New Functionalities and Regional/National Use Cases of the Anomaly Hotspots of Agricultural Production (ASAP) Platform
Abstract
:1. Introduction
2. Data, Method and Functionality Improvements
2.1. Rainfall Estimates
2.2. NDVI Data
2.3. Water Satisfaction Index and Soil Moisture
2.4. Seasonal Precipitation Forecasts
2.5. Sub-National Crop Calendars
2.6. High Resolution Viewer
3. Regional Customisation and Local Use of ASAP Information
3.1. Improvement of Regional Climate Services in Eastern Africa in Collaboration with ICPAC
3.2. Adaptation of ASAP to OSS
3.3. Agrometeorological Bulletin by INAMET-Angola
3.4. ASAP Data as Predictors for Yield Forecasting
4. Ways Forward
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-00-932584-4. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Soille, P.; Burger, A.; De Marchi, D.; Kempeneers, P.; Rodriguez, D.; Syrris, V.; Vasilev, V. A Versatile Data-Intensive Computing Platform for Information Retrieval from Big Geospatial Data. Future Gener. Comput. Syst. 2018, 81, 30–40. [Google Scholar] [CrossRef]
- Nakalembe, C.; Kerner, H. Considerations for AI-EO for Agriculture in Sub-Saharan Africa. Environ. Res. Lett. 2023, 18, 041002. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Bayas, J.C.L.; Waldner, F.; Jacques, D.; Becker-Reshef, I.; Whitcraft, A.; Baruth, B.; Bonifacio, R.; Crutchfield, J.; et al. A Comparison of Global Agricultural Monitoring Systems and Current Gaps. Agric. Syst. 2019, 168, 258–272. [Google Scholar] [CrossRef]
- Nakalembe, C.; Becker-Reshef, I.; Bonifacio, R.; Hu, G.; Humber, M.L.; Justice, C.J.; Keniston, J.; Mwangi, K.; Rembold, F.; Shukla, S.; et al. A Review of Satellite-Based Global Agricultural Monitoring Systems Available for Africa. Glob. Food Secur. 2021, 29, 100543. [Google Scholar] [CrossRef]
- Atzberger, C.; Vuolo, F.; Klisch, A.; Rembold, F.; Meroni, M.; Marcio Pupin, M.; Formaggio, A. Remote Sensing Handbook. In Agriculture; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Rojas, O. Next Generation Agricultural Stress Index System (ASIS) for Agricultural Drought Monitoring. Remote Sens. 2021, 13, 959. [Google Scholar] [CrossRef]
- Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zou, W.; Zheng, Y.; Zhang, N.; Chang, S.; Xing, Q.; et al. Global Crop Monitoring: A Satellite-Based Hierarchical Approach. Remote Sens. 2015, 7, 3907–3933. [Google Scholar] [CrossRef]
- Cammalleri, C.; Arias-Muñoz, C.; Barbosa, P.; de Jager, A.; Magni, D.; Masante, D.; Mazzeschi, M.; McCormick, N.; Naumann, G.; Spinoni, J.; et al. A Revision of the Combined Drought Indicator (CDI) Used in the European Drought Observatory (EDO). Nat. Hazards Earth Syst. Sci. 2021, 21, 481–495. [Google Scholar] [CrossRef]
- Rembold, F.; Meroni, M.; Urbano, F.; Csak, G.; Kerdiles, H.; Perez-Hoyos, A.; Lemoine, G.; Leo, O.; Negre, T. ASAP: A New Global Early Warning System to Detect Anomaly Hot Spots of Agricultural Production for Food Security Analysis. Agric. Syst. 2019, 168, 247–257. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Justice, C.; Barker, B.; Humber, M.; Rembold, F.; Bonifacio, R.; Zappacosta, M.; Budde, M.; Magadzire, T.; Shitote, C.; et al. Strengthening Agricultural Decisions in Countries at Risk of Food Insecurity: The GEOGLAM Crop Monitor for Early Warning. Remote Sens. Environ. 2020, 237, 111553. [Google Scholar] [CrossRef]
- FAO. Building Climate Resilience for Food Security and Nutrition. In The State of Food Security and Nutrition in the World; FAO: Rome, Italy, 2018; ISBN 978-92-5-130571-3. [Google Scholar]
- FAO. Safeguarding against Economic Slowdowns and Downturns. In The State of Food Security and Nutrition in the World; FAO: Rome, Italy, 2019; ISBN 978-92-5-131570-5. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern Africa. Quart. J R. Meteoro Soc 2018, 144, 292–312. [Google Scholar] [CrossRef]
