Landscape Ecological Risk Assessment for the Tarim River Basin on the Basis of Land-Use Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Processing
2.3. Methods
2.3.1. Division
2.3.2. Establishment of LER Model
2.3.3. Spatial Analysis Methods
3. Results
3.1. Analysis of LUC
3.2. Analysis of Spatiotemporal Changes of LER
3.2.1. Temporal Change of Landscape Pattern Indices
3.2.2. Spatial Differentiation of LER
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Liu, X.; Zhao, C.; Chang, Y.; Zang, F. Spatial-temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National nature reserve in Gansu Province, China. Ecol. Indic. 2021, 124, 107454. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Y.L.; Chang, Z.B.; Wu, J.; Zhu, Z.Y. Landscape ecological risk assessment based on land use change—A case study of coastal zone of Guangdong Province. Environ. Ecol. 2022, 4, 23–33. [Google Scholar]
- Wang, J.; Wang, D.C.; Zhang, L.H. Space and temporal variation analysis of land use ecological risk in Beijing-Tianjin-Hebei urban agglomeration. J. Ecol. 2018, 38, 4307–4316. [Google Scholar]
- Aguilera, M.A.; González, M.G. Urban infrastructure expansion and artificial light pollution degrade coastal ecosystems, increasing natural-to-urban structural connectivity. Landsc. Urban Plan. 2023, 229, 104609. [Google Scholar] [CrossRef]
- Murray, N.J.; Worthington, T.A.; Bunting, P.; Duce, S.; Hagger, V.; Lovelock, C.E.; Lyons, M.B. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 2022, 376, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Dang, W.X.; Liu, Y.X.; Zong, M.; Hu, X. Review on landscape ecological risk assessment. J. Geogr. Sci. 2015, 70, 664–677. [Google Scholar]
- Landis, W.G. Twenty years before and hence, Ecological risk assessment at multiple scales with multiple stressors and multiple endpoints. Hum. Ecol. Risk Assess. 2003, 9, 1317–1326. [Google Scholar] [CrossRef]
- Piet, G.J.; Knights, A.M.; Jongbloed, R.H.; Tamis, J.E.; de Vries, P.; Robinson, L.A. Ecological risk assessments to guide decision-making: Methodology matters. Environ. Sci. Policy 2017, 68, 1–9. [Google Scholar] [CrossRef]
- Qian, B.; Yan, Y.Q.; Zhang, T.H.; Li, X.Y.; Zhang, R. Landscape ecological risk identification and optimization strategy in Xining City based on land use change. Chin. J. Ecol. 2023, 1, 1–15. [Google Scholar]
- Zhang, X.M.; Dong, T.X.; Du, H.M.; Yuan, C.; Liao, C.H.; Wang, F. Analysis on Spatial Heterogeneity of Landscape Ecological Risk in Fujian g River Basin. Res. Soil Water Conserv. 2022, 29, 156–163. [Google Scholar]
- Sun, H.B.; Yang, G.S.; Su, W.Z.; Zhu, T.M.; Wan, R.R. Ecological risk assessment of land use in the area along Changjiang River: A case study of Nanjing China. J. Ecol. 2010, 30, 5616–5625. [Google Scholar]
- Perez, D.J.; Iturburu, F.G.; Calderon, G.; Oyesqui, L.A.E.; Geronimo, E.D.; Aparicio, V.C. Ecological risk assessment of current-use pesticides and biocides in soils, sediments and surface water of a mixed land-use basin of the Pampas region, Argentina. Chemosphere 2021, 1, 263. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Mamun, M.H.A.; Masunaga, S. Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Sci. Total Environ. 2015, 512–513, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Domene, X.; Ramirez, W.; Mattana, S.; Alcaniz, J.M.; Andres, P. Ecological risk assessment of organic waste amendments using the species sensitivity distribution from a soil organisms test battery. Environ. Pollut. 2008, 155, 227–236. [Google Scholar] [CrossRef]
- Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape ecological risk assessment of Chinese coastal cities based on land use change. Appl. Geogr. 2020, 117, 102174. [Google Scholar] [CrossRef]
- Hayes, E.H.; Landis, W.G. Regional Ecological Risk Assessment of a Near Shore Marine Environment: Cherry Point, WA. Hum. Ecol. Risk Assess. 2004, 10, 299–325. [Google Scholar] [CrossRef]
- Obery, A.M.; Landis, W.G. A regional multiple stressor risk assessment of the Codorus Creek Watershed applying the relative risk model. Hum. Ecol. Risk Assess. 2002, 8, 405–428. [Google Scholar] [CrossRef]
- Molinos, J.G.; Takao, S.; Kumagai, N.H.; Poloczanska, E.S.; Burrows, M.T.; Fujii, M.; Yamano, H. Improving the interpretability of climate landscape metrics: An ecological risk analysis of Japan’s Marine Protected Areas. Plant Biotechnol. Nar. 2016, 33, 4440–4452. [Google Scholar]
- Yanes, A.; Botero, C.M.; Arrizabalaga, M.; Vasquez, J.G. Methodological proposal for ecological risk assessment of the coastal zone of Antioquia, Colombia. Ecol. Eng. 2019, 130, 242–351. [Google Scholar] [CrossRef]
- Li, X.P.; Li, S.S.; Zhang, Y.F.; O’Connor, P.J.; Zhang, L.W.; Yan, J.P. Landscape Ecological Risk Assessment under Multiple Indicators. Land 2021, 10, 739. [Google Scholar] [CrossRef]
- Wu, J.S.; Zhu, Q.L.; Qiao, N.; Wang, Z.Y.; Sha, W.; Luo, K.Y.; Wang, H.L.; Feng, Z. Ecological risk assessment of coal mine area based on “source-sink” landscape theory—A case study of Pingshuo mining area. J. Clean. Prod. 2021, 295, 126371. [Google Scholar] [CrossRef]
- Van den Brink, P.J.; Choung, C.B.; Landis, W.; Mayer-Pinto, M.; Pettigrove, V.; Scanes, P.; Smith, R.; Stauber, J. New approaches to the ecological risk assessment of multiple stressors. Mar. Freshw. Res. 2016, 67, 429–439. [Google Scholar] [CrossRef]
- Wang, Y.D.; Chen, Y.N.; Duan, W.L.; Jiao, L. Evaluation of Sustainable Water Resource Use in the Tarim River Basin Based on Water Footprint. Sustainability 2022, 4, 10611. [Google Scholar] [CrossRef]
- Pang, N.; Deng, X.Y.; Long, A.H.; Zhang, L.L.; Gu, X.C. Evaluation of the Resilience of the Socio-Hydrological System of the Tarim River Basin in China and Analysis of the Degree of Barriers. Sustainability 2022, 14, 7571. [Google Scholar] [CrossRef]
- Chu, Z.; Xu, C.C.; Luo, Y.X.; Sun, Q. Landuse simulation and ecological benefit evaluation in the Tarim River basinbased on ecological protection red line management. Acta Ecol. Sin. 2021, 41, 7380–7392. [Google Scholar]
- Li, X.; Zuo, Q.T.; Zhai, J.Q.; Zhao, Y.; Wang, Y.; Han, S.Y. Evaluation of Adaptive Utilization Capacity of Water Resources and Analysis of Driving Element: A Case Study of Tarim River Basin. Water 2022, 14, 3820. [Google Scholar] [CrossRef]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat. Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Li, X.; Yang, C.X.; Xin, G.X.; Yang, K.; Jiang, H.Y. Landscape Ecological Risk Characteristics of Three Gorges Reservoir Area Basedon Terrain Gradient. Res. Soil Water Conserv. 2023, 30, 156–164. [Google Scholar]
