Editorial for Special Issue: “Recent Progress in UAV-AI Remote Sensing”
1. Introduction
2. Inversion of Crop Physical Parameters and Biomass Estimation
3. Object Detection and Tracking
4. Crop Disease Monitoring and Forecasting
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fan, Y.; Feng, H.; Yue, J.; Liu, Y.; Jin, X.; Xu, X.; Song, X.; Ma, Y.; Yang, G. Comparison of Different Dimensional Spectral Indices for Estimating Nitrogen Content of Potato Plants over Multiple Growth Periods. Remote Sens. 2023, 15, 602. [Google Scholar] [CrossRef]
- Feng, H.; Tao, H.; Li, Z.; Yang, G.; Zhao, C. Comparison of UAV RGB imagery and hyperspectral remote-sensing data for monitoring winter wheat growth. Remote Sens. 2022, 14, 3811. [Google Scholar] [CrossRef]
- Yang, H.; Ming, B.; Nie, C.; Xue, B.; Xin, J.; Lu, X.; Xue, J.; Hou, P.; Xie, R.; Wang, K.; et al. Maize Canopy and Leaf Chlorophyll Content Assessment from Leaf Spectral Reflectance: Estimation and Uncertainty Analysis across Growth Stages and Vertical Distribution. Remote Sens. 2022, 14, 2115. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Fan, Y.; Jin, X.; Zhao, Y.; Song, X.; Long, H.; Yang, G. Estimation of Potato Above-Ground Biomass Using UAV-Based Hyperspectral images and Machine-Learning Regression. Remote Sens. 2022, 14, 5449. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Fan, Y.; Jin, X.; Song, X.; Yang, H.; Yang, G. Estimation of Potato Above-Ground Biomass Based on Vegetation Indices and Green-Edge Parameters Obtained from UAVs. Remote Sens. 2022, 14, 5323. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Li, Z.; Jin, X.; Fan, Y.; Feng, Z.; Yang, G. Estimation of aboveground biomass of potatoes based on characteristic variables extracted from UAV hyperspectral imagery. Remote Sens. 2022, 14, 5121. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Nie, G.; Cheng, H.; Yang, X.; Chen, X.; Gross, L. Building extraction and floor area estimation at the village level in rural China via a comprehensive method integrating UAV photogrammetry and the novel EDSANet. Remote Sens. 2022, 14, 5175. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.J. Weakly Supervised Learning for Transmission Line Detection Using Unpaired Image-to-Image Translation. Remote Sens. 2022, 14, 3421. [Google Scholar] [CrossRef]
- Li, X.; He, B.; Ding, K.; Guo, W.; Huang, B.; Wu, L. Wide-Area and Real-Time Object Search System of UAV. Remote Sens. 2022, 14, 1234. [Google Scholar] [CrossRef]
- Bai, Y.; Song, Y.; Zhao, Y.; Zhou, Y.; Wu, X.; He, Y.; Zhang, Z.; Yang, X.; Hao, Q. Occlusion and Deformation Handling Visual Tracking for UAV via Attention-Based Mask Generative Network. Remote Sens. 2022, 14, 4756. [Google Scholar] [CrossRef]
- Koubaa, A.; Ammar, A.; Abdelkader, M.; Alhabashi, Y.; Ghouti, L. AERO: AI-Enabled Remote Sensing Observation with Onboard Edge Computing in UAVs. Remote Sens. 2023, 15, 1873. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, M.; Chen, W.; Gao, W.; Li, L.; Liu, Y. Multiple Object Tracking of Drone Videos by a Temporal-Association Network with Separated-Tasks Structure. Remote Sens. 2022, 14, 3862. [Google Scholar] [CrossRef]
- Wu, D.; Zhu, H.; Lan, Y. A Method for Designated Target Anti-Interference Tracking Combining YOLOv5 and SiamRPN for UAV Tracking and Landing Control. Remote Sens. 2022, 14, 2825. [Google Scholar] [CrossRef]
- Jing, X.; Zou, Q.; Yan, J.; Gao, W.; Li, L.; Liu, Y. Remote Sensing Monitoring of Winter Wheat Stripe Rust Based on mRMR-XGBoost Algorithm. Remote Sens. 2022, 14, 756. [Google Scholar] [CrossRef]
- Li, L.; Dong, Y.; Xiao, Y.; Liu, L.; Zhao, X.; Huang, W. Combining disease mechanism and machine learning to predict wheat fusarium head blight. Remote Sens. 2022, 14, 2732. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Yang, C.; Laneve, G.; Huang, W. Editorial for Special Issue: “Recent Progress in UAV-AI Remote Sensing”. Remote Sens. 2023, 15, 4382. https://doi.org/10.3390/rs15184382
Dong Y, Yang C, Laneve G, Huang W. Editorial for Special Issue: “Recent Progress in UAV-AI Remote Sensing”. Remote Sensing. 2023; 15(18):4382. https://doi.org/10.3390/rs15184382
Chicago/Turabian StyleDong, Yingying, Chenghai Yang, Giovanni Laneve, and Wenjiang Huang. 2023. "Editorial for Special Issue: “Recent Progress in UAV-AI Remote Sensing”" Remote Sensing 15, no. 18: 4382. https://doi.org/10.3390/rs15184382
APA StyleDong, Y., Yang, C., Laneve, G., & Huang, W. (2023). Editorial for Special Issue: “Recent Progress in UAV-AI Remote Sensing”. Remote Sensing, 15(18), 4382. https://doi.org/10.3390/rs15184382