clim. Chang. Res. 2013, 4, 110–116. [Google Scholar] [CrossRef]
- Cowtan, K.; Hausfather, Z.; Hawkins, E.; Jacobs, P.; Mann, M.E.; Miller, S.K.; Steinman, B.A.; Stolpe, M.B.; Way, R.G. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett. 2015, 42, 6526–6534. [Google Scholar] [CrossRef]
- Miao, C.; Duan, Q.; Sun, Q.; Huang, Y.; Kong, D.; Yang, T.; Ye, A.; Di, Z.; Gong, W. Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environ. Res. Lett. 2014, 9, 055007. [Google Scholar] [CrossRef]
- Pandey, B.K.; Khare, D.; Kawasaki, A.; Mishra, P.K. Climate Change Impact Assessment on Blue and Green Water by Coupling of Representative CMIP5 Climate Models with Physical Based Hydrological Model. Water Resour. Manag. 2018, 33, 141–158. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Du, Y.; Wang, D.; Zhu, J.; Wang, D.; Qi, X.; Cai, J. Comprehensive assessment of CMIP5 and CMIP6 models in simulating and projecting precipitation over the global land. Int. J. Climatol. 2022, 42, 6859–6875. [Google Scholar] [CrossRef]
- Na, Y.; Fu, Q.; Kodama, C. Precipitation Probability and Its Future Changes from a Global Cloud-Resolving Model and CMIP6 Simulations. J. Geophys. Res. Atmos. 2020, 125, e2019JD031926. [Google Scholar] [CrossRef]
- Rivera, J.A.; Arnould, G. Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901–2014). Atmos. Res. 2020, 241, 104953. [Google Scholar] [CrossRef]
- Moradian, S.; Torabi Haghighi, A.; Asadi, M.; Mirbagheri, S.A. Future Changes in Precipitation over Northern Europe Based on a Multi-model Ensemble from CMIP6: Focus on Tana River Basin. Water Resour. Manag. 2022, 37, 2447–2463. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, T.; Chen, X.; Zhang, L. Future changes in precipitation over Central Asia based on CMIP6 projections. Environ. Res. Lett. 2020, 15, 054009. [Google Scholar] [CrossRef]
- Ding, Y.; Jiang, C.; Zhou, Z.; Gao, T.; Wang, S.; Zhang, X.; Cai, H.; Shi, H. Evaluation of precipitation and its time series components in CMIP6 over the Yellow River Basin. Clim. Dyn. 2023, 60, 1203–1223. [Google Scholar] [CrossRef]
- Wu, H.; Lei, H.; Lu, W.; Liu, Z. Future changes in precipitation over the upper Yangtze River basin based on bias correction spatial downscaling of models from CMIP6. Environ. Res. Commun. 2022, 4, 045002. [Google Scholar] [CrossRef]
- Zhao, N.; Jiao, Y.; Zhang, L. Projections of precipitation change from CMIP6 based on a new downscaling method in the Poyang Lake basin, China. J. Hydrol. Reg. Stud. 2022, 42, 101138. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Z.; Ahmed, Z.; Zhang, L.; Su, B.; Tao, H.; Jiang, T. Projections of precipitation over China based on CMIP6 models. Stoch. Environ. Res. Risk Assess. 2021, 35, 831–848. [Google Scholar] [CrossRef]
- Chen, R.; Duan, K.Q.; Shang, W.; Shi, P.H.; Meng, Y.L.; Zhang, Z.P. Increase in seasonal precipitation over the Tibetan Plateau in the 21st century projected using CMIP6 models. Atmos. Res. 2022, 277, 106306. [Google Scholar] [CrossRef]
- Kay, A.L.; Davies, H.N.; Bell, V.A.; Jones, R.G. Comparison of uncertainty sources for climate change impacts: Flood frequency in England. Clim. Chang. 2009, 92, 41–63. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Kooperman, G.J.; Pendergrass, A.G.; Hannah, W.M.; Reed, K.A. Seasonal representation of extreme precipitation indices over the United States in CMIP6 present-day simulations. Environ. Res. Lett. 2020, 15, 094003. [Google Scholar] [CrossRef]
- Zhu, X.; Ji, Z.; Wen, X.; Lee, S.-Y.; Wei, Z.; Zheng, Z.; Dong, W. Historical and projected climate change over three major river basins in China from Fifth and Sixth Coupled Model Intercomparison Project models. Int. J. Climatol. 2021, 41, 6455–6473. [Google Scholar] [CrossRef]
