Satellite Data Reveal Concerns Regarding Mangrove Restoration Efforts in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used in This Study
2.3. Methodology
2.3.1. A Conceptual Resilience Assessment Framework for MFs
2.3.2. Identifying the Largest MF Extent for LP-BG
- Sample Collection
- 2.
- Identifying the MF Pixels
- 3.
- Frequency Estimates of MF Pixels
- 4.
- Post-classification and Accuracy Assessment
2.3.3. Calculating Resistance Indicator
2.3.4. Calculating Adaptive Capacity Indicator
2.3.5. Resilience Assessment for MFs
3. Results
3.1. Spatial Distribution of the Largest MF Extent for LP-BG
3.2. Spatial Pattern of Resistance and Adaptive Capacity
3.2.1. Spatial Pattern of Resistance
3.2.2. Spatial Pattern of Adaptive Capacity
3.3. Resilience of MFs in the LP-BG
4. Discussion
4.1. Comparison with Other Available MF Maps
4.2. Area Increasing Does Not Reflect That Mangrove Restoration Is Succeeding Sufficiently
4.3. Priority Solutions for Mangrove Restoration
4.4. Strengths and Weakness of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Year | Mangrove Data | Source |
---|---|---|
2000 | Hu, et al. and GMF | [52,53] |
2005 | Hu, et al. and GWM | [53,57] |
2010 | Hu, et al. and GMF | [52,53] |
2015 | Hu, et al. and GMF | [52,53] |
2020 | GWM and GMF | [52,57] |
References
- Sasmito, S.D.; Basyuni, M.; Kridalaksana, A.; Saragi-Sasmito, M.F.; Lovelock, C.E.; Murdiyarso, D. Challenges and opportunities for achieving Sustainable Development Goals through restoration of Indonesia’s mangroves. Nat. Ecol. Evol. 2023, 7, 62–70. [Google Scholar] [CrossRef]
- Chow, J. Mangrove management for climate change adaptation and sustainable development in coastal zones. J. Sustain. For. 2018, 37, 139–156. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Huang, C.; Lu, C. Spatial-temporal changes of China’s mangrove forests over the past 50 years: An analysis towards the Sustainable Development Goals (SDGs). Chin. Sci. Bull. 2021, 66, 3886–3901. [Google Scholar] [CrossRef]
- Meng, X.W.; Xia, P.; Li, Z.; Meng, D.Z. Mangrove degradation and response to anthropogenic disturbance in the Maowei Sea (SW China) since 1926 AD: Mangrove-derived OM and pollen. Org. Geochem. 2016, 98, 166–175. [Google Scholar] [CrossRef]
- Barbier, E.B.; Strand, I.; Sathirathai, S. Do open access conditions affect the valuation of an externality? Estimating the welfare effects of mangrove-fishery linkages in Thailand. Environ. Resour. Econ. 2002, 21, 343–367. [Google Scholar] [CrossRef]
- Fan, H.; Wang, W. Some Thematic Issues for Mangrove Conservation in China. J. Xiamen Univ. Nat. Sci. 2017, 56, 323–330. [Google Scholar]
- Veas-Ayala, N.; Alfaro-Cordoba, M.; Quesada-Roman, A. Costa Rican wetlands vulnerability index. Prog. Phys. Geogr.-Earth Environ. 2022, 47, 1–20. [Google Scholar] [CrossRef]
- da Costa, G.M.; Costa, S.S.; Barauna, R.A.; Castilho, B.P.; Pinheiro, I.C.; Silva, A.; Schaan, A.P.; Ribeiro-dos-Santos, A.; das Gracas, D.A. Effects of Degradation on Microbial Communities of an Amazonian Mangrove. Microorganisms 2023, 11, 1389. [Google Scholar] [CrossRef]
- Lang, T.; Wei, P.P.; Li, S.; Zhu, H.L.; Fu, Y.J.; Gan, K.Y.; Xu, S.J.L.; Lee, F.W.F.; Li, F.L.; Jiang, M.G.; et al. Lessons from A Degradation of Planted Kandelia obovata Mangrove Forest in the Pearl River Estuary, China. Forests 2023, 14, 532. [Google Scholar] [CrossRef]
- Acuna-Piedra, J.F.; Quesada-Roman, A. Multidecadal biogeomorphic dynamics of a deltaic mangrove forest in Costa Rica. Ocean Coast. Manag. 2021, 211, 105770. [Google Scholar] [CrossRef]
- Wodehouse, D.C.J.; Rayment, M.B. Mangrove area and propagule number planting targets produce sub-optimal rehabilitation and afforestation outcomes. Estuar. Coast. Shelf Sci. 2019, 222, 91–102. [Google Scholar] [CrossRef]
