Anthropogenic and Climate-Driven Water Storage Variations on the Mongolian Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. GRACE Data
2.1.2. Precipitation Data
2.1.3. Hydrological Model Simulations
2.1.4. Data of Human Activities
2.2. Methodologies
2.2.1. TWSA and GWSA Estimation
2.2.2. Reconstruction of Climate−Driven Water Storage Anomalies
2.2.3. ICA
3. Results
3.1. Water Storage Changes in the MP from 2002 to 2017
3.2. TWSA Signal Decomposition Using ICA
3.3. Comparison of the ICA Modes with Simulated CWSA and HWSA Products
4. Discussion
4.1. Human and Climate-Driven Water Storage Anomalies
4.2. Perspective
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Salama, M.S.; Krol, M.S.; Su, Z.; Hoekstra, A.Y.; Zeng, Y.; Zhou, Y. Estimation of human-induced changes in terrestrial water storage through integration of GRACE satellite detection and hydrological modeling: A case study of the Yangtze River basin. Water Resour. Res. 2015, 51, 8494–8516. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef]
- Xia, X.; Yang, G. Dust Storms and its Control in Northwest China; Chinese Environmental Press: Beijing, China, 1996. [Google Scholar]
- Wang, X.; Dong, Z.; Zhang, J.; Liu, L. Modern dust storms in China: An overview. J. Arid. Environ. 2004, 58, 559–574. [Google Scholar] [CrossRef]
- Wada, Y.; Beek, L.; Kempen, C.; Reckman, J.; Vasak, S.; Bierkens, M. Global depletio-n of groundwater resources. Geophys. Res. Lett. 2010, 37, 44571. [Google Scholar] [CrossRef]
- Gao, S.; Tang, Y.; Tang, K. Groundwater vulnerability assessment in Tongliao Plain, Inner Mongolia. J. China Inst. Water Resour. Hydropower Res. 2015, 13, 261–269. [Google Scholar]
- Nalbantis, I.; Tsakiris, G. Assessment of Hydrological Drought Revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Sun, Z.; Long, D.; Yang, W.; Li, X.; Pan, Y. Reconstruction of GRACE Data on Changes in Total Water Storage Over the Global Land Surface and 60 Basins. Water Resour. Res. 2020, 56, e2019WR026250. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.Y.; Schmied, H.M.; van Beek, L.P.H.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C.; et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef] [PubMed]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48, 4531. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Rateb, A.; Sun, A.; Wiese, D.; Save, H.; Beaudoing, H.; Lo, M.H.; Müller-Schmied, H.; Döll, P.; et al. Tracking Seasonal Fluctuations in Land Water Storage Using Global Models and GRACE Satellites. Geophys. Res. Lett. 2019, 46, 5254–5264. [Google Scholar] [CrossRef]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 2019, 9, 358–369. [Google Scholar] [CrossRef]
- Othman, A.; Abdelrady, A.; Mohamed, A. Monitoring Mass Variations in Iraq Using Time-Variable Gravity Data. Remote Sens. 2022, 14, 3346. [Google Scholar] [CrossRef]
- Chen, J.; Jin, L.; Zhang, Z.; Ni, S. Long-term groundwater variations in Northwest In-dia from satellite gravity measurements. Glob. Planet. Change 2014, 116, 130–138. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Scanlon, B.; Guentner, A. Long-term groundwater storage change in Victoria, Australia from satellite gravity and in situ observations. Glob. Planet. Change 2016, 139, 56–65. [Google Scholar] [CrossRef]
- Humphrey, V.; Gudmundsson, L.; Seneviratne, S.I. A global reconstruction of climate-driven subdecadal water storage variability. Geophys. Res. Lett. 2017, 44, 2300–2309. [Google Scholar] [CrossRef]
- Humphrey, V.; Gudmundsson, L. GRACE-REC: A reconstruction of climate-driven wate-r storage changes over the last century. Earth Syst. Sci. Data 2019, 11, 1153–1170. [Google Scholar] [CrossRef]
- Panda, D.K.; Wahr, J. Spatiotemporal evolution of water storage changes in India from the updated GRACE-derived gravity records. Water Resour. Res. 2000, 52, 135–149. [Google Scholar] [CrossRef]
- Yi, S.; Sun, W.; Chen, J.; Feng, W. Anthropogenic and climate-driven water depletion in Asia. Pap. Present. Agu Fall Meet. 2016, 43, 9061–9069. [Google Scholar] [CrossRef]
- Reager, J.T.; Gardner, A.S.; Famiglietti, J.S.; Wiese, D.N.; Eicker, A.; Lo, M.H. A decade of sea level rise slowed by climate-driven hydrology. Science 2016, 351, 699. [Google Scholar] [CrossRef]
- Zhong, Y.; Feng, W.; Humphrey, V.; Zhong, M. Human-Induced and Climate-Driven Contributions to Water Storage Variations in the Haihe River Basin, China. Remote Sens. 2019, 11, 3050. [Google Scholar] [CrossRef]
- Wang, T.Y.; Wang, P.; Zhang, Y.C.; Yu, J.J.; Fang, Y.H. Contrasting groundwater depletion patterns induced by anthropogenic and climate-driven factors on Alxa Plateau, northwestern China. J. Hydrol. 2019, 576, 262–272. [Google Scholar] [CrossRef]