- Kang, Z.W.; Zhang, Z.Y.; Wei, H.; Liu, L.; Ning, S.; Zhao, G.N.; Wang, T.X.; Tian, H. Landscape ecological risk assessment in Manas River Basin based on land use change. Acta Ecol. Sin. 2020, 40, 6472–6485. [Google Scholar]
- Feng, M.Q.; Chen, Y.N.; Duan, W.L.; Fang, G.H.; Li, Z.; Jiao, L.; Sun, F.; Li, Y.P.; Hou, Y.F. Comprehensive evaluation of the water-energy-food nexus in the agricultural management of the Tarim River Basin, Northwest China. Agric. Water Manag. 2022, 271, 107811. [Google Scholar] [CrossRef]
- Xie, H.L.; Wang, P.; Huang, H.S. Ecological Risk Assessment of Land Use Change in the Poyang Lake Eco-economic Zone, China. Int. J. Environ. Res. Public Health 2013, 10, 328–346. [Google Scholar] [CrossRef]
- Jenks, G.F. The Data Model Concept in Statistical Mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Tan, L.; Luo, W.; Yang, B.; Huang, M.; Shuai, S.; Cheng, C.X.; Zhou, X.; Li, M.N.; Hu, C.W. Evaluation of landscape ecological risk in key ecological functional zone of South–to–North Water Diversion Project, China. Ecol. Indic. 2023, 147, 109934. [Google Scholar] [CrossRef]
- Liu, H.; Hao, H.G.; Sun, L.H.; Zhou, T.T. Spatial–Temporal Evolution Characteristics of Landscape Ecological Risk in the Agro-Pastoral Region in Western China: A Case Study of Ningxia Hui Autonomous Region. Land 2022, 11, 1829. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, Y.; Li, Z.; Li, Y.; Sun, F.; Zhang, S.; Wang, C.; Feng, M. Land Use Dynamic Changes in an Arid Inland River Basin Based on Multi-Scenario Simulation. Remote Sens. 2022, 14, 2797. [Google Scholar] [CrossRef]
- Tan, R.H.; Zhou, K.H. Examining the Causal Effects of Road Networks on Landscape Ecological Risk: The Case of Wuhan, China. J. Urban Plan. Dev. 2023, 149, 05023004. [Google Scholar] [CrossRef]
- Zhou, Z.; Han, N.; Liu, J.; Yan, Z.; Zhu, J. Glacier variations and their response to climate change in an arid inland river basin of Northwest China. J. Arid Land. 2020, 2, 357–373. [Google Scholar] [CrossRef]
- Deng, M.J. Research and practice on ecological water diversion and ecological restoration of Tarim River. China Water Resour. 2022, 19, 29–32. [Google Scholar]
- Yan, Z.C.; You, N.L.; Wang, L.; Lan, C.W. Assessing the Impact of Road Network on Urban Landscape Ecological Risk Based on Corridor Cutting Degree Model in Fuzhou, China. Sustainability 2023, 15, 1724. [Google Scholar] [CrossRef]
- Hou, Y.F.; Chen, Y.N.; Ding, J.L.; Li, Z.; Li, Y.P.; Sun, F. Ecological Impacts of Land Use Change in the Arid Tarim River Basin of China. Remote Sens. 2022, 14, 1894. [Google Scholar] [CrossRef]
- Li, K.M.; Li, Z.Q.; Li, M.T.; Huai, B.J. The response of three monitored glaciers to climate warming on the southern slope of Tomur Peak in the past 40 years. Res. Environ. Arid Zone 2017, 31, 6. [Google Scholar]