- Hu, H.-Y.; Chen, S.-Y.; Wang, W.-Q.; Dong, K.-Z.; Lin, G.-H. Current status of mangrove germplasm resources and key techniques for mangrove seedling propagation in China. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2012, 23, 939–946. [Google Scholar]
- Romanach, S.S.; DeAngelis, D.L.; Koh, H.L.; Li, Y.H.; Teh, S.Y.; Barizan, R.S.R.; Zhai, L. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manag. 2018, 154, 72–82. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Te Brake, B.; Van Huijgevoort, M.H.J.; Dijksma, R. Hydrological Classification, a Practical Tool for Mangrove Restoration. PLoS ONE 2016, 11, e0150302. [Google Scholar] [CrossRef]
- Shi, X.; Pan, L.; Chen, Q.; Huang, L.; Wang, W. Dwarf Reasons of Mangrove Plant Kandelia obovata in Shancheng Bay, Fujian. Wetl. Sci. 2016, 14, 648–653. [Google Scholar]
- Lagomasino, D.; Fatoyinbo, T.; Castaneda-Moya, E.; Cook, B.D.; Montesano, P.M.; Neigh, C.S.R.; Corp, L.A.; Ott, L.E.; Chavez, S.; Morton, D.C. Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. Nat. Commun. 2021, 12, 4003. [Google Scholar] [CrossRef]
- Xiong, L.; Lagomasino, D.; Charles, S.P.; Castaneda-Moya, E.; Cook, B.D.; Redwine, J.; Fatoyinbo, L. Quantifying mangrove canopy regrowth and recovery after Hurricane Irma with large-scale repeat airborne lidar in the Florida Everglades. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103031. [Google Scholar] [CrossRef]
- Feng, Y.L.; Negron-Juarez, R.I.; Chambers, J.Q. Remote sensing and statistical analysis of the effects of hurricane Maria on the forests of Puerto Rico. Remote Sens. Environ. 2020, 247, 111940. [Google Scholar] [CrossRef]
- Mandal, M.S.H.; Hosaka, T. Assessing cyclone disturbances (1988–2016) in the Sundarbans mangrove forests using Landsat and Google Earth Engine. Nat. Hazards 2020, 102, 133–150. [Google Scholar] [CrossRef]
- Vizcaya-Martinez, D.A.; Flores-de-Santiago, F.; Valderrama-Landeros, L.; Serrano, D.; Rodriguez-Sobreyra, R.; Alvarez-Sanchez, L.F.; Flores-Verdugo, F. Monitoring detailed mangrove hurricane damage and early recovery using multisource remote sensing data. J. Environ. Manag. 2022, 320, 115830. [Google Scholar] [CrossRef]
- Jia, M.M.; Wang, Z.M.; Zhang, Y.Z.; Mao, D.H.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- Chen, B.Q.; Xiao, X.M.; Li, X.P.; Pan, L.H.; Doughty, R.; Ma, J.; Dong, J.W.; Qin, Y.W.; Zhao, B.; Wu, Z.X.; et al. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Gao, X.-m.; Han, W.-d.; Liu, S.-q. The mangrove and its conservation in Leizhou Peninsula, China. J. For. Res. 2009, 20, 174–178. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, G.R.; Wu, Z.F.; Kang, P.; Zhao, Q.; Chen, Y.Q.; Lin, G.X.; Jian, S.G. The Effects of Winter Temperature and Land Use on Mangrove Avian Species Richness and Abundance on Leizhou Peninsula, China. Wetlands 2020, 40, 153–166. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Y.; Mo, W.; Fan, H.; Liu, W.; Sun, M.; Xie, M.; Xu, S. Climate change and its influence in Beibu Gulf mangrove biome of Guangxi in past 60 years. Acta Ecol. Sin. 2021, 41, 5026–5033. [Google Scholar]
- Liu, Z.M.; Yang, H.; Wei, X.H. Spatiotemporal Variation in Precipitation during Rainy Season in Beibu Gulf, South China, from 1961 to 2016. Water 2020, 12, 1170. [Google Scholar] [CrossRef]
- Wang, H.; Li, W.S.; Xiang, W.X. Sea level rise along China coast in the last 60 years. Acta Oceanol. Sin. 2022, 41, 18–26. [Google Scholar] [CrossRef]
- Leempoel, K.; Satyanarayana, B.; Bourgeois, C.; Zhang, J.; Chen, M.; Wang, J.; Bogaert, J.; Dahdouh-Guebas, F. Dynamics in mangroves assessed by high-resolution and multi-temporal satellite data: A case study in Zhanjiang Mangrove National Nature Reserve (ZMNNR), P.R. China. Biogeosciences 2013, 10, 5681–5689. [Google Scholar] [CrossRef]
