Insight into the 1 December 2016 Mw 6.2 Juliaca Earthquake, Southern Peru, by InSAR Observations and Field Investigation
Abstract
:1. Introduction
2. Tectonic Background
3. Coseismic Observations
4. Postseismic Observations
5. Results
5.1. Coseismic Inversion
5.1.1. Uniform Slip Inversion
5.1.2. Slip Distribution Inversion
5.2. Postseismic Inversion
6. Discussion
6.1. Possible Driving Mechanisms of the 2016 Juliaca Earthquake
6.2. Relationship with Great Historical Earthquakes
6.3. Potential Hazards in the Surrounding Area
7. Conclusions
- (1)
- The coseismic rupture of the 2016 Juliaca earthquake is mainly dominated by normal faulting but has some dextral strike-slip components; the coseismic slip is mainly concentrated in the depth range of 2–12 km with a maximum slip of ~0.78 m at a depth of 5.4 km.
- (2)
- The postseismic afterslip with a peaking slip of 0.05 m at a depth of 3.8 km is located at the up-dip part (a depth range of 0–5.4 km) of the rupture fault, partially compensating the coseismic slip deficit.
- (3)
- The 2016 earthquake may be a result of gravitational collapse, and the nearby great historical earthquakes may have promoted the occurrence of this event in advance.
- (4)
- The FHC fault and the western segment of the VN fault should be paid more attention to due to their relatively high stress loading.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, G.; Xu, C.; Wen, Y.; Yin, Z. Coseismic and postseismic deformation of the 2016 Mw 6.2 lampa earthquake, southern peru, constrained by interferometric synthetic aperture radar. J. Geophys. Res. Solid Earth 2019, 124, 4250–4272. [Google Scholar] [CrossRef]
- Aguirre, E.; Benavente, C.; Audin, L.; Wimpenny, S.; Baize, S.; Rosell, L.; Palomino, A. Earthquake surface ruptures on the altiplano and geomorphological evidence of normal faulting in the december 2016 (Mw 6.1) parina earthquake, peru. J. S. Am. Earth Sci. 2021, 106, 103098. [Google Scholar] [CrossRef]
- Wimpenny, S.; Copley, A.; Benavente, C.; Aguirre, E. Extension and Dynamics of the Andes inferred from the 2016 Parina (Huarichancara) Earthquake. J. Geophys. Res. Solid Earth 2018, 123, 8198–8228. [Google Scholar] [CrossRef]
- Kendrick, E.; Bevis, M.; Smalley, R., Jr.; Brooks, B.; Vargas, R.B.; Laurıa, E.; Fortes, L.P.S. The Nazca–South America Euler vector and its rate of change. J. S. Am. Earth Sci. 2003, 16, 125–131. [Google Scholar] [CrossRef]
- Kendrick, E.; Bevis, M.; Smalley, R., Jr.; Brooks, B. An integrated crustal velocity field for the central Andes. Geochem. Geophys. Geosyst. 2001, 2, 11. [Google Scholar] [CrossRef]
- Bevis, M.; Kendrick, E.; Smalley, R.; Brooks, B.; Allmendinger, R.; Isacks, B. On the strength of interplate coupling and the rate of back arc convergence in the central Andes: An analysis of the interseismic velocity field. Geochem. Geophys. Geosyst. 2001, 2, 11. [Google Scholar] [CrossRef]
- Sennson, J.L.; Beck, S.L. Historical 1942 Ecuador and 1942 Peru subduction earthquakes and earthquake cycles along Colombia-Ecuador and Peru subduction segments. Pure Appl. Geophys. 1996, 146, 67–101. [Google Scholar] [CrossRef]
- Coutand, I.; Cobbold, P.R.; Urreiztieta, M.; Gautier, P.; Chauvin, A.; Gapais, D.; López-Gamundí, O. Style and history of Andean deformation, Puna plateau, northwestern Argentina. Tectonics 2001, 20, 210–234. [Google Scholar] [CrossRef]
- Echavarria, L.; Hernández, R.; Allmendinger, R.; Reynolds, J. Subandean thrust and fold belt of northwestern Argentina: Geometry and timing of the Andean evolution. AAPG Bull. 2003, 87, 965–985. [Google Scholar] [CrossRef]