- Zhang, P.; Deng, X.; Long, A.; Xu, H.; Ye, M.; Li, J. Change in Spatial Distribution Patterns and Regeneration of Populus euphratica under Different Surface Soil Salinity Conditions. Sci. Rep. 2019, 9, 9123. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.Q.; Chen, Y.N.; Guan, X.F.; Zhao, Y.; Chen, J.; Mao, W.Y. Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
Landscape Pattern Indices | Formula | Description |
---|---|---|
Landscape fragmentation index (Ci) | where ni is the patch number of landscape i, and Ai is the total area of landscape i. | It indicates the degree of landscape fragmentation, the landscape’s spatial structure, and the degree of interference with the landscape. |
Landscape separation index (Si) | , where A is the total area of landscape type i. | It indicates the separation degree of patches of a landscape type. |
Landscape dominance index (Ki) | , where mi is the number of grids that appear in patches of landscape i, M is the total number of grids, and N is the total number of patches of landscape type i. | The dominance of a landscape type is negatively correlated to the diversity index. For landscape types with the same number, the greater the diversity index, the smaller the dominance. |
Landscape disturbance index (Ui) | , where a, b, and c represent weights (a + b + c = 1, a = 0.5, b = 0.3, c = 0.2). | It reflects the degree of loss for different landscape types after being disturbed. The greater the index, the greater the ecological risk. |
Landscape vulnerability index (Ei) | The landscape type and vulnerability are linked based on previous research on inland river basins in arid areas and the characteristics of risk sources. The vulnerability is divided into nine levels: glacier and permanent snow cover = 9, bare land = 8, shrubland = 7, grassland = 6, arable land = 5, wetland = 4, water body = 3, woodland = 2, and building land = 1. The larger the value, the greater the vulnerability. | The vulnerability index of each landscape type can be obtained after normalization. It indicates the ability of different landscape types to resist interference and their sensitivity to external changes. The smaller the ability to resist external interference, the greater the vulnerability, and the greater the ecological risk. |
Landscape loss index (Ri) | It indicates the loss of each landscape type under disturbance. It is a synthesis of the disturbance index and vulnerability index. | |
Landscape ecological risk index (ERI) | , where N represents the number of landscape types, Aki represents the area of landscape type i in the kth grid, and Ak is the area of the Kth grid. | The ERI was constructed according to the area proportions of land-use types and the Ri. The ERI describes the degree of comprehensive loss of the environment in each grid. The higher the value, the higher the degree of ecological risk. |
Landscape | Time | Patch Number | Area (km2) | Fragmentation Index (Ci) | Separation Index (Si) | Dominance Index (Ki) | Disturbance Index (Ui) | Vulnerability Index (Ei) | Loss Index (Ri) |
---|---|---|---|---|---|---|---|---|---|
Arable land | 2000 | 7225 | 38,099.66 | 0.1896 | 1.1451 | 0.0876 | 0.4559 | 0.1111 | 0.0507 |
