Spectral De-Aliasing Method of Micro-Motion Signals Based on a Complex-Valued U-Net Network
Abstract
:1. Introduction
2. Related Work
2.1. Signal Model of Rotational Micro-Motion
2.2. Analysis of Zero Interpolation
2.3. Experimental Data Acquisition and Echo Data Processing
3. Method and Dataset
3.1. Design of the Complex-Valued U-Net
3.2. The Training Model
3.3. Dataset
3.3.1. Dataset of Zero Interpolation
3.3.2. Dataset under Different SNRs
3.3.3. Dataset of Experimental Data
4. Performance Analysis
4.1. Network Performance Analysis
4.2. Performance Analysis of the Complex-Valued U-Net
4.2.1. Performance Analysis under Different SNRs
4.2.2. Performance Analysis under Different Network Parameters
4.3. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, V.C.; Li, F.; Ho, S.S.; Wechsler, H. Analysis of Micro-Doppler Signatures. IEE Proc. Radar Sonar Navig. 2003, 150, 271–276. [Google Scholar] [CrossRef]
- Huang, J.; LI, X.; Huang, X.; Jia, F. Micro-Doppler Features Based Parameter Estimation and Identification of Tank. J. Electron. Inf. Technol. 2010, 32, 1050–1055. [Google Scholar]
- Wang, X.; Zhang, S.; Zhao, H.; Zhu, L.; Chen, S. Analyze of Ship’s Micro-Doppler Characteristics Based on Hough Transform. In Proceedings of the 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 23–25 October 2020; pp. 644–648. [Google Scholar]
- Liu, L.; McLernon, D.; Ghogho, M.; Hu, W. Micro-Doppler Extraction from Ballistic Missile Radar Returns Using Time-Frequency Analysis. In Proceedings of the 2010 7th International Symposium on Wireless Communication Systems, York, UK, 19–22 September 2010; pp. 780–784. [Google Scholar]
- Tao, Z.; Yang, S. Target Signal Separation of Missile Group Based on Micro-Motion Frequency Correlation. J. Phys. Conf. Ser. 2020, 1607, 012074. [Google Scholar] [CrossRef]
- Clemente, C.; Soraghan, J.J. GNSS-Based Passive Bistatic Radar for Micro-Doppler Analysis of Helicopter Rotor Blades. Aerosp. Electron. Syst. IEEE Trans. 2014, 50, 491–500. [Google Scholar] [CrossRef]
- Lee, D.; Park, H.; Moon, T.; Kim, Y. Continual Learning of Micro-Doppler Signature-Based Human Activity Classification. IEEE Geosci. Remote Sens. Lett. 2021, 19, 3502405. [Google Scholar] [CrossRef]
- Kim, Y.; Ling, H. Human Activity Classification Based on Micro-Doppler Signatures Using a Support Vector Machine. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1328–1337. [Google Scholar] [CrossRef]
- Smith, G.E.; Woodbridge, K.; Baker, C.J. Micro-Doppler Signature Classification. In Proceedings of the 2006 CIE International Conference on Radar, Shanghai, China, 16–19 October 2006. [Google Scholar]
- Xu, X.; Feng, C.; He, S. A Method for the Micro-Motion Signal Separation and Micro-Doppler Extraction for the Space Precession Target. IEEE Access 2020, 8, 130392–130404. [Google Scholar] [CrossRef]
- Chen, V.C.; Lipps, R.D. Time Frequency Signatures of Micro-Doppler Phenomenon for Feature Extraction. In Proceedings of the Wavelet Applications VII, Orlando, FL, USA, 26–28 April 2000. [Google Scholar]
- Lei, P.; Sun, J.; Wang, J.; Hong, W. Micromotion Parameter Estimation of Free Rigid Targets Based on Radar Micro-Doppler. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3776–3786. [Google Scholar] [CrossRef]
- Shan, T.; Liu, S.; Tao, R.; Zhang, G. Experiment Demonstration of Micro-Doppler Detection of Rotor Blades with Passive Coherent Location Based on Digital Video Broadcast. J. Commun. Technol. Electron. 2014, 59, 1215–1224. [Google Scholar] [CrossRef]
- Pang, C.; Han, Y.; Hou, H.; Liu, S.; Zhang, N. Micro-Doppler Signal Time-Frequency Algorithm Based on STFRFT. Sensors 2016, 16, 1559. [Google Scholar] [CrossRef]