- Gregory-Wodzicki, K.M. Uplift history of the Central and Northern Andes: A review. Geol. Soc. Am. Bull. 2000, 112, 1091–1105. [Google Scholar] [CrossRef]
- Beck, S.L.; Zandt, G. The nature of orogenic crust in the central Andes. J. Geophys. Res. Solid Earth 2002, 107, ESE-7. [Google Scholar] [CrossRef]
- Somoza, R. Updated azca (Farallon)-South America relative motions during the last 40 My: Implications for mountain building in the central Andean region. J. S. Am. Earth Sci. 1998, 11, 211–215. [Google Scholar] [CrossRef]
- Giovanni, M.K.; Horton, B.K.; Garzione, C.N.; McNulty, B.; Grove, M. Extensional basin evolution in the Cordillera Blanca, Peru: Stratigraphic and isotopic records of detachment faulting and orogenic collapse in the Andean hinterland. Tectonics 2010, 29, 6. [Google Scholar] [CrossRef]
- Garzione, C.N.; Hoke, G.D.; Libarkin, J.C.; Withers, S.; MacFadden, B.; Eiler, J.; Ghosh, P.; Mulch, A. Rise of the Andes. Science 2008, 320, 1304–1307. [Google Scholar] [CrossRef] [PubMed]
- Springer, M.; Förster, A. Heat-flow density across the Central Andean subduction zone. Tectonophysics 1998, 291, 123–139. [Google Scholar] [CrossRef]
- Sébrier, M.; Mercier, J.L.; Mégard, F.; Laubacher, G.; Carey-Gailhardis, E. Quaternary normal and reverse faulting and the state of stress in the central Andes of south Peru. Tectonics 1985, 4, 739–780. [Google Scholar] [CrossRef]
- Molnar, P.; Tapponnier, P. Active tectonics of Tibet. J. Geophys. Res. Solid Earth 1978, 83, 5361–5375. [Google Scholar] [CrossRef]
- Villegas-Lanza, J.C.; Chlieh, M.; Cavalié, O.; Tavera, H.; Baby, P.; Chire-Chira, J.; Nocquet, J.M. Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation. J. Geophys. Res. Solid Earth 2016, 121, 7371–7394. [Google Scholar] [CrossRef]
- Wen, Y.; Xu, C.; Liu, Y.; Jiang, G. Deformation and source parameters of the 2015 Mw 6.5 earthquake in Pishan, western China, from Sentinel-1A and ALOS-2 data. Remote Sens. 2016, 8, 134. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Gamma SAR and interferometric processing software. In Proceedings of the ERS-ENVISAT Symposium, Gothenburg, Sweden, 16–20 October 2000; Volume 1620, p. 1620. [Google Scholar]
- Yagüe-Martínez, N.; Prats-Iraola, P.; Gonzalez, F.R.; Brcic, R.; Shau, R.; Geudtner, D.; Bamler, R. Interferometric processing of Sentinel-1 TOPS data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef]
- Wegnüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 support in the GAMMA software. Procedia Comput. Sci. 2016, 100, 1305–1312. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Seal, D. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 2. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Zebker, H.A.; Werner, C.L. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci. 1998, 23, 713–720. [Google Scholar] [CrossRef]
- Cavalié, O.; Doin, M.P.; Lasserre, C.; Briole, P. Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure. J. Geophys. Res. Solid Earth 2007, 112, B03403. [Google Scholar] [CrossRef]
- Zhang, Y.; Fattahi, H.; Amelung, F. Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Comput. Geosci. 2019, 133, 104331. [Google Scholar]
- Fattahi, H.; Amelung, F. DEM error correction in InSAR time series. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4249–4259. [Google Scholar] [CrossRef]