- Chen, L.Z.; Wang, W.Q.; Zhang, Y.H.; Lin, G.H. Recent progresses in mangrove conservation, restoration and research in China. J. Plant Ecol. 2009, 2, 45–54. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Li, S.S.; Meng, X.W.; Ge, Z.M.; Zhang, L.Q. Vulnerability assessment of the coastal mangrove ecosystems in Guangxi, China, to sea-level rise. Reg. Environ. Chang. 2015, 15, 265–275. [Google Scholar] [CrossRef]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Wang, X.X.; Xiao, X.M.; Zou, Z.H.; Hou, L.Y.; Qin, Y.W.; Dong, J.W.; Doughty, R.B.; Chen, B.Q.; Zhang, X.; Cheng, Y.; et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 163, 312–326. [Google Scholar] [CrossRef]
- Zhi, C.; Wu, W.; Su, H. Mapping the intertidal wetlands of Fujian Province based on tidal dynamics and vegetational phonology. J. Remote Sens. 2022, 26, 373–385. [Google Scholar] [CrossRef]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote Sensing of Mangrove Ecosystems: A Review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, L. The current status, potential and challenges of remote sensing for large-scale mangrove studies. Int. J. Remote Sens. 2022, 43, 6824–6855. [Google Scholar] [CrossRef]
- Ruan, L.L.; Yan, M.; Zhang, L.; Fan, X.S.; Yang, H.X. Spatial-temporal NDVI pattern of global mangroves: A growing trend during 2000–2018. Sci. Total Environ. 2022, 844, 157075. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Xiao, X.M.; Zhang, Q.Y.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Berrien, M.; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef]
- Ge, H.X.; Ma, F.; Li, Z.W.; Tan, Z.Z.; Du, C.W. Improved Accuracy of Phenological Detection in Rice Breeding by Using Ensemble Models of Machine Learning Based on UAV-RGB Imagery. Remote Sens. 2021, 13, 2678. [Google Scholar] [CrossRef]
- Raw, J.R.; Rishworth, G.M.; Perissinotto, R.; Adams, J.B. Population fluctuations of Cerithidea decollata (Gastropoda: Potamididae) in mangrove habitats of the St Lucia Estuary, South Africa. Afr. J. Mar. Sci. 2018, 40, 461–466. [Google Scholar] [CrossRef]
- Wang, Y.S.; Gu, J.D. Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities. Int. Biodeterior. Biodegrad. 2021, 162, 105248. [Google Scholar] [CrossRef]
- Maina, J.M.; Bosire, J.O.; Kairo, J.G.; Bandeira, S.O.; Mangora, M.M.; Macamo, C.; Ralison, H.; Majambo, G. Identifying global and local drivers of change in mangrove cover and the implications for management. Glob. Ecol. Biogeogr. 2021, 30, 2057–2069. [Google Scholar] [CrossRef]
- Leo, K.L.; Gillies, C.L.; Fitzsimons, J.A.; Hale, L.Z.; Beck, M.W. Coastal habitat squeeze: A review of adaptation solutions for saltmarsh, mangrove and beach habitats. Ocean Coast. Manag. 2019, 175, 180–190. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.G.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.Q.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef]
- de Jong, S.M.; Shen, Y.C.; de Vries, J.; Bijnaar, G.; van Maanen, B.; Augustinus, P.; Verweij, P. Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102293. [Google Scholar] [CrossRef]
- Chen, G.; Zhong, C.; Li, M.; Yu, Z.; Liu, X.; Jia, M. Disturbance of mangrove forests in Guangxi Beilun Estuary during 1990–2020. J. Remote Sens. 2022, 26, 1112–1120. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.L.; Liu, S.H.; Li, Y.W.; Xiao, Z.Q.; Yao, Y.J.; Jiang, B.; Zhao, X.; Wang, X.X.; Xu, S.; et al. Global Land Surface Fractional Vegetation Cover Estimation Using General Regression Neural Networks from MODIS Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4787–4796. [Google Scholar] [CrossRef]
- Liu, D.Y.; Jia, K.; Wei, X.Q.; Xia, M.; Zhang, X.W.; Yao, Y.J.; Zhang, X.T.; Wang, B. Spatiotemporal Comparison and Validation of Three Global-Scale Fractional Vegetation Cover Products. Remote Sens. 2019, 11, 2524. [Google Scholar] [CrossRef]
- Jingjuan, L. Global 30-m Spatial Distribution of Mangroves in 2000–2020 (GMF30_2000-2020). Aerospace Information Research Institute. International Research Center of Big Data for Sustainable Development Goals. Available online: https://data.casearth.cn/thematic/cbas_2022/161 (accessed on 18 August 2022).
