The SSR Brightness Temperature Increment Model Based on a Deep Neural Network
Abstract
:1. Introduction
2. Offshore Observation Experiment and Data Processing
2.1. Offshore Observation Experiment
2.2. Sea Salinity Data Processing
2.3. Wind Speed Data Processing
2.4. Removing the Effects of Atmospheric Radiation and Cosmic Radiation
2.5. Removing the Effects of Sea Surface Foam and Flat Sea Surface Brightness Temperature
3. Deep Neural Network Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ouyang, Y.; Zhang, Y.; Chi, J.; Sun, Q.; Du, Y. Deviations of satellite-measured sea surface salinity caused by environmental factors and their regional dependence. Remote Sens. Environ. 2023, 285, 113411. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Yin, X. Aquarius sea surface salinity retrieval in coastal regions based on deep neural networks. Remote Sens. Environ. 2023, 284, 113357. [Google Scholar] [CrossRef]
- Jang, E.; Kim, Y.J.; Im, J.; Park, Y.-G.; Sung, T. Global sea surface salinity via the synergistic use of SMAP satellite and HYCOM data based on machine learning. Remote Sens. Environ. 2022, 273, 112980. [Google Scholar] [CrossRef]
- Akins, A.; Brown, S.; Lee, T.; Misra, S.; Yueh, S. Simulation Framework and Case Studies for the Design of Sea Surface Salinity Remote Sensing Missions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1321–1334. [Google Scholar] [CrossRef]
- Fournier, S.; Bingham, F.M.; González-Haro, C.; Hayashi, A.; Ulfsax Carlin, K.M.; Brodnitz, S.K.; González-Gambau, V.; Kuusela, M. Quantification of Aquarius, SMAP, SMOS and Argo-Based Gridded Sea Surface Salinity Product Sampling Errors. Remote Sens. 2023, 15, 422. [Google Scholar] [CrossRef]
- Gabarró Prats, C. Study of Salinity Retrieval Errors for the SMOS Mission. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2004. [Google Scholar]
- Camps, A.; Duffo, N.; Vall-Llossera, M.; Vallespin, B. Sea surface salinity retrieval using multi-angular L-band radiometry: Numerical study using the SMOS End-to-end Performance Simulator. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002. [Google Scholar] [CrossRef]
- Dinnat, E.P.; Boutin, J.; Yin, X.; Le Vine, D.M. Inter-comparison of SMOS and aquarius Sea Surface Salinity: Effects of the dielectric constant and vicarious calibration. In Proceedings of the 2014 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), Pasadena, CA, USA, 24–27 March 2014; pp. 55–60. [Google Scholar] [CrossRef]
- Hollinger, J.P. Passive Microwave Measurements of Sea Surface Roughness. IEEE Trans. Geosci. Electron. 1971, 9, 165–169. [Google Scholar] [CrossRef]
- Gabarró, C.; Vall-Llossera, M.; Font, J.; Camps, A. Determination of sea surface salinity and wind speed by L-band microwave radiometry from a fixed platform. Int. J. Remote Sens. 2004, 25, 111–128. [Google Scholar] [CrossRef]
- Camps, A.; Font, J.; Vall-Llossera, M.; Gabarro, C.; Corbella, I.; Duffo, N.; Torres, F.; Blanch, S.; Aguasca, A.; Villarino, R.; et al. The WISE 2000 and 2001 field experiments in support of the SMOS mission: Sea surface L-band brightness temperature observations and their application to sea surface salinity retrieval. IEEE Trans. Geosci. Remote Sens. 2004, 42, 804–823. [Google Scholar] [CrossRef]
- Gabarró, C.; Font, J.; Camps, A.; Vall-Llossera, M.; Julià, A. A new empirical model of sea surface microwave emissivity for salinity remote sensing. Geophys. Res. Lett. 2004, 31, 113. [Google Scholar] [CrossRef]
- Yueh, S.H.; Tang, W.; Fore, A.G.; Neumann, G.; Hayashi, A.; Freedman, A.; Chaubell, J.; Lagerloef, G.S.E. L-Band Passive and Active Microwave Geophysical Model Functions of Ocean Surface Winds and Applications to Aquarius Retrieval. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4619–4632. [Google Scholar] [CrossRef]