- Fattahi, H.; Amelung, F. InSAR observations of strain accumulation and fault creep along the Chaman Fault system, Pakistan and Afghanistan. Geophys. Res. Lett. 2016, 43, 8399–8406. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic: Dordrecht, The Netherlands; Boston, MA, USA, 2001; Volume 2. [Google Scholar]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Feng, W.; Li, Z.; Elliott, J.R.; Fukushima, Y.; Hoey, T.; Singleton, A.; Xu, Z. The 2011 Mw 6.8 Burma earthquake: Fault constraints provided by multiple SAR techniques. Geophys. J. Int. 2013, 195, 650–660. [Google Scholar] [CrossRef]
- Parsons, B.; Wright, T.; Rowe, P.; Andrews, J.; Jackson, J.; Walker, R.; Khatib, M.; Tablebian, M.; Bergman, E.; Engdahl, E.R. The 1994 Sefidabeh (eastern Iran) earthquakes revisited: New evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault. Geophys. J. Int. 2006, 164, 202–217. [Google Scholar] [CrossRef]
- Elliott, J.R.; Walters, R.J.; England, P.C.; Jackson, J.A.; Li, Z.; Parsons, B. Extension on the Tibetan plateau: Recent normal faulting measured by InSAR and body wave seismology. Geophys. J. Int. 2010, 183, 503–535. [Google Scholar] [CrossRef]
- Wang, K.; Fialko, Y. Space geodetic observations and models of postseismic deformation due to the 2005 M7. 6 Kashmir (Pakistan) earthquake. J. Geophys. Res. Solid Earth 2014, 119, 7306–7318. [Google Scholar] [CrossRef]
- England, P.C.; Houseman, G.A. The mechanics of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Sci. 1988, 326, 301–320. [Google Scholar]
- Liu, M. Cenozoic extension and magmatism in the North American Cordillera: The role of gravitational collapse. Tectonophysics 2001, 342, 407–433. [Google Scholar] [CrossRef]
- Artyushkov, E.V. Stresses in the lithosphere caused by crustal thickness inhomogeneities. J. Geophys. Res. 1973, 78, 7675–7708. [Google Scholar] [CrossRef]
- McKenzie, D. Active tectonics of the Mediterranean region. Geophys. J. Int. 1972, 30, 109–185. [Google Scholar] [CrossRef]
- Beck, S.L.; Zandt, G.; Myers, S.C.; Wallace, T.C.; Silver, P.G.; Drake, L. Crustal-thickness variations in the central Andes. Geology 1996, 24, 407–410. [Google Scholar] [CrossRef]
- Dewey, J.F. Extensional collapse of orogens. Tectonics 1988, 7, 1123–1139. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.; Xu, W.; Yin, Z.; Wen, Y.; Jiang, G. The 2017 Mw 6.6 Poso Earthquake: Implications for Extrusion Tectonics in Central Sulawesi. Seismol. Res. Lett. 2018, 90, 649–658. [Google Scholar] [CrossRef]
- Rey, P.; Vanderhaeghe, O.; Teyssier, C. Gravitational collapse of the continental crust: Definition, regimes and modes. Tectonophysics 2001, 342, 435–449. [Google Scholar] [CrossRef]
- Viti, M.; Mantovani, E.; Albarello, D. On The Plausibility of The Gravitational Collapse As Driving Mechanism For Tectonic Extension. In Proceedings of the EGS General Assembly Conference Abstracts, Nice, France, 21–26 April 2002; Volume 27. [Google Scholar]
- Isacks, B.L. Uplift of the central Andean plateau and bending of the Bolivian orocline. J. Geophys. Res. Solid Earth 1998, 93, 3211–3231. [Google Scholar] [CrossRef]
- Sheffels, B.M. Lower bound on the amount of crustal shortening, in the central Bolivian Andes. Geology 1990, 18, 812–815. [Google Scholar] [CrossRef]
- Hayes, G.P.; Smoczyk, G.M.; Benz, H.M.; Furlong, K.P.; Villaseñor, A. Seismicity of The Earth 1900–2013, Seismotectonics of South America (Nazca Plate Region) (No. 2015-1031-E); US Geological Survey: Reston, VA, USA, 2015. [Google Scholar]
- Wang, R.; Lorenzo-Martín, F.; Roth, F. PSGRN/PSCMP-a new code for calculating co-and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci. 2006, 32, 527–541. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Freed, A.M. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci. 2005, 33, 335–367. [Google Scholar] [CrossRef]