- Xiao, H.; Lu, G.; Wu, Z.; Liu, Z. Flood response to climate change in the Pearl River basin for the next three decades. J. Hydraul. Eng. 2013, 44, 1409–1419. [Google Scholar]
- Wang, X.; Yang, T.; Li, X.; Shi, P.; Zhou, X. Spatio-temporal changes of precipitation and temperature over the Pearl River basin based on CMIP5 multi-model ensemble. Stoch. Environ. Res. Risk Assess. 2017, 31, 1077–1089. [Google Scholar] [CrossRef]
- Zhu, X.; Lee, S.-Y.; Wen, X.; Ji, Z.; Lin, L.; Wei, Z.; Zheng, Z.; Xu, D.; Dong, W. Extreme climate changes over three major river basins in China as seen in CMIP5 and CMIP6. Clim. Dyn. 2021, 57, 1187–1205. [Google Scholar] [CrossRef]
- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 224–232. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, P.-a.; Xu, B.; Zhu, F.; Fu, J. Evaluation of global climate model on performances of precipitation simulation and prediction in the Huaihe River basin. Theor. Appl. Climatol. 2018, 133, 191–204. [Google Scholar] [CrossRef]
- Feng, J.; Lee, D.-K.; Fu, C.; Tang, J.; Sato, Y.; Kato, H.; McGregor, J.L.; Mabuchi, K. Comparison of four ensemble methods combining regional climate simulations over Asia. Meteorol. Atmos. Phys. 2011, 111, 41–53. [Google Scholar] [CrossRef]
- Jia, W.U.; Bo-Tao, Z.; Ying, X.U. Response of Precipitation and Its Extremes over China to Warming: CMIP5 Simulation and Projection. Chin. J. Geophys. 2015, 58, 461–473. [Google Scholar] [CrossRef]
- Tian, D.; Guo, Y.; Dong, W. Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models. Adv. Atmos. Sci. 2015, 32, 487–496. [Google Scholar] [CrossRef]
- Xu, K.; Xu, B.; Ju, J.; Wu, C.; Dai, H.; Hu, B.X. Projection and uncertainty of precipitation extremes in the CMIP5 multimodel ensembles over nine major basins in China. Atmos. Res. 2019, 226, 122–137. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, H.; Baiyinbaoligao; Hu, H.; Khan, M.Y.A.; Wen, J.; Chen, L.; Tian, F. Future projection of seasonal drought characteristics using CMIP6 in the Lancang-Mekong River Basin. J. Hydrol. 2022, 610, 127815. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. How the “best” models project the future precipitation change in China. Adv. Atmos. Sci. 2009, 26, 773–782. [Google Scholar] [CrossRef]
- Seo, K.-H.; Ok, J. Assessing Future Changes in the East Asian Summer Monsoon Using CMIP3 Models: Results from the Best Model Ensemble. J. Clim. 2013, 26, 1807–1817. [Google Scholar] [CrossRef]
- Ahmed, K.; Sachindra, D.A.; Shahid, S.; Demirel, M.C.; Chung, E.S. Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrol. Earth Syst. Sci. 2019, 23, 4803–4824. [Google Scholar] [CrossRef]
- Hussain, M.; Yusof, K.W.; Mustafa, M.R.U.; Mahmood, R.; Jia, S. Evaluation of CMIP5 models for projection of future precipitation change in Bornean tropical rainforests. Theor. Appl. Climatol. 2018, 134, 423–440. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, W.; Xu, J.; Li, L. Extreme Precipitation Indices over China in CMIP5 Models. Part I: Model Evaluation. J. Clim. 2015, 28, 8603–8619. [Google Scholar] [CrossRef]
- Salehie, O.; Hamed, M.M.; Ismail, T.B.; Shahid, S. Projection of droughts in Amu river basin for shared socioeconomic pathways CMIP6. Theor. Appl. Climatol. 2022, 149, 1009–1027. [Google Scholar] [CrossRef]
- Srivastava, A.; Grotjahn, R.; Ullrich, P.A. Evaluation of historical CMIP6 model simulations of extreme precipitation over contiguous US regions. Weather Clim. Extrem. 2020, 29, 100268. [Google Scholar] [CrossRef]