- Stogryn, A. The apparent temperature of the sea at microwave frequencies. IEEE Trans. Antennas Propag. 1967, 15, 278–286. [Google Scholar] [CrossRef]
- Soto-Crespo, J.M.; Friberg, A.T.; Nieto-Vesperinas, M. Scattering from slightly rough random surfaces: A detailed study on the validity of the small perturbation method. J. Opt. Soc. Am. A 1990, 7, 1185–1201. [Google Scholar] [CrossRef]
- Ma, W.; Du, Y.; Liu, G.; Yu, Y.; Yang, X.; Yang, J.; Chen, K.-S. Study on direction dependence of the fully polarimetric wind-induced ocean emissivity at L-band using a semi-theoretical approach for Aquarius and SMAP observations. Remote Sens. Environ. 2021, 265, 112661. [Google Scholar] [CrossRef]
- Hwang, P.A. Whitecap Observations by Microwave Radiometers: With Discussion on Surface Roughness and Foam Contributions. Remote Sens. 2020, 12, 2277. [Google Scholar] [CrossRef]
- Álvarez-Pérez, J.L. An extension of the IEM/IEMM surface scattering model. Waves Random Media 2001, 11, 307–329. [Google Scholar] [CrossRef]
- Wu, T.-D.; Chen, K.-S.; Shi, J.C.; Lee, H.-W.; Fung, A.K. A Study of an AIEM Model for Bistatic Scattering From Randomly Rough Surfaces. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2584–2598. [Google Scholar] [CrossRef]
- Le Vine, D.M.; Dinnat, E.P. The Multifrequency Future for Remote Sensing of Sea Surface Salinity from Space. Remote Sens. 2020, 12, 1381. [Google Scholar] [CrossRef]
- Lewis, E. The practical salinity scale 1978 and its antecedents. IEEE J. Ocean. Eng. 1980, 5, 3–8. [Google Scholar] [CrossRef]
- Lewis, E.L.; Perkin, R.G. Salinity: Its definition and calculation. J. Geophys. Res. Atmos. 1978, 83, 466–478. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J.; Le Vine, D.M. The Salinity Retrieval Algorithms for the NASA Aquarius Version 5 and SMAP Version 3 Releases. Remote Sens. 2018, 10, 1121. [Google Scholar] [CrossRef]
- Reul, N.; Grodsky, S.A.; Arias, M.; Boutin, J.; Catany, R.; Chapron, B.; D’Amico, F.; Dinnat, E.; Donlon, C.; Fore, A.; et al. Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019). Remote Sens. Environ. 2020, 242, 111769. [Google Scholar] [CrossRef]
- Lee, S.-M.; Gasiewski, A.J.; Sohn, B.-J. Influences of Two-Scale Roughness Parameters on the Ocean Surface Emissivity From Satellite Passive Microwave Measurements. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4204112. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Yang, X.; Dang, P.; Wu, Y.; Li, P.; Song, G.; Li, X.; Li, H.; Lv, R.; et al. An Airborne C-Band One-Dimensional Microwave Interferometric Radiometer With Ocean Aviation Experimental Results. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5305316. [Google Scholar] [CrossRef]
- Talone, M.; Sabia, R.; Camps, A.; Vall-Llossera, M.; Gabarró, C.; Font, J. Sea surface salinity retrievals from HUT-2D L-band radiometric measurements. Remote Sens. Environ. 2010, 114, 1756–1764. [Google Scholar] [CrossRef]
- Le Vine, D.M.; Abraham, S.; Kerr, Y.H.; Wilson, W.J.; Skou, N.; Sobjaerg, S.S. Comparison of model prediction with measurements of galactic background noise at L-band. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2018–2023. [Google Scholar] [CrossRef]
- Reul, N.; Tenerelli, J.E.; Floury, N.; Chapron, B. Earth-Viewing L-Band Radiometer Sensing of Sea Surface Scattered Celestial Sky Radiation—Part II: Application to SMOS. IEEE Trans. Geosci. Remote Sens. 2008, 46, 675–688. [Google Scholar] [CrossRef]
- Skou, N.; Hoffman-Bang, D. L-band radiometers measuring salinity from space: Atmospheric propagation effects. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2210–2217. [Google Scholar] [CrossRef]
- Bettenhausen, M.H.; Anguelova, M.D. Brightness Temperature Sensitivity to Whitecap Fraction at Millimeter Wavelengths. Remote Sens. 2019, 11, 2036. [Google Scholar] [CrossRef]