2010 | 8052 | 41,676.19 | 0.1932 | 1.1051 | 0.0959 | 0.4473 | 0.1111 | 0.0497 | |
2020 | 9324 | 50,229.94 | 0.1856 | 0.9867 | 0.1060 | 0.4100 | 0.1111 | 0.0456 | |
Woodland | 2000 | 18,851 | 2038.16 | 9.2490 | 34.5767 | 0.0324 | 15.0040 | 0.0444 | 0.6668 |
2010 | 22,362 | 4043.25 | 5.5307 | 18.9837 | 0.0412 | 8.4687 | 0.0444 | 0.3764 | |
2020 | 20,434 | 4454.70 | 4.5871 | 16.4707 | 0.0449 | 7.2437 | 0.0444 | 0.3219 | |
Grassland | 2000 | 466,611 | 200,277.44 | 2.3298 | 1.7507 | 0.4148 | 1.7731 | 0.1333 | 0.2364 |
2010 | 377,141 | 192,878.51 | 1.9553 | 1.6343 | 0.3899 | 1.5459 | 0.1333 | 0.2061 | |
2020 | 312,003 | 199,639.40 | 1.5628 | 1.4361 | 0.3963 | 1.2915 | 0.1333 | 0.1722 | |
Shrubland | 2000 | 170,162 | 5297.92 | 32.1186 | 39.9651 | 0.1327 | 28.0754 | 0.1556 | 4.3673 |
2010 | 236,913 | 6590.57 | 35.9473 | 37.9077 | 0.1756 | 29.3811 | 0.1556 | 4.5704 | |
2020 | 191,282 | 5341.24 | 35.8123 | 42.0291 | 0.1695 | 30.5488 | 0.1556 | 4.7520 | |
Wetland | 2000 | 4265 | 3256.92 | 1.3095 | 10.2922 | 0.0491 | 3.7522 | 0.0889 | 0.3335 |
2010 | 3869 | 3565.53 | 1.0851 | 8.9543 | 0.0501 | 3.2389 | 0.0889 | 0.2879 | |
2020 | 7922 | 7360.71 | 1.0763 | 6.2066 | 0.0664 | 2.4134 | 0.0889 | 0.2145 | |
Water body | 2000 | 46,478 | 5111.62 | 9.0926 | 21.6481 | 0.1493 | 11.0706 | 0.0667 | 0.7380 |
2010 | 47,514 | 6494.06 | 7.3165 | 17.2286 | 0.1490 | 8.8566 | 0.0667 | 0.5904 | |
2020 | 33,386 | 8442.85 | 3.9544 | 11.1083 | 0.1439 | 5.3385 | 0.0667 | 0.3559 | |
Building land | 2000 | 3346 | 980.00 | 3.4143 | 30.2964 | 0.0429 | 10.8046 | 0.0222 | 0.2401 |
2010 | 4339 | 1243.65 | 3.4889 | 27.1866 | 0.0455 | 9.9095 | 0.0222 | 0.2202 | |
2020 | 10201 | 3310.87 | 3.0811 | 15.6580 | 0.0674 | 6.2514 | 0.0222 | 0.1389 | |
Bare land | 2000 | 215,517 | 763,869.81 | 0.2821 | 0.3119 | 0.6665 | 0.3679 | 0.1778 | 0.0654 |
2010 | 173,395 | 764,593.75 | 0.2268 | 0.2795 | 0.6584 | 0.3289 | 0.1778 | 0.0585 | |
2020 | 163,938 | 744,935.87 | 0.2201 | 0.2790 | 0.6550 | 0.3247 | 0.1778 | 0.0577 | |
Glaciers and permanent snow cover | 2000 | 26,626 | 34,898.88 | 0.7629 | 2.3999 | 0.0871 | 1.1189 | 0.2000 | 0.2238 |
2010 | 24,092 | 32,745.08 | 0.7357 | 2.4330 | 0.0859 | 1.1149 | 0.2000 | 0.2230 | |
2020 | 19,836 | 30,114.10 | 0.6587 | 2.4006 | 0.0850 | 1.0665 | 0.2000 | 0.2133 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Ran, G.; Chen, Y.; Zhang, Z. Landscape Ecological Risk Assessment for the Tarim River Basin on the Basis of Land-Use Change. Remote Sens. 2023, 15, 4173. https://doi.org/10.3390/rs15174173
Wang G, Ran G, Chen Y, Zhang Z. Landscape Ecological Risk Assessment for the Tarim River Basin on the Basis of Land-Use Change. Remote Sensing. 2023; 15(17):4173. https://doi.org/10.3390/rs15174173
Chicago/Turabian StyleWang, Guangyao, Guangyan Ran, Yaning Chen, and Zhengyong Zhang. 2023. "Landscape Ecological Risk Assessment for the Tarim River Basin on the Basis of Land-Use Change" Remote Sensing 15, no. 17: 4173. https://doi.org/10.3390/rs15174173
APA StyleWang, G., Ran, G., Chen, Y., & Zhang, Z. (2023). Landscape Ecological Risk Assessment for the Tarim River Basin on the Basis of Land-Use Change. Remote Sensing, 15(17), 4173. https://doi.org/10.3390/rs15174173