- Hu, L.J.; Li, W.Y.; Xu, B. Monitoring mangrove forest change in China from 1990 to 2015 using Landsat-derived spectral-temporal variability metrics. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 88–98. [Google Scholar] [CrossRef]
- Walters, B.B. Local mangrove planting in the Philippines: Are fisherfolk and fishpond owners effective restorationists? Restor. Ecol. 2000, 8, 237–246. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, J.; Ma, Y.; Li, X. Remote Sensing Monitoring and Analysis of the Changes of Mangrove Resources in China in the Past 20 Years. Adv. Mar. Sci. 2013, 31, 406–414. [Google Scholar]
- Liu, X.L.; Yang, X.M.; Zhang, T.; Wang, Z.H.; Zhang, J.Y.; Liu, Y.M.; Liu, B. Remote Sensing Based Conservation Effectiveness Evaluation of Mangrove Reserves in China. Remote Sens. 2022, 14, 1386. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Lucas, R.M.; Rebelo, L.M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C.M. The Global Mangrove WatchA New 2010 Global Baseline of Mangrove Extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef]
Description of the Dropped Magnitude of NDVI | Threshold Intervals | Rank | Description of Resistance |
---|---|---|---|
Not significant | 0.00 ≤ ΔNDVI < 0.02 | 1 | Strong |
Slight | 0.02 ≤ ΔNDVI < 0.15 | 2 | High |
Moderate | 0.15 ≤ ΔNDVI < 0.35 | 3 | Middle |
Severe | ΔNDVI ≥ 0.35 | 4 | Low |
Quartile | Threshold Ranges | Rank | Description of Growth Trend |
---|---|---|---|
0~25% | −0.06 ≤ ΔFVC < 0.00 | 1 | Descend |
25~75% | 0.00 ≤ ΔFVC < 0.03 | 2 | Steady |
75~100% | 0.03 ≤ ΔFVC < 0.07 | 3 | Ascend |
The Frequency of Occurrence of MF Attributes within a Pixel | Rank | Description of Colonization Stability |
---|---|---|
1 | 1 | weak |
2 | 2 | low |
3 | 3 | middle |
4 | 4 | high |
5 | 5 | strong |
Year | This Study (ha) | Hu, et al. (ha) | GMF (ha) | GWM (ha) | Accuracy (This Study) | F1 Score (This Study) |
---|---|---|---|---|---|---|
2000 | 6655.87 | 6613.65 | 4988.37 | — | 0.89 | 0.83 |
2005 | 8871.15 | 8144.46 | — | 14,285.05 | 0.91 | 0.86 |
2010 | 11,240.30 | 10,500.39 | 7246.79 | 13,133.06 | 0.92 | 0.88 |
2015 | 11,579.10 | 12,459.42 | 11,500.39 | 14,065.93 | 0.93 | 0.90 |
2020 | 14,607.93 | — | 11,695.54 | 13,505.12 | 0.93 | 0.89 |
2000–2020 | 17,256.78 | — | — | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, C.; Hou, X.; Zhang, Y.; Li, D. Satellite Data Reveal Concerns Regarding Mangrove Restoration Efforts in Southern China. Remote Sens. 2023, 15, 4151. https://doi.org/10.3390/rs15174151
Fan C, Hou X, Zhang Y, Li D. Satellite Data Reveal Concerns Regarding Mangrove Restoration Efforts in Southern China. Remote Sensing. 2023; 15(17):4151. https://doi.org/10.3390/rs15174151
Chicago/Turabian StyleFan, Chao, Xiyong Hou, Yuxin Zhang, and Dong Li. 2023. "Satellite Data Reveal Concerns Regarding Mangrove Restoration Efforts in Southern China" Remote Sensing 15, no. 17: 4151. https://doi.org/10.3390/rs15174151
APA StyleFan, C., Hou, X., Zhang, Y., & Li, D. (2023). Satellite Data Reveal Concerns Regarding Mangrove Restoration Efforts in Southern China. Remote Sensing, 15(17), 4151. https://doi.org/10.3390/rs15174151