- Liu, B.; Zou, X.; Yi, S.; Sneeuw, N.; Cai, J.; Li, J. Identifying and separating climate- and human-driven water storage anomalies using GRACE satellite data. Remote Sens. Environ. 2021, 263, 112559. [Google Scholar] [CrossRef]
- Fasullo, J.T.; Lawrence, D.M.; Swenson, S.C. Are GRACE-era Terrestrial Water Tren-ds Driven by Anthropogenic Climate Change? Adv. Meteorol. 2016, 2016, 4830603. [Google Scholar] [CrossRef]
- Felfelani, F.; Wada, Y.; Longuevergne, L.; Pokhrel, Y.N. Natural and human-induced terrestrial water storage change: A global analysis using hydrological models and GRACE. J. Hydrol. 2017, 553, 105–118. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Wiese, D.N. The JPL RL05M GRACE Mascon Solution: Status, Updates, and Future Prospects. AGU Fall Meet. Abstr. 2016, 2016, G13A-1087. [Google Scholar]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. Solid Earth 2008, 113, 5338. [Google Scholar] [CrossRef]
- Cheng, M.; Ries, J.C.; Tapley, B.D. Variations of the Earth’s figure axis from satelli-te laser ranging and GRACE. J. Geophys. Res. Solid Earth 2015, 116, 6265. [Google Scholar] [CrossRef]
- Peltier, W.R.; Argus, D.F.; Drummond, R. Comment on An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model. J. Geophys. Res. Solid Earth 2018, 123, 2019–2028. [Google Scholar] [CrossRef]
- Ahmed, M.; Aqnouy, M.; El Messari, J.S. Sustainability of Morocco’s groundwater resources in response to natural and anthropogenic forces. J. Hydrol. 2021, 603, 126866. [Google Scholar] [CrossRef]
- Döll, P.; Kaspar, F.; Lehner, B. A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol. 2003, 270, 105–134. [Google Scholar] [CrossRef]
- Hunger, M.; Döll, P. Value of river discharge data for global-scale hydrological modeling. Hydrology and Earth System Sciences 2007, 12, 841–861. [Google Scholar] [CrossRef]
- Werth, S.; Güntner, A. Calibration analysis for water storage variability of the global hydrological model WGHM. Hydrol. Earth Syst. Sci. Discuss. 2010, 6, 59–78. [Google Scholar] [CrossRef]
- Zhang, Z.; Chao, B.F.; Chen, J.; Wilson, C.R. Terrestrial water storage anomalies of Yangtze River Basin droughts observed by GRACE and connections with ENSO. Glob. Planet. Change 2015, 126, 35–45. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Inner Mongolia Statistical Yearbook; China Statistics Press: Beijing, China, 2015. [Google Scholar]
- Bingham, E.; Hyvärinen, A. A Fast Fixed-Point Algorithm for Independent Componet Analysis. Int. J. Neural Syst. 2000, 10, 1–8. [Google Scholar] [CrossRef]
- Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 1999, 10, 626–634. [Google Scholar] [CrossRef]
- Hyvarinen, A.; Oja, E. Independent Component Analysis: Algorithms and Applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef]
- Tsembelsuren, B.; Yu, C.H.; Rong, K. Study of Coal Trade between Mongolia and China, its Effect in Mongolian Coal Market. Eur. Res. 2012, 19, 379–382. [Google Scholar]
- Purev, B.; He, W. Study on Competitiveness of Mongolian Coking Coal. Tech. Soc. Sci. J. 2021, 19, 412. [Google Scholar]
- Bulag, U.E. Mongolia in 2009 from landlocked to land-linked cosmopolitan. Asian Surv. 2010, 50, 97–103. [Google Scholar] [CrossRef]
- Wang, H.Y.; Li, W.X.; Yang, Y.J.; Jiang, D.K. Groundwater dynamics in plain area in Tongliao, Inner Mongolia. Inn. Mong. Water Resour. 2011, 4, 111–113. [Google Scholar]
Mongolia (2002–2007/2008–2017) | Inner Mongolia (2002–2007/2008–2017) | |
---|---|---|
TWSA(GRACE) | 5.28 ± 1.70/1.12 ± 0.80 | −7.48 ± 2.5/−1.08 ± 0.54 |
CWSA(IC1M/IC2IM) | 5.17 ± 1.13/2.67 ± 0.50 | −5.01 ± 2.0/2.10 ± 0.96 |
HWSA(IC2M/IC1IM) | −0.11 ± 0.60/−1.64 ± 0.32 | −1.65 ± 0.78/−3.12 ± 0.57 |
CWSAhumphrey | −2.66 ± 1.62/−1.87 ± 0.68 | 3.33 ± 2.26/3.41 ± 1.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Zhang, Z.; Song, Z.; Li, Y.; Yan, H. Anthropogenic and Climate-Driven Water Storage Variations on the Mongolian Plateau. Remote Sens. 2023, 15, 4184. https://doi.org/10.3390/rs15174184
Zheng S, Zhang Z, Song Z, Li Y, Yan H. Anthropogenic and Climate-Driven Water Storage Variations on the Mongolian Plateau. Remote Sensing. 2023; 15(17):4184. https://doi.org/10.3390/rs15174184
Chicago/Turabian StyleZheng, Shuo, Zizhan Zhang, Zhe Song, Yan Li, and Haoming Yan. 2023. "Anthropogenic and Climate-Driven Water Storage Variations on the Mongolian Plateau" Remote Sensing 15, no. 17: 4184. https://doi.org/10.3390/rs15174184
APA StyleZheng, S., Zhang, Z., Song, Z., Li, Y., & Yan, H. (2023). Anthropogenic and Climate-Driven Water Storage Variations on the Mongolian Plateau. Remote Sensing, 15(17), 4184. https://doi.org/10.3390/rs15174184