- Jin, X.; He, X.; Shanmugam, P.; Bai, Y.; Gong, F.; Yu, S.; Pan, D. Comprehensive Vector Radiative Transfer Model for Estimating Sea Surface Salinity From L-Band Microwave Radiometry. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4888–4903. [Google Scholar] [CrossRef]
- Monahan, E.C.; O’Muircheartaigh, I.G. Whitecaps and the passive remote sensing of the ocean surface. Int. J. Remote Sens. 1986, 7, 627–642. [Google Scholar] [CrossRef]
- Stogryn, A. The emissivity of sea foam at microwave frequencies. J. Geophys. Res. Atmos. 1972, 77, 1658–1666. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, Y. A new formula on the Fresnel reflectance and its application in microwave remote sensing. Sci. China Ser. D Earth Sci. 2004, 47, 1045–1052. [Google Scholar] [CrossRef]
- Liu, B.; Wan, W.; Guo, Z.; Ji, R.; Wang, T.; Tang, G.; Cui, Y.; Hong, Y. First Assessment of CyGNSS-Incorporated SMAP Sea Surface Salinity Retrieval Over Pan-Tropical Ocean. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12163–12173. [Google Scholar] [CrossRef]
- Jin, X.-C.; Pan, D.-L.; He, X.-Q.; Bai, Y.; Shanmugam, P.; Gong, F.; Zhu, Q.-K. A vector radiative transfer model for sea-surface salinity retrieval from space: A non-raining case. Int. J. Remote Sens. 2018, 39, 8361–8385. [Google Scholar] [CrossRef]
- Boutin, J.; Vergely, J.-L.; Dinnat, E.P.; Waldteufel, P.; D’Amico, F.; Reul, N.; Supply, A.; Thouvenin-Masson, C. Correcting Sea Surface Temperature Spurious Effects in Salinity Retrieved From Spaceborne L-Band Radiometer Measurements. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7256–7269. [Google Scholar] [CrossRef]
- Le Vine, D.M.; Lang, R.H.; Zhou, Y.; Dinnat, E.P.; Meissner, T. Status of the Dielectric Constant of Sea Water at L-Band for Remote Sensing of Salinity. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4210114. [Google Scholar] [CrossRef]
- Klein, L.; Swift, C. An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Propag. 1977, 25, 104–111. [Google Scholar] [CrossRef]
- Cruz-Pol, S.; Ruf, C. A modified model for specular sea surface emissivity at microwave frequencies. IEEE Trans. Geosci. Remote Sens. 2000, 38, 858–869. [Google Scholar] [CrossRef]
- Blanch, S.; Aguasca, A. Dielectric permittivity measurements of sea water at L band. In Proceedings of the First Results Workshop on EuroSTARRS, WISE, LOSAC Campaigns, Toulouse, France, 4–6 November 2002; ESA SP-525. pp. 137–141. [Google Scholar]
- Blanch, S.; Aguasca, A. Seawater dielectric permittivity model from measurements at L band. In Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 2, pp. 1362–1365. [Google Scholar] [CrossRef]
- Zhou, Y.; Lang, R.H.; Dinnat, E.P.; Le Vine, D.M. L-Band Model Function of the Dielectric Constant of Seawater. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6964–6974. [Google Scholar] [CrossRef]
- Zhou, Y.; Lang, R.H.; Dinnat, E.P.; Le Vine, D.M. Seawater Debye Model Function at L-Band and Its Impact on Salinity Retrieval From Aquarius Satellite Data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8103–8116. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1836–1849. [Google Scholar] [CrossRef]
- Liu, Q.; Weng, F.; English, S.J. An Improved Fast Microwave Water Emissivity Model. IEEE Trans. Geosci. Remote Sens. 2010, 49, 1238–1250. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J. The Emissivity of the Ocean Surface Between 6 and 90 GHz Over a Large Range of Wind Speeds and Earth Incidence Angles. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3004–3026. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Sun, Q.; Gutiérrez, J.L.R.; Yu, X. Deep Neural Network-Based 4-Quadrant Analog Sun Sensor Calibration. Space Sci. Technol. 2023, 3, 24. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the Proceedings of the 30th International Conference on Machine Learning; Atlanta, GA, USA, 17–19 June 2013, p. 3.
