Sensitivity Evaluation of Time Series InSAR Monitoring Results for Landslide Detection
Abstract
:1. Introduction
2. Locations and Datasets of Two High and Steep Slopes
2.1. Location and SAR Datasets of the Qidashan Open-Pit Mine Landslide
2.2. Location and SAR Datasets of the Yabaling Open-Pit Mine Landslide
3. Definition of Sensitivity Indices for Slope Monitoring
3.1. Definition of Theoretical and Practical Sensitivity Indices Based on GNSS Data
3.2. Definition of Terrain Sensitivity Index through Satellite and Terrain Information
3.3. Slope Angle and Aspect Angle Dependences of Terrain Sensitivity Index (Hterrain)
4. Results and Analysis
4.1. Case Study of the Qidashan Open-Pit Mine Landslide
4.1.1. Deformation Monitoring Results of Qidashan Open-Pit Mine Slope Derived from SBAS-InSAR
4.1.2. Quantitative Evaluation of InSAR Results from Qidashan Open-Pit Using Theoretical and Practical Sensitivity Indices
4.1.3. Influence of Topographical Factors on Time-Series InSAR Monitoring Results from Different Orbit Datasets
4.2. Case Study of the Yabaling Open-Pit Mine Landslide
4.2.1. Deformation Monitoring Results of Yabaling Open-Pit Mine Slope Derived from SBAS InSAR
4.2.2. Evaluation of Monitoring Results for Three Different Orbital Datasets Using Hterrain
4.3. Statistical Analysis of the Sensitivity Evaluation Indices
4.3.1. Statistical Analysis of Landslide Cases with Both GNSS and InSAR Monitoring Data
4.3.2. Statistical Analysis of Landslide Cases Monitored by InSAR without GNSS Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | Authors | Landslide Name | Landslide Territory | Methodology | Study Time | Number of Images | Satellite Mission |
---|---|---|---|---|---|---|---|
Case 1 | [43] | Patigno landslide | Northern Apennines, Italy | PS-InSAR | March 2015–May 2019 | 200 | Sentinel-1 |
Case 2 | [44] | Bosmatto landslide | Northwestern Alps, Italy | SqueeSAR | October 2014–February 2018 | 130 | Sentinel-1 |
Case 3 | [45] | potential landslide | Shananxi Provice, China | CR-InSAR | April 2011–August 2011 | 4 | TerraSAR |
Case 4 | [46] | Sirobagarh landslide | Uttarakhand, India | MT-InSAR | November 2015–August 2017 | 10 | Sentinel-1 |
No. | Incidence Angle (°) | Azimuth Angle (°) | GNSS Deformation (mm)/Rate (mm/Year) | InSAR LOS Deformation (mm)/Rate (mm/Year) | Slope Slip (mm)/Rate (mm/Year) | Station | TGNSS (%) | PGNSS (%) | ||
---|---|---|---|---|---|---|---|---|---|---|
VN | VE | VU | ||||||||
Case 1 | 40.31 | −80.73 | −33.5 | 12.2 | −3.2 | 9.0 | 16.5 | PATG | 76.6% | 54.7% |
Case 2 | 43.12 | 280.49 | −4.3 | −7.4 | −6.1 | −8.5 | A-05 | 97.4% | 71.6% | |
−18.8 | −8.5 | −13.9 | −20.4 | A-06 | 92.8% | 68.3% | ||||
−33.2 | −28.8 | −35.8 | −43.6 | M-05 | 99.7% | 82.2% | ||||
−26.3 | −14.9 | −21.1 | −29.9 | M-06 | 95.8% | 70.8% | ||||
Case 3 | 35.00 | −7.44 | −2 | −3 | −6 | −0.8 | −6.6 | DJ-02 | 46.3% | 12.1% |
−3 | 0 | −7 | −3.5 | −5.6 | DJ-04 | 97.6% | 62.0% | |||
0 | −1 | −2 | −2.9 | −1.9 | DJ-05 | 54.9% | 148.8% | |||
−4 | −2 | −10 | −11.7 | −10.1 | DJ-06 | 67.2% | 116.3% | |||