- Lemma, E.; Upadhyaya, S.; Ramsankaran, R. Investigating the Performance of Satellite and Reanalysis Rainfall Products at Monthly Timescales across Different Rainfall Regimes of Ethiopia. Int. J. Remote Sens. 2019, 40, 4019–4042. [Google Scholar] [CrossRef]
- Muthoni, F.K.; Odongo, V.O.; Ochieng, J.; Mugalavai, E.M.; Mourice, S.K.; Hoesche-Zeledon, I.; Mwila, M.; Bekunda, M. Long-Term Spatial-Temporal Trends and Variability of Rainfall over Eastern and Southern Africa. Theor. Appl. Climatol. 2019, 137, 1869–1882. [Google Scholar] [CrossRef]
- Klisch, A.; Atzberger, C. Operational Drought Monitoring in Kenya Using MODIS NDVI Time Series. Remote Sens. 2016, 8, 267. [Google Scholar] [CrossRef]
- Atzberger, C.; Eilers, P.H.C. Evaluating the Effectiveness of Smoothing Algorithms in the Absence of Ground Reference Measurements. Int. J. Remote Sens. 2011, 32, 3689–3709. [Google Scholar] [CrossRef]
- Eilers, P.H.C. A Perfect Smoother. Anal. Chem. 2003, 75, 3631–3636. [Google Scholar] [CrossRef]
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); University of Arizona, Vegetation Index and Phenology Lab: Tucson, AZ, USA, 2015. [Google Scholar]
- Beck, P.S.A.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved Monitoring of Vegetation Dynamics at Very High Latitudes: A New Method Using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Sedano, F.; Kempeneers, P.; Hurtt, G. A Kalman Filter-Based Method to Generate Continuous Time Series of Medium-Resolution NDVI Images. Remote Sens. 2014, 6, 12381–12408. [Google Scholar] [CrossRef]
- Meroni, M.; Fasbender, D.; Rembold, F.; Atzberger, C.; Klisch, A. Near Real-Time Vegetation Anomaly Detection with MODIS NDVI: Timeliness vs. Accuracy and Effect of Anomaly Computation Options. Remote Sens. Environ. 2019, 221, 508–521. [Google Scholar] [CrossRef] [PubMed]
- Popov, G.; Frere, M. Early Agrometeorological Crop Yield Assessment; FAO Plant Production and Protection Paper; FAO: Rome, Italy, 1986. [Google Scholar]
- Pérez-Hoyos, A.; Udías, A.; Rembold, F. Integrating Multiple Land Cover Maps through a Multi-Criteria Analysis to Improve Agricultural Monitoring in Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102064. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Food and Agriculture Organization of the United Nations (Eds.) Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 978-92-5-104219-9. [Google Scholar]
- Boogaard, H.; van der Wijngaart, R.; van Kraalingen, D.; Meroni, M.; Rembold, F. ASAP Water Satisfaction Index; European Commission Joint Research Centre, Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 4th ed.; Elsevier: Cambridge, MA, USA, 2019; ISBN 978-0-12-815823-4. [Google Scholar]
- Dimou, M.; Meroni, M.; Rembold, F. Development of a National and Sub-National Crop Calendars Data Set Compatible with Remote Sensing Derived Land Surface Phenology; European Commission Joint Research Centre, Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- IPCC; Core Writing Team; Lee, H.; Romero, J. (Eds.) Climate Change 2023: Synthesis Report; A Report of the Intergovernmental Panel on Climate Change; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Schauberger, B.; Jägermeyr, J.; Gornott, C. A Systematic Review of Local to Regional Yield Forecasting Approaches and Frequently Used Data Resources. Eur. J. Agron. 2020, 120, 126153. [Google Scholar] [CrossRef]
- Meroni, M.; Rembold, F.; Urbano, F.; Csak, G.; Lemoine, G.; Kerdiles, H.; Perez-Hoyos, A. The Warning Classification Scheme of ASAP—Anomaly Hot Spots of Agricultural Production v 4.0; European Commission Joint Research Centre, Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Meroni, M.; Waldner, F.; Seguini, L.; Kerdiles, H.; Rembold, F. Yield Forecasting with Machine Learning and Small Data: What Gains for Grains? Agric. For. Meteorol. 2021, 308–309, 108555. [Google Scholar] [CrossRef]