- Li, S.; Moreno, M.; Bedford, J.; Rosenau, M.; Oncken, O. Revisiting viscoelastic effects on interseismic deformation and locking degree: A case study of the Peru-North Chile subduction zone. J. Geophys. Res. Solid Earth 2015, 120, 4522–4538. [Google Scholar] [CrossRef]
- Stein, R.S.; Barka, A.A.; Dieterich, J.H. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys. J. Int. 1997, 128, 594–604. [Google Scholar] [CrossRef]
- Toda, S.; Stein, R.S.; Reasenberg, P.A.; Dieterich, J.H.; Yoshida, A. Stress transferred by the 1995 Mw = 6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities. J. Geophys. Res. Solid Earth 1998, 103, 24543–24565. [Google Scholar] [CrossRef]
- Mildon, Z.K.; Toda, S.; Faure Walker, J.P.; Roberts, G.P. Evaluating models of Coulomb stress transfer: Is variable fault geometry important? Geophys. Res. Lett. 2016, 43, 12407–12414. [Google Scholar] [CrossRef]
- Sboras, S.; Lazos, I.; Bitharis, S.; Pikridas, C.; Galanakis, D.; Fotiou, A.; Chatzipetros, A.; Pavlides, S. Source modelling and stress transfer scenarios of the October 30, 2020 Samos earthquake: Seismotectonic implications. Turk. J. Earth Sci. 2021, 30, 699–717. [Google Scholar] [CrossRef]
- Toda, S.; Enescu, B. Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast. Earth Planets Space 2011, 63, 171–185. [Google Scholar] [CrossRef]
Model | Lon/° | Lat/° | Strike/° | Dip/° | Rake/° | Length/km | Depth/km | Slip/m | Mw |
---|---|---|---|---|---|---|---|---|---|
USGS | −70.827 | −15.312 | 134/324 | 35/56 | −97/−85 | - | 12 | - | 6.2 |
GCMT | −70.93 | −15.28 | 148/322 | 43/47 | −86/−94 | - | 12.7 | - | 6.2 |
U-S-model | 6.13 |
Satellite | Track | Reference Date | Repeat Date | Perp. B (m) | Inc. Angle | Azi. Angle |
---|---|---|---|---|---|---|
Sentinel-1A | T149A | 15 November 2016 | 9 December 2016 | −15 | 33.6 | −12.1 |
Sentinel-1A | T127D | 26 November 2016 | 20 December 2016 | 112 | 39.0 | −167.8 |
Satellite | Track | Reference Date | Date Due | No. of Images |
---|---|---|---|---|
Sentinel-1A | T149A | 9 December 2016 | 19 June 2017 | 7 |
Sentinel-1A | T127D | 20 December 2016 | 30 June 2017 | 12 |
Depth/km | VP/km/s | VS/km/s | Density/g/cm3 |
---|---|---|---|
0~7.76 | 6.000 | 3.500 | 2720 |
7.76~17.6 | 6.600 | 3.800 | 2860 |
17.6~34 | 7.100 | 3.900 | 3050 |
34~∞ | 8.040 | 4.470 | 3310 |
Coulomb Stress Changes | 1942 Mw 8.1 Earthquake | 1996 Mw 7.7 Earthquake | 2001 Mw 8.4 Earthquake | 2001 Mw 7.6 Earthquake |
---|---|---|---|---|
CCS | 0.05472 | 0.008309 | 0.6491 | 0.1742 |
PCS | 0.01504 | 0.001751 | 0.0287 | 0.0164 |
CCS + PCS | 0.06976 | 0.01006 | 0.6778 | 0.1906 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Jia, W.; Yang, J.; Zhao, Y. Insight into the 1 December 2016 Mw 6.2 Juliaca Earthquake, Southern Peru, by InSAR Observations and Field Investigation. Remote Sens. 2023, 15, 4341. https://doi.org/10.3390/rs15174341
Hu Q, Jia W, Yang J, Zhao Y. Insight into the 1 December 2016 Mw 6.2 Juliaca Earthquake, Southern Peru, by InSAR Observations and Field Investigation. Remote Sensing. 2023; 15(17):4341. https://doi.org/10.3390/rs15174341
Chicago/Turabian StyleHu, Qingfeng, Weiwei Jia, Jiuyuan Yang, and Yanling Zhao. 2023. "Insight into the 1 December 2016 Mw 6.2 Juliaca Earthquake, Southern Peru, by InSAR Observations and Field Investigation" Remote Sensing 15, no. 17: 4341. https://doi.org/10.3390/rs15174341
APA StyleHu, Q., Jia, W., Yang, J., & Zhao, Y. (2023). Insight into the 1 December 2016 Mw 6.2 Juliaca Earthquake, Southern Peru, by InSAR Observations and Field Investigation. Remote Sensing, 15(17), 4341. https://doi.org/10.3390/rs15174341