−3 | 3 | −15 | −9.1 | −13.9 | DJ-07 | 98.6% | 65.2% | |||
4 | −6 | −34 | −18.1 | −28.1 | DJ-08 | 88.0% | 64.4% | |||
Case 4 | 35.00 | −13.5 | 14.2 | 3.2 | −219.0 | −334.1 | −220.1 | GPS1 | 83.2% | 156.7% |
36.1 | 19.4 | −220.9 | −575.6 | −449.8 | GPS2 | 43.7% | 128.8% | |||
264.0 | 47.0 | −296.2 | −407.6 | −304.8 | GPS4 | 99.8% | 135.9% | |||
12.7 | 12.9 | 252.1 | −252.7 | −265.2 | GPS6 | 81.2% | 140.7% |
No. | Landslide Name | Slope Min | Slope Max | Average Slope | Aspect | |
---|---|---|---|---|---|---|
1 | Dangdi No. 1 | 28 | 38 | 33 | 60 | 0.90 |
2 | Dangdi No. 2 | 26 | 44 | 35 | 16 | 0.70 |
3 | Dangdi No. 3 | 23 | 40 | 31.5 | 51 | 0.86 |
4 | Ningkang | 10 | 42 | 26 | 118 | 0.74 |
5 | Redangong | 22 | 38 | 30 | 27 | 0.73 |
6 | Aiguo | 18 | 44 | 31 | 113 | 0.81 |
7 | Aibai | 20 | 39 | 29.5 | 92 | 0.88 |
8 | Gaina | 16 | 39 | 27.5 | 30 | 0.72 |
9 | Woda | 16 | 40 | 28 | 19 | 0.65 |
10 | Moga | 27 | 42 | 34.5 | 117 | 0.82 |
11 | Tange | 22 | 45 | 33.5 | 67 | 0.92 |
12 | Duolai | 18 | 36 | 27 | 108 | 0.80 |
13 | Shadingmai | 15 | 40 | 27.5 | 117 | 0.76 |
14 | Adong | 19 | 39 | 29 | 51 | 0.84 |
15 | Xiaomojiu | 21 | 42 | 31.5 | 50 | 0.86 |
16 | Xiongba No. 1 | 15 | 46 | 30.5 | 23 | 0.71 |
17 | Xiongba No. 2 | 15 | 51 | 33 | 133 | 0.71 |
18 | Xiongba No. 3 | 20 | 40 | 30 | 215 | 0.05 |
19 | Semai | 10 | 40 | 25 | 273 | −0.13 |
20 | Wadui | 16 | 40 | 28 | 107 | 0.81 |
21 | Gongba | 15 | 39 | 27 | 112 | 0.78 |
22 | Maiba No. 1 | 24 | 42 | 33 | 243 | −0.01 |
23 | Maiba No. 2 | 34 | 46 | 40 | 222 | 0.18 |
24 | Shangquesuo | 18 | 37 | 27.5 | 131 | 0.67 |
25 | Shangde | 16 | 37 | 26.5 | 28 | 0.70 |
26 | Decun | 20 | 40 | 30 | 112 | 0.80 |
27 | Suoxue | 20 | 38 | 29 | 346 | 0.40 |
28 | Chutigang No. 1 | 19 | 44 | 31.5 | 162 | 0.47 |
29 | Chutigang No. 2 | 24 | 48 | 36 | 20 | 0.74 |
30 | Caodigong | 20 | 49 | 34.5 | 47 | 0.87 |
31 | Suoduxi | 11 | 30 | 20.5 | 124 | 0.64 |
32 | Sarongxue | 24 | 45 | 34.5 | 134 | 0.72 |
33 | Nanagong | 10 | 40 | 25 | 44 | 0.78 |
34 | Diwu | 10 | 30 | 20 | 217 | −0.12 |
35 | Namu | 16 | 35 | 25.5 | 111 | 0.77 |
36 | Linong | 15 | 64 | 39.5 | 95 | 0.94 |
37 | Dagu | 18 | 56 | 37 | 142 | 0.68 |
38 | Qinbei | 10 | 16 | 13 | 107 | 0.67 |
39 | Dongan No. 1 | 10 | 33 | 21.5 | 12 | 0.53 |
40 | Dongan No. 2 | 12 | 33 | 22.5 | 21 | 0.61 |
41 | Hongguang | 21 | 36 | 28.5 | 64 | 0.88 |
42 | Fangjiapo | 27 | 43 | 35 | 128 | 0.76 |
43 | Nawudu | 16 | 45 | 30.5 | 11 | 0.62 |
44 | Shangyingwo | 16 | 51 | 33.5 | 113 | 0.84 |
45 | Yazishou | 15 | 36 | 25.5 | 190 | 0.15 |
46 | Xincun | 15 | 45 | 30 | 25 | 0.72 |
47 | Zhongwushan | 10 | 55 | 32.5 | 78 | 0.92 |
48 | Xiaoshuijing | 24 | 44 | 34 | 185 | 0.31 |
49 | Jinpingzi | 10 | 40 | 25 | 141 | 0.57 |
50 | Dadi | 10 | 51 | 30.5 | 171 | 0.38 |
51 | Yangpengzi | 34 | 51 | 42.5 | 144 | 0.72 |
52 | Luogazhi | 13 | 47 | 30 | 104 | 0.85 |
53 | Yeniuping | 29 | 45 | 37 | 178 | 0.40 |
54 | Hejialiangzi | 14 | 30 | 22 | 230 | −0.17 |
55 | Damuchun | 14 | 40 | 27 | 209 | 0.03 |
56 | Dashannao | 17 | 51 | 34 | 178 | 0.36 |
57 | Yezhutang | 11 | 41 | 26 | 61 | 0.86 |