- Juan, T. The Generalizations and Hydrological Character Analysis of Pearl River Basin. Water Conserv. Sci. Technol. Econ. 2007, 13, 31–33. [Google Scholar]
- Wu, C.; Huang, G. Projection of climate extremes in the Zhujiang River basin using a regional climate model. Int. J. Climatol. 2016, 36, 1184–1196. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Becker, S.; Zhang, Z.X.; Chen, Y.D.; Coulibaly, M. Trends and abrupt changes of precipitation maxima in the Pearl River basin, China. Atmos. Sci. Lett. 2009, 10, 132–144. [Google Scholar] [CrossRef]
- Meinshausen, M.; Nicholls, Z.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N.; et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.J. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys.-Chin. Ed. 2013, 56, 1102–1111. [Google Scholar] [CrossRef]
- Gleckler, P.J.; Taylor, K.E.; Doutriaux, C. Performance metrics for climate models. J. Geophys. Res. Atmos. 2008, 113, D06104. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, Z.; Li, L. Probabilistic Projections of Climate Change over China under the SRES A1B Scenario Using 28 AOGCMs. J. Clim. 2011, 24, 4741–4756. [Google Scholar] [CrossRef]
- Deng, H.; Hua, W.; Fan, G. Evaluation and Projection of Near-Surface Wind Speed over China Based on CMIP6 Models. Atmosphere 2021, 12, 1062. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Chen, C.; Ge, J.; Adnan, M. Evaluation of Downscaled CMIP5 Coupled with VIC Model for Flash Drought Simulation in a Humid Subtropical Basin, China. J. Clim. 2018, 31, 1075–1090. [Google Scholar] [CrossRef]
- Ojha, R.; Nagesh Kumar, D.; Sharma, A.; Mehrotra, R. Assessing Severe Drought and Wet Events over India in a Future Climate Using a Nested Bias-Correction Approach. J. Hydrol. Eng. 2013, 18, 760–772. [Google Scholar] [CrossRef]
- Wood, A.W.; Leung, L.R.; Sridhar, V.; Lettenmaier, D.P. Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. Clim. Chang. 2004, 62, 189–216. [Google Scholar] [CrossRef]
- Wilby, R.L.; Charles, S.P.; Zorita, E.; Timbal, B.; Whetton, P.; Mearns, L. Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods. Environmental Science. 2004. Available online: https://zenodo.org/record/1438320 (accessed on 3 July 2022).
- Kwon, S.-H.; Kim, J.; Boo, K.-O.; Shim, S.; Kim, Y.; Byun, Y.-H. Performance-based projection of the climate-change effects on precipitation extremes in East Asia using two metrics. Int. J. Climatol. 2019, 39, 2324–2335. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Chen, D.; Kang, Y.; Wang, H. Future precipitation changes in three key sub-regions of East Asia: The roles of thermodynamics and dynamics. Clim. Dyn. 2022, 59, 1377–1398. [Google Scholar] [CrossRef]
- Mastrandrea, M.D.; Field, C.B.; Stocker, T.F.; Edenhofer, O.; Ebi, K.L.; Frame, D.J.; Held, H.; Kriegler, E.; Mach, K.J.; Matschoss, P.R.; et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. 2010. Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/uncertainty-guidance-note.pdf (accessed on 3 July 2022).
- Nashwan, M.S.; Shahid, S. Future precipitation changes in Egypt under the 1.5 and 2.0 °C global warming goals using CMIP6 multimodel ensemble. Atmos. Res. 2022, 265, 105908. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Henri Theil’s Contributions to Economics and Econometrics: Econometric Theory and Methodology; Raj, B., Koerts, J., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 345–381. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods. Mathematics. 1949. Available online: https://www.semanticscholar.org/paper/Rank-Correlation-Methods-Kendall/b7000835226609a5c0ff6dacb5c2cc9d38dfe916 (accessed on 30 November 2022).