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Moussa, H.; Benallal, M.A.; Goyet, C.; Lefevre, N.; EL Jai, M.C.; Guglielmi, V.; Touratier, F. A comparison of Multiple Non-linear regression and neural network techniques for sea surface salinity estimation in the tropical Atlantic ocean based on satellite data. ESAIM Proc. Surv. 2015, 49, 65–77. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014. [Google Scholar] [CrossRef]
- Sun, Z.; Simo, J.; Gong, S. Satellite Attitude Identification and Prediction Based on Neural Network Compensation. Space Sci. Technol. 2023, 3, 9. [Google Scholar] [CrossRef]
- Bao, D.; Hua, D.; Qi, H.; Wang, J. Investigation on an inversion method of ocean salinity by lidar based on a neural network. Opt. Lasers Eng. 2023, 161, 107354. [Google Scholar] [CrossRef]
- Wang, H.; Han, K.; Bao, S.; Chen, W.; Ren, K. Comparative Analysis between Sea Surface Salinity Derived from SMOS Satellite Retrievals and in Situ Measurements. Remote Sens. 2022, 14, 5465. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, Z.; Chen, Y.; Hu, Q. Accurate Solar Wind Speed Prediction with Multimodality Information. Space Sci. Technol. 2022, 2022, 9805707. [Google Scholar] [CrossRef]
Parameter | Indicator |
---|---|
Frequency Band | L |
Central Frequency | 1.415 GHz |
3 dB Bandwidth | 10 MHz |
Polarization | H/V |
Spatial Resolution | ≤20° |
Sensitivity | ≤0.1 K@1 s Integration Time |
Parameter | Measurement Range | Accuracy |
---|---|---|
Temperature | 0~35 °C | 0.002 °C |
Conductivity | 0~7 S/m | 0.0003 S/m |
Parameter | Measurement Range | Accuracy |
---|---|---|
Atmospheric Pressure (hPa) | 850~1050 | ±1 |
Atmospheric Temperature (°C) | −50~50 | ±0.3 |
Atmospheric Relative Humidity (%) | 0~100 | ±3 |
Wind Speed (m/s) | 0~70 | ±1 |
Wind Direction (°) | 0~360 | ±10 |
Coefficient | Value | Coefficient | Value |
---|---|---|---|
a0 | 0.008 | b0 | 0.0005 |
a1 | −0.1692 | b1 | −0.0056 |
a2 | 25.3851 | b2 | −0.0066 |
a3 | 14.0941 | b3 | −0.0375 |
a4 | −7.0261 | b4 | 0.0636 |
a5 | 2.7081 | b5 | −0.0144 |
sum | 35 | sum | 0 |
Coefficient | Value | Coefficient | Value |
---|---|---|---|
a0 | 5.7230 | b0 | −3.56417 × 10−3 |
a1 | 2.2379 × 10−2 | b1 | 4.74868 × 10−6 |
a2 | −7.1237 × 10−4 | b2 | 1.15574 × 10−5 |
a3 | 5.0478 | b3 | 2.39357 × 10−3 |
a4 | −7.0315 × 10−2 | b4 | −3.13530 × 10−5 |
a5 | 6.0059 × 10−4 | b5 | 2.52477 × 10−7 |
a6 | 3.6143 | b6 | −6.28908 × 10−3 |
a7 | 2.8841 × 10−2 | b7 | 1.76032 × 10−4 |
a8 | 1.3652 × 10−1 | b8 | −9.22144 × 10−5 |
a9 | 1.4825 × 10−3 | b9 | −1.99723 × 10−2 |