58 | Huangtian | 13 | 28 | 20.5 | 62 | 0.80 |
59 | Jiashantian | 14 | 34 | 24 | 121 | 0.70 |
60 | Zengjiawanzi | 14 | 46 | 30 | 308 | 0.10 |
61 | Yizi | 10 | 22 | 16 | 290 | −0.23 |
62 | Ximaxi | 10 | 50 | 30 | 98 | 0.87 |
63 | Yanwan | 20 | 42 | 31 | 77 | 0.91 |
64 | Ribucu | 29 | 42 | 35.5 | 25 | 0.77 |
65 | Shangshawa | 10 | 38 | 24 | 145 | 0.53 |
66 | Nongle | 10 | 60 | 35 | 106 | 0.88 |
67 | Xianglushan | 13 | 31 | 22 | 150 | 0.46 |
68 | Wufutang | 10 | 30 | 20 | 40 | 0.719 |
69 | Guanghui | 10 | 23 | 16.5 | 216 | −0.19 |
No. | Landslide Name | Slope Min | Slope Max | Average Slope | Aspect | ||
---|---|---|---|---|---|---|---|
70 | Laduoting | 22 | 43 | 32.5 | 342 | 0.38 | 0.47 |
71 | Shadong | 15 | 38 | 26.5 | 75 | 0.87 | −0.29 |
72 | Sela | 15 | 51 | 33 | 125 | 0.78 | −0.02 |
73 | Geguo | 18 | 42 | 30 | 215 | 0.78 | |
74 | Majue | 20 | 38 | 29 | 70 | 0.89 | −0.24 |
75 | Guoba | 14 | 36 | 25 | 75 | 0.86 | −0.32 |
76 | Gongba | 10 | 35 | 22.5 | 91 | 0.83 | −0.35 |
77 | Shangquesuo | 20 | 40 | 30 | 140 | 0.66 | 0.06 |
78 | Shangde No. 1 | 15 | 34 | 24.5 | 60 | 0.83 | |
79 | Shangde No. 2 | 15 | 32 | 23.5 | 45 | 0.76 | −0.23 |
80 | Decun | 14 | 34 | 24 | 350 | 0.34 | 0.29 |
81 | Suoxue No. 1 | 18 | 44 | 31 | 90 | 0.90 | −0.21 |
82 | Suoxue No. 2 | 22 | 38 | 30 | 349 | 0.37 |
No. | Landslide Name | Slope Min | Slope Max | Average Slope | Aspect | ||
---|---|---|---|---|---|---|---|
83 | H01 | 23 | 30 | 26.5 | 80 | 0.91 | |
84 | H02 | 25 | 45 | 35 | 5 | 0.61 | 0.30 |
85 | H03 | 22 | 34 | 28 | 48 | 0.85 | |
86 | H04-2 | 28 | 46 | 37 | 340 | 0.41 | 0.54 |
87 | H05 | 34 | 54 | 44 | 162 | 0.60 | |
88 | H07 | 30 | 40 | 35 | 88 | 0.95 | |
89 | H08 | 28 | 46 | 37 | 173 | 0.41 | |
90 | H09 | 40 | 56 | 48 | 38 | 0.90 | |
91 | H11 | 28 | 40 | 34 | 73 | 0.95 | |
92 | H12 | 40 | 58 | 49 | 320 | 0.40 | 0.78 |
93 | H13 | 40 | 60 | 50 | 22 | 0.83 | 0.37 |
94 | H14 | 16 | 40 | 28 | 318 | 0.10 | 0.64 |
95 | H15-2 | 40 | 50 | 45 | 323 | 0.38 | |
96 | H16 | 15 | 50 | 32.5 | 258 | 0.94 | |
97 | H17 | 25 | 46 | 35.5 | 208 | 0.78 | |
98 | H18 | 16 | 54 | 35 | 270 | 0.94 |
N0. | Slope Min | Slope Max | Average Slope | Aspect | ||
---|---|---|---|---|---|---|
99 | 15 | 25 | 20 | 105 | 0.80 | |
100 | 15 | 25 | 20 | 100 | 0.83 | |
101 | 15 | 25 | 20 | 90 | 0.87 | |
102 | 25 | 40 | 32.5 | 130 | 0.70 | |
103 | 30 | 45 | 37.5 | 266 | 0.96 | |
104 | 20 | 45 | 32.5 | 130 | 0.70 | |
105 | 30 | 45 | 37.5 | 177 | 0.56 | |
106 | 20 | 40 | 30 | 200 | 0.68 | |
107 | 15 | 30 | 22.5 | 50 | 0.87 | |
108 | 20 | 35 | 27.5 | 236 | 0.87 | |
109 | 15 | 20 | 17.5 | 227 | 0.75 | |
110 | 20 | 35 | 27.5 | 200 | 0.66 | |
111 | 15 | 30 | 22.5 | 310 | 0.64 | |
112 | 20 | 25 | 22.5 | 290 | 0.77 | |
113 | 25 | 30 | 27.5 | 260 | 0.91 | |
114 | 15 | 25 | 20 | 307 | 0.64 | |
115 | 25 | 30 | 27.5 | 280 | 0.86 | |
116 | 15 | 35 | 25 | 300 | 0.74 | |
117 | 25 | 35 | 30 | 60 | 0.95 | |
118 | 20 | 25 | 22.5 | 40 | 0.82 | |
119 | 20 | 40 | 30 | 130 | 0.69 |
No. | Landslide Name | Average Slope | Aspect Min | Aspect Max | Aspect | ||
---|---|---|---|---|---|---|---|