- Fall, C.M.N.; Lavaysse, C.; Kerdiles, H.; Dramé, M.S.; Roudier, P.; Gaye, A.T. Performance of Dry and Wet Spells Combined with Remote Sensing Indicators for Crop Yield Prediction in Senegal. Clim. Risk Manag. 2021, 33, 100331. [Google Scholar] [CrossRef]
- Kerdiles, H.; Rembold, F.; Leo, O.; Boogaard, H.; Hoek, S. CST, a Freeware for Predicting Crop Yield from Remote Sensing or Crop Model Indicators: Illustration with RSA and Ethiopia. In Proceedings of the 2017 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Xu, B.; Park, T.; Yan, K.; Chen, C.; Zeng, Y.; Song, W.; Yin, G.; Li, J.; Liu, Q.; Knyazikhin, Y.; et al. Analysis of Global LAI/FPAR Products from VIIRS and MODIS Sensors for Spatio-Temporal Consistency and Uncertainty from 2012–2016. Forests 2018, 9, 73. [Google Scholar] [CrossRef]
- Yan, K.; Park, T.; Chen, C.; Xu, B.; Song, W.; Yang, B.; Zeng, Y.; Liu, Z.; Yan, G.; Knyazikhin, Y.; et al. Generating Global Products of LAI and FPAR From SNPP-VIIRS Data: Theoretical Background and Implementation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2119–2137. [Google Scholar] [CrossRef]
- Piles, M.; Mateo-Sanchis, A.; Munoz-Mari, J.; Camps-Valls, G.; Waldner, F.; Rembold, F.; Meroni, M. Global Cropland Yield Monitoring with Gaussian Processes. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 180–183. [Google Scholar]
Category | Variable | Spatial Resolution | Temporal Resolution | Source |
---|---|---|---|---|
Satellite vegetation proxy | NDVI | 1 km | 10 day | MODIS MOD13A2 and MYD13A2 V006 filtered using the constrained Whittaker smoother as described in [20] |
Meteorological data | Average air temperature (at 2 m), Global Radiation sum | 25 km | 10 day | Elaboration on ECMWF ERA5 data as described in [35] |
Precipitation sum, SPI 3 months | 5 km | 10 day | CHIRPS 2.0 [16] | |
Water satisfaction index | 1 km | 10 day | [30] | |
Cropland/rangeland fraction | Percentage of the pixel occupied by cropland/rangeland | 1 km | static | Derived from hybrid cropland mask combining multiple land cover maps [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rembold, F.; Meroni, M.; Otieno, V.; Kipkogei, O.; Mwangi, K.; de Sousa Afonso, J.M.; Ihadua, I.M.T.J.; José, A.E.A.; Zoungrana, L.E.; Taieb, A.H.; et al. New Functionalities and Regional/National Use Cases of the Anomaly Hotspots of Agricultural Production (ASAP) Platform. Remote Sens. 2023, 15, 4284. https://doi.org/10.3390/rs15174284
Rembold F, Meroni M, Otieno V, Kipkogei O, Mwangi K, de Sousa Afonso JM, Ihadua IMTJ, José AEA, Zoungrana LE, Taieb AH, et al. New Functionalities and Regional/National Use Cases of the Anomaly Hotspots of Agricultural Production (ASAP) Platform. Remote Sensing. 2023; 15(17):4284. https://doi.org/10.3390/rs15174284
Chicago/Turabian StyleRembold, Felix, Michele Meroni, Viola Otieno, Oliver Kipkogei, Kenneth Mwangi, João Maria de Sousa Afonso, Isidro Metódio Tuleni Johannes Ihadua, Amílcar Ernesto A. José, Louis Evence Zoungrana, Amjed Hadj Taieb, and et al. 2023. "New Functionalities and Regional/National Use Cases of the Anomaly Hotspots of Agricultural Production (ASAP) Platform" Remote Sensing 15, no. 17: 4284. https://doi.org/10.3390/rs15174284
APA StyleRembold, F., Meroni, M., Otieno, V., Kipkogei, O., Mwangi, K., de Sousa Afonso, J. M., Ihadua, I. M. T. J., José, A. E. A., Zoungrana, L. E., Taieb, A. H., Urbano, F., Dimou, M., Kerdiles, H., Vojnovic, P., Zampieri, M., & Toreti, A. (2023). New Functionalities and Regional/National Use Cases of the Anomaly Hotspots of Agricultural Production (ASAP) Platform. Remote Sensing, 15(17), 4284. https://doi.org/10.3390/rs15174284