a10 | 2.4166 × 10−4 | b10 | 1.81176 × 10−4 |
b11 | −2.04265 × 10−3 | ||
b12 | 1.57883 × 10−4 |
Model Forecast Accuracy (K) | Learning Rate 0.01 (Iterate 8000 Times) | Learning Rate 0.003 (Iterate 30,000 Times) | Learning Rate 0.001 (Iterate 50,000 Times) | Learning Rate 0.0003 (Iterate 80,000 Times) |
---|---|---|---|---|
KS-H | −0.38~0.47 | −0.50~0.24 | −0.34~0.25 | −0.14~0.29 |
KS-V | −0.29~0.35 | −0.52~0.14 | −0.39~0.15 | −0.24~0.15 |
ModKS-H | −0.16~0.69 | −0.66~0.12 | −0.30~0.21 | −0.23~0.12 |
ModKS-V | −0.26~0.35 | −0.44~0.21 | −0.23~0.15 | −0.17~0.22 |
BA-H(03) | −0.39~0.47 | −0.28~0.38 | −0.26~0.12 | −0.22~0.06 |
BA-V(03) | −0.32~0.68 | −0.32~0.39 | −0.31~0.26 | −0.14~0.22 |
BA-H(04) | −0.38~0.43 | −0.63~0.22 | −0.37~0.30 | −0.29~0.28 |
BA-V(04) | −0.23~0.76 | −0.44~0.40 | −0.14~0.38 | −0.19~0.23 |
MW-H(04) | −0.35~0.40 | −0.06~0.77 | −0.63~0.03 | −0.31~0.36 |
MW-V(04) | −0.45~0.75 | −0.56~0.59 | −0.19~0.31 | −0.14~0.25 |
FASTEM-H | −0.42~0.48 | −0.40~0.17 | −0.31~0.11 | −0.28~0.18 |
FASTEM-V | −0.20~0.73 | −0.79~0.40 | −0.51~0.35 | −0.27~0.28 |
MW-H(12) | −0.83~0.45 | −0.63~0.55 | −0.41~0.62 | −0.23~0.36 |
MW-V(12) | −0.41~0.48 | −0.36~0.27 | −0.27~0.21 | −0.17~0.27 |
GW-H(17) | −0.49~0.77 | −0.24~0.52 | −0.27~0.37 | −0.12~0.37 |
GW-V(17) | −0.55~0.52 | −0.72~0.29 | −0.18~0.23 | −0.13~0.22 |
GW-H(21) | −0.49~0.46 | −0.78~0.32 | −0.64~0.31 | −0.13~0.22 |
GW-V(21) | −0.23~0.41 | −0.59~0.22 | −0.22~0.14 | −0.24~0.13 |
DNN Model | Forecast Accuracy (K) | RMSE | MAE |
---|---|---|---|
KS-H | −0.13~0.14 | 0.0157 | 0.0103 |
KS-V | −0.11~0.13 | 0.0156 | 0.0090 |
ModKS-H | −0.13~0.13 | 0.0161 | 0.0101 |
ModKS-V | −0.13~0.16 | 0.0185 | 0.0114 |
BA-H(03) | −0.14~0.16 | 0.0177 | 0.0108 |
BA-V(03) | −0.15~0.16 | 0.0191 | 0.0118 |
BA-H(04) | −0.17~0.13 | 0.0183 | 0.0121 |
BA-V(04) | −0.15~0.15 | 0.0173 | 0.0109 |
MW-H(04) | −0.15~0.17 | 0.0182 | 0.0124 |
MW-V(04) | −0.15~0.13 | 0.0168 | 0.0106 |
FASTEM-H | −0.14~0.15 | 0.0169 | 0.0106 |
FASTEM-V | −0.14~0.17 | 0.0176 | 0.0102 |
MW-H(12) | −0.17~0.16 | 0.0189 | 0.0113 |
MW-V(12) | −0.17~0.16 | 0.0190 | 0.0110 |
GW-H(17) | −0.15~0.15 | 0.0177 | 0.0107 |
GW-V(17) | −0.14~0.17 | 0.0166 | 0.0095 |
GW-H(21) | −0.13~0.17 | 0.0170 | 0.0100 |
GW-V(21) | −0.17~0.13 | 0.0184 | 0.0105 |
Model Forecast Accuracy (K) | Hollinger | WISE | WISE1 | WISE2 | TSM | SSA |
---|---|---|---|---|---|---|
KS-H | −1.57~1.49 | −1.55~1.71 | −1.51~1.69 | −1.65~1.54 | −0.47~0.61 | −0.60~0.81 |
KS-V | −0.79~1.29 | −0.79~1.11 | −0.79~1.18 | −0.81~0.98 | −0.35~0.55 | −0.48~0.69 |