- Park, J.H.; Yang, W.Y.; Bae, J.W.; Kang, S.C.; Myung, N.H. Extended High Resolution Range Profile-Jet Engine Modulation Analysis with Signal Eccentricity. Prog. Electromagn. Res. 2013, 142, 505–521. [Google Scholar] [CrossRef]
- Rui, Z.; Gang, L.; Zhang, Y.D. Micro-Doppler Interference Removal via Histogram Analysis in Time-Frequency Domain. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 755–768. [Google Scholar] [CrossRef]
- Stankovic, L.; Thayaparan, T.; Dakovic, M.; Popovic-Bugarin, V. Micro-Doppler Removal in the Radar Imaging Analysis. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1234–1250. [Google Scholar] [CrossRef]
- Guo, K.Y.; Li, Q.; Sheng, X.Q. A Precise Recognition Method of Missile Warhead and Decoy in Multi-Target Scene. J. Electromagn. Waves Appl. 2010, 24, 641–652. [Google Scholar] [CrossRef]
- Zhang, Q.; Yeo, T.S.; Tan, H.S.; Ying, L. Imaging of a Moving Target With Rotating Parts Based on the Hough Transform. IEEE Trans. Geosci. Remote Sens. 2008, 46, 291–299. [Google Scholar] [CrossRef]
- Yeh, C.; Zhou, W.; Lu, Y.; Yang, J. Non-Cooperative Target Imaging and Parameter Estimation with Narrowband Radar Echoes. Sensors 2016, 16, 125. [Google Scholar] [CrossRef]
- Lellouch, G.; Tran, P.; Pribic, R.; Genderen, P.V. OFDM Waveforms for Frequency Agility and Opportunities for Doppler Processing in Radar. In Proceedings of the 2008 IEEE Radar Conference (RADAR ’08), Rome, Italy, 26–30 May 2008. [Google Scholar]
- Chao, W.; Shuliang, W. Translational compensation of micro-motion with spectrum aliasing for narrow-band radar. Syst. Eng. Electron. 2010, 38, 2731–2737. [Google Scholar]
- Long, M.; Yang, J.; Xia, S.; Lv, M.; Wei, X.; Chen, W. A Micro-Doppler Frequency Ambiguity Resolution Method Based on Complex-Valued U-Net. Math. Probl. Eng. 2021, 2021, 2016816. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.-W.; Heng, P.-A. H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [Google Scholar] [CrossRef]
- Zeng, Z.; Xie, W.; Zhang, Y.; Lu, Y. RIC-Unet: An Improved Neural Network Based on Unet for Nuclei Segmentation in Histology Images. IEEE Access 2019, 7, 21420–21428. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Ye, Y.; Lau, R.Y.K.; Zhang, X.; Huang, X. Road Detection and Centerline Extraction Via Deep Recurrent Convolutional Neural Network U-Net. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7209–7220. [Google Scholar] [CrossRef]
- Borys, A. The Problem of Aliasing and Folding Effects in Spectrum of Sampled Signals in View of Information Theory. Int. J. Electron. Telecommun. 2022, 68, 315–322. [Google Scholar] [CrossRef]
- Jana, S.; Rakshit, G.; Maitra, A. Aliasing Effect Due to Convective Rain in Doppler Spectrum Observed by Micro Rain Radar at a Tropical Location. Adv. Space Res. 2018, 62, 2443–2453. [Google Scholar] [CrossRef]
- Zhou, L.; Kong, X.; Gong, C.; Zhang, F.; Zhang, X. FC-RCCN: Fully Convolutional Residual Continuous CRF Network for Semantic Segmentation. Pattern Recognit. Lett. 2018, 130, 54–63. [Google Scholar] [CrossRef]
- Zhou, L.; Kong, X.; Gong, C.; Zhang, F.; Zhang, X. Micro-Doppler Extraction Based on Short-Time Iterative Adaptive Approach and Inverse Radon Transform. Acta Electonica Sin. 2016, 44, 505. [Google Scholar] [CrossRef]
- Ming, L.; Jianchao, Z.; Xu, W.; Jun, Y. Influence of zero interpolation of radar echo series on signal frequency domain characteristics. J. Air Force Early Warn. Acad. 2021, 35, 20–24+29. [Google Scholar]
- Tong, Y.B.; Zhang, Q.S.; Qi, Y.P. Image Quality Assessing by Combining PSNR with SSIM. J. Image Graph. 2006, 1758–1763. [Google Scholar]
Interpolating Zero Multiples | Including Frequency Component |
---|---|
A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|
5 Weight Layers | 5 Weight Layers | 5 Weight Layers | 7 Weight Layers | 7 Weight Layers | 7 Weight Layers | 9 Weight Layers | 9 Weight Layers | 9 Weight Layers |