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.K. Uncertainties in calculating precipitation climatology in East Asia. Hydrol. Earth Syst. Sci. 2016, 20, 651–658. [Google Scholar] [CrossRef]
- Kim, J.; Sanjay, J.; Mattmann, C.; Boustani, M.; Ramarao, M.V.S.; Krishnan, R.; Waliser, D. Uncertainties in estimating spatial and interannual variations in precipitation climatology in the India–Tibet region from multiple gridded precipitation datasets. Int. J. Climatol. 2015, 35, 4557–4573. [Google Scholar] [CrossRef]
- Jiang, D.B.; Wang, H.J.; Lang, X.M. Evaluation of East Asian climatology as simulated by seven coupled models. Adv. Atmos. Sci. 2005, 22, 479–495. [Google Scholar]
- Qin, J.; Su, B.; Tao, H.; Wang, Y.; Huang, J.; Jiang, T. Projection of temperature and precipitation under SSPs-RCPs Scenarios over northwest China. Front. Earth Sci. 2021, 15, 23–37. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, B.; Xu, Y.; Han, Z. CMIP6 Evaluation and Projection of Temperature and Precipitation over China. Adv. Atmos. Sci. 2021, 38, 817–830. [Google Scholar] [CrossRef]
- Xin, X.G.; Wu, T.; Zhang, J.; Yao, J.; Fang, Y. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol. 2020, 40, 6423–6440. [Google Scholar] [CrossRef]
- Huang, D.-Q.; Zhu, J.; Zhang, Y.-C.; Huang, A.-N. Uncertainties on the simulated summer precipitation over Eastern China from the CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 9035–9047. [Google Scholar] [CrossRef]
- Niu, X.; Wang, S.; Tang, J.; Lee, D.-K.; Gao, X.; Wu, J.; Hong, S.; Gutowski, W.J.; McGregor, J. Multimodel ensemble projection of precipitation in eastern China under A1B emission scenario. J. Geophys. Res. Atmos. 2015, 120, 9965–9980. [Google Scholar] [CrossRef]
- Zhou, T.; Li, Z. Simulation of the east asian summer monsoon using a variable resolution atmospheric GCM. Clim. Dyn. 2002, 19, 167–180. [Google Scholar] [CrossRef]
- Tang, B.; Hu, W.; Duan, A. Assessment of Extreme Precipitation Indices over Indochina and South China in CMIP6 Models. J. Clim. 2021, 34, 7507–7524. [Google Scholar] [CrossRef]
- Berg, P.; Moseley, C.; Haerter, J.O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 2013, 6, 181–185. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Lee, S.-K.; Wu, L.; Mechoso, C.R. A global perspective on CMIP5 climate model biases. Nat. Clim. Change 2014, 4, 201–205. [Google Scholar] [CrossRef]
- Chang, E.K.M.; Guo, Y.; Xia, X. CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res. Atmos. 2012, 117, D23118. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q. Projected changes in temperature and precipitation in ten river basins over China in 21st century. Int. J. Climatol. 2015, 35, 1125–1141. [Google Scholar] [CrossRef]
- Houghton, J.E.T.; Ding, Y.; Griggs, D.; Noguer, M.; van der Linden, P.; Dai, X.; Maskell, M.; Johnson, C. Climate Change 2001: The Scientific Basis; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2001; Volume 881, p. 881. [Google Scholar]
- Min, S.-K.; Legutke, S.; Hense, A.; Cubasch, U.; Kwon, W.-T.; Oh, J.-H.; Schlese, U. East Asian Climate Change in the 21st Century as Simulated by the Coupled Climate Model ECHO-G under IPCC SRES Scenarios. J. Meteorol. Soc. Japan. Ser. II 2006, 84, 1–26. [Google Scholar] [CrossRef]
- Lu, K.; Arshad, M.; Ma, X.; Ullah, I.; Wang, J.; Shao, W. Evaluating observed and future spatiotemporal changes in precipitation and temperature across China based on CMIP6-GCMs. Int. J. Climatol. 2022, 42, 7703–7729. [Google Scholar] [CrossRef]