ModKS-H | −2.38~0.59 | −2.35~0.80 | −2.32~0.79 | −2.46~0.63 | −1.28~−0.26 | −1.41~−0.05 |
ModKS-V | −1.80~0.11 | −1.80~−0.07 | −1.80~−0.01 | −1.82~−0.20 | −1.33~−0.58 | −1.47~−0.49 |
BA(03)-H | −2.04~0.59 | −2.02~0.80 | −1.98~0.79 | −2.12~0.63 | −0.94~−0.50 | −1.07~−0.32 |
BA(03)-V | −4.03~−1.14 | −4.20~−1.33 | −4.12~−1.26 | −4.36~−1.45 | −3.89~−1.94 | −3.51~−1.75 |
BA(04)-H | −0.31~2.55 | −0.29~2.77 | −0.25~2.76 | −0.39~2.60 | 0.79~1.46 | 0.66~1.65 |
BA(04)-V | −1.37~1.41 | −1.53~1.23 | −1.47~1.29 | −1.69~1.10 | −1.23~0.61 | −0.85~0.81 |
MW(04)-H | −1.25~1.48 | −1.23~1.70 | −1.19~1.69 | −1.33~1.53 | −0.15~0.41 | −0.28~0.59 |
MW(04)-V | −2.82~−0.02 | −2.98~−0.20 | −2.91~−0.13 | −3.14~−0.33 | −2.67~−0.81 | −2.30~−0.62 |
FASTEM-H | −1.34~1.38 | −1.32~1.60 | −1.28~1.59 | −1.42~1.43 | −0.24~0.30 | −0.37~0.48 |
FASTEM-V | −2.98~−0.17 | −3.15~−0.35 | −3.07~−0.28 | −3.30~−0.48 | −2.84~−0.97 | −2.46~−0.77 |
MW(12)-H | −1.25~1.48 | −1.23~1.70 | −1.19~1.69 | −1.33~1.53 | −0.15~0.41 | −0.28~0.59 |
MW(12)-V | −2.82~−0.02 | −2.98~−0.20 | −2.91~−0.13 | −3.14~−0.33 | −2.67~−0.81 | −2.30~−0.62 |
GW(17)-H | −1.55~1.50 | −1.52~1.72 | −1.49~1.70 | −1.63~1.55 | −0.45~0.62 | −0.58~0.81 |
GW(17)-V | −0.82~1.59 | −0.82~1.41 | −0.82~1.48 | −0.84~1.28 | −0.34~0.79 | −0.51~0.99 |
GW(21)-H | −1.58~1.48 | −1.56~1.69 | −1.52~1.68 | −1.66~1.52 | −0.48~0.60 | −0.61~0.80 |
GW(21)-V | −0.80~1.28 | −0.80~1.09 | −0.80~1.16 | −0.82~0.97 | −0.36~0.53 | −0.49~0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Z.; Zhang, H.; Shu, W.; Zhang, L.; Liu, L.; Lu, X.; Zhou, Y.; Ren, J.; Li, S.; Zhang, Q. The SSR Brightness Temperature Increment Model Based on a Deep Neural Network. Remote Sens. 2023, 15, 4149. https://doi.org/10.3390/rs15174149
Wen Z, Zhang H, Shu W, Zhang L, Liu L, Lu X, Zhou Y, Ren J, Li S, Zhang Q. The SSR Brightness Temperature Increment Model Based on a Deep Neural Network. Remote Sensing. 2023; 15(17):4149. https://doi.org/10.3390/rs15174149
Chicago/Turabian StyleWen, Zhongkai, Huan Zhang, Weiping Shu, Liqiang Zhang, Lei Liu, Xiang Lu, Yashi Zhou, Jingjing Ren, Shuang Li, and Qingjun Zhang. 2023. "The SSR Brightness Temperature Increment Model Based on a Deep Neural Network" Remote Sensing 15, no. 17: 4149. https://doi.org/10.3390/rs15174149
APA StyleWen, Z., Zhang, H., Shu, W., Zhang, L., Liu, L., Lu, X., Zhou, Y., Ren, J., Li, S., & Zhang, Q. (2023). The SSR Brightness Temperature Increment Model Based on a Deep Neural Network. Remote Sensing, 15(17), 4149. https://doi.org/10.3390/rs15174149