3Conv , ReLU | 3Conv , ReLU | 3Conv , ReLU | 3Conv , ReLU | 3Conv , ReLU | 3Conv , ReLU | 3Conv , ReLU | 3Conv , ReLU | 3Conv , ReLU |
Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU |
Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU |
Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU |
Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU Conv , ReLU Copy and Corp | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU Conv , ReLU Copy and Corp | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU Conv , ReLU Copy and Corp | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU | Max pool 2Conv , ReLU |
Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | |||
Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU Conv , ReLU Copy and Corp | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU Conv , ReLU Copy and Corp | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU Conv , ReLU Copy and Corp | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | |||
Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU | ||||||
Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU Conv , ReLU Copy and Corp | Up-conv Conv , ReLU Copy and Corp 2Conv , ReLU Conv , ReLU Copy and Corp | Up-conv Conv ReLU Copy and Corp 2Conv , ReLU Conv , ReLU Copy and Corp |
Configuration | Content |
---|---|
CPU | AMD Ryzen 7 5700U |
GPU | RTX 3050 |
Framework of deep learning | TensorFlow 2.6.0 |
System | Windows 10 |
FCN | FRCN | U-Net | |
---|---|---|---|
1 | 0.716 | 0.659 | 0.947 |
2 | 0.778 | 0.737 | 0.944 |
3 | 0.691 | 0.636 | 0.957 |
4 | 0.749 | 0.704 | 0.945 |
5 | 0.716 | 0.659 | 0.956 |
6 | 0.743 | 0.691 | 0.941 |
7 | 0.770 | 0.728 | 0.956 |
8 | 0.788 | 0.759 | 0.940 |
9 | 0.760 | 0.712 | 0.930 |
10 | 0.779 | 0.740 | 0.952 |
avg | 0.749 | 0.7025 | 0.9468 |
FCN | FRCN | U-Net | |
---|---|---|---|
1 | 20.68 | 18.95 | 43.33 |
2 | 20.75 | 19.26 | 42.71 |
3 | 20.64 | 19.00 | 43.51 |
4 | 20.65 | 19.09 | 43.16 |
5 | 20.71 | 19.02 | 44.69 |
6 | 20.69 | 19.09 | 42.53 |
7 | 20.70 | 19.20 | 44.97 |
8 | 20.73 | 19.55 | 44.51 |
9 | 20.68 | 19.18 | 41.34 |
10 | 20.73 | 19.23 | 44.46 |
avg | 20.70 | 19.16 | 43.52 |
0 dB | 1 dB | 2 dB | 3 dB | 4 dB | 5 dB | 6 dB | 7 dB | 8 dB | 9 dB | 10 dB | |
---|---|---|---|---|---|---|---|---|---|---|---|
SSIM | 0.322 | 0.359 | 0.302 | 0.448 | 0.455 | 0.424 | 0.443 | 0.446 | 0.415 | 0.480 | 0.392 |
PSNR (dB) | 20.48 | 21.08 | 17.95 | 22.85 | 24.02 | 24.49 | 25.23 | 26.31 | 26.48 | 27.59 | 28.19 |
Algorithm | Raw | Input | A | B | C | D |
---|---|---|---|---|---|---|
IRadon | 3.7 | 2.81 | 2.86 | 2.85 | 2.86 | 2.83 |
Hough | 3.96 | 2.19 | 2.47 | 2.48 | 2.47 | 3.96 |
Algorithm | E | F | G | H | I | |
IRadon | 2.84 | 2.83 | 2.86 | 2.87 | 2.86 | |
Hough | 2.19 | 2.48 | 2.47 | 2.19 | 2.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, M.; Yang, J.; Xia, S.; Lv, M.; Cheng, B.; Chen, W. Spectral De-Aliasing Method of Micro-Motion Signals Based on a Complex-Valued U-Net Network. Remote Sens. 2023, 15, 4299. https://doi.org/10.3390/rs15174299
Long M, Yang J, Xia S, Lv M, Cheng B, Chen W. Spectral De-Aliasing Method of Micro-Motion Signals Based on a Complex-Valued U-Net Network. Remote Sensing. 2023; 15(17):4299. https://doi.org/10.3390/rs15174299
Chicago/Turabian StyleLong, Ming, Jun Yang, Saiqiang Xia, Mingjiu Lv, Bolin Cheng, and Wenfeng Chen. 2023. "Spectral De-Aliasing Method of Micro-Motion Signals Based on a Complex-Valued U-Net Network" Remote Sensing 15, no. 17: 4299. https://doi.org/10.3390/rs15174299
APA StyleLong, M., Yang, J., Xia, S., Lv, M., Cheng, B., & Chen, W. (2023). Spectral De-Aliasing Method of Micro-Motion Signals Based on a Complex-Valued U-Net Network. Remote Sensing, 15(17), 4299. https://doi.org/10.3390/rs15174299