- Bai, H.; Xiao, D.; Wang, B.; Liu, D.L.; Feng, P.; Tang, J. Multi-model ensemble of CMIP6 projections for future extreme climate stress on wheat in the North China plain. Int. J. Climatol. 2021, 41, E171–E186. [Google Scholar] [CrossRef]
- Kitoh, A.; Endo, H.; Krishna Kumar, K.; Cavalcanti, I.F.A.; Goswami, P.; Zhou, T. Monsoons in a changing world: A regional perspective in a global context. J. Geophys. Res. Atmos. 2013, 118, 3053–3065. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Wang, B. Future change of global monsoon in the CMIP5. Clim. Dyn. 2014, 42, 101–119. [Google Scholar] [CrossRef]
- Moon, S.; Ha, K.-J. Temperature and precipitation in the context of the annual cycle over Asia: Model evaluation and future change. Asia-Pac. J. Atmos. Sci. 2017, 53, 229–242. [Google Scholar] [CrossRef]
- Knutti, R.; Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change 2013, 3, 369–373. [Google Scholar] [CrossRef]
- Schmittner, A.; Latif, M.; Schneider, B. Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett. 2005, 32, L23710. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 2011, 37, 407–418. [Google Scholar] [CrossRef]
ID | Model Name | Country | Institution | Atmospheric Resolution (Lat × Lon) |
---|---|---|---|---|
1 | ACCESS-CM2 | Australia | CSIRO-ARCCSS | 1.25° × 1.875° |
2 | ACCESS-ESM1-5 | Australia | CSIRO | 1.25° × 1.875° |
3 | CMCC-ESM2 | Italy | CMCC | 0.9° × 1.25° |
4 | EC-Earth3 | Europe | EC-EARTH-Cons | 0.7° × 0.7° |
5 | EC-Earth3-Veg | Europe | EC-EARTH-Cons | 0.7° × 0.7° |
6 | EC-Earth3-Veg-LR | Europe | EC-EARTH-Cons | 1.125° × 1.125° |
7 | FGOALS-g3 | China | CAS | 2.25° × 2° |
8 | GFDL-ESM4 | USA | NOAA-GFDL | 1° × 1.25° |
9 | INM-CM4-8 | Russia | INM | 2.00° × 1.50° |
10 | INM-CM5-0 | Russia | INM | 2.00° × 1.50° |
11 | IPSL-CM6A-LR | France | IPSL | 2.50° × 1.27° |
12 | KACE-1-0-G | Korea | NIMS-KMA | 1.875° × 1.25° |
13 | KIOST-ESM | Korea | KIOST | 1.875° × 1.86° |
14 | MIROC6 | Japan | MIROC | 1.4° × 1.4° |
15 | MPI-ESM1-2-HR | Germany | MPI-M | 0.94° × 0.93° |
16 | MPI-ESM1-2-LR | Germany | MPI-M | 1.875° × 1.86° |
17 | MRI-ESM2-0 | Japan | MRI | 1.125° × 1.125° |
18 | NESM3 | China | NUIST | 1.875° × 1.86° |
19 | NorESM2-LM | Norway | NCC | 2.5° × 1.89° |
20 | NorESM2-MM | Norway | NCC | 2.5° × 1.89° |
21 | TaiESM1 | Taiwan, China | AS-RCEC | 0.94° × 1.25° |
Index | SSP1-2.6 | SSP2-4.5 | SSP5-8.5 |
---|---|---|---|
z | 3.67 ** | 3.38 ** | 5.48 ** |
Sen’s slope | 22.42 | 19.08 | 36.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; Chen, Y.; Sun, H.; Liu, J. Projected Changes in Precipitation Based on the CMIP6 Optimal Multi-Model Ensemble in the Pearl River Basin, China. Remote Sens. 2023, 15, 4608. https://doi.org/10.3390/rs15184608
He M, Chen Y, Sun H, Liu J. Projected Changes in Precipitation Based on the CMIP6 Optimal Multi-Model Ensemble in the Pearl River Basin, China. Remote Sensing. 2023; 15(18):4608. https://doi.org/10.3390/rs15184608
Chicago/Turabian StyleHe, Mengfei, Yangbo Chen, Huaizhang Sun, and Jun Liu. 2023. "Projected Changes in Precipitation Based on the CMIP6 Optimal Multi-Model Ensemble in the Pearl River Basin, China" Remote Sensing 15, no. 18: 4608. https://doi.org/10.3390/rs15184608
APA StyleHe, M., Chen, Y., Sun, H., & Liu, J. (2023). Projected Changes in Precipitation Based on the CMIP6 Optimal Multi-Model Ensemble in the Pearl River Basin, China. Remote Sensing, 15(18), 4608. https://doi.org/10.3390/rs15184608