120 | Puncak Pass | 60 | 130 | 160 | 135 | 0.81 | 0.50 |
References
- Chae, B.-G.; Park, H.-J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring and early warning: A concise review of state-of-the-art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Lu, Z.; Kim, J. A Framework for Studying Hydrology-Driven Landslide Hazards in Northwestern US Using Satellite InSAR, Precipitation and Soil Moisture Observations: Early Results and Future Directions. GeoHazards 2021, 2, 17–40. [Google Scholar] [CrossRef]
- Park, S.; Lim, H.; Tamang, B.; Jin, J.; Lee, S.; Chang, S.; Kim, Y. A Study on the Slope Failure Monitoring of a Model Slope by the Application of a Displacement Sensor. J. Sens. 2019, 2019, 7570517. [Google Scholar] [CrossRef]
- Carla, T.; Nolesini, T.; Solari, L.; Rivolta, C.; Dei Cas, L.; Casagli, N. Rockfall forecasting and risk management along a major transportation corridor in the Alps through ground-based radar interferometry. Landslides 2019, 16, 1425–1435. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, C.; Zhao, W.; An, H.; Zhou, S.; Wang, D.; Xu, Q.; Li, W.; Peng, D. Early identification and dynamic processes of ridge-top rockslides: Implications from the Su Village landslide in Suichang County, Zhejiang Province, China. Landslides 2019, 16, 799–813. [Google Scholar] [CrossRef]
- Uhlemann, S.; Smith, A.; Chambers, J.; Dixon, N.; Dijkstra, T.; Haslam, E.; Meldrum, P.; Merritt, A.; Gunn, D.; Mackay, J. Assessment of ground-based monitoring techniques applied to landslide investigations. Geomorphology 2016, 253, 438–451. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Jiang, Z.; Ren, J.; Lv, J. Monitoring, Prediction, and Evaluation of Mountain Geological Hazards Based on InSAR Technology. Sci. Program. 2022, 2022, 2227049. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, W.; Yang, R.; Gao, H.; Cao, D. Analysis of Available Conditions for InSAR Surface Deformation Monitoring in CCS Projects. Energies 2022, 15, 672. [Google Scholar] [CrossRef]
- Pawluszek-Filipiak, K.; Borkowski, A. Integration of DInSAR and SBAS Techniques to Determine Mining-Related Deformations Using Sentinel-1 Data: The Case Study of Rydutowy Mine in Poland. Remote Sens. 2020, 12, 242. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.; Guo, S.; Xia, J. Land Subsidence Monitoring Method in Regions of Variable Radar Reflection Characteristics by Integrating PS-InSAR and SBAS-InSAR Techniques. Remote Sens. 2022, 14, 3265. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Sentinel-1 Big Data Processing with P-SBAS InSAR in the Geohazards Exploitation Platform: An Experiment on Coastal Land Subsidence and Landslides in Italy. Remote Sens. 2021, 13, 885. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, R.; Liu, G.; Wang, X.; Mao, W.; Zhang, B.; Fu, Y.; Wu, T. Saline-Soil Deformation Extraction Based on an Improved Time-Series InSAR Approach. ISPRS Int. J. Geo-Inf. 2021, 10, 112. [Google Scholar] [CrossRef]
- Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ. 2006, 102, 195–210. [Google Scholar] [CrossRef]
- Li, Y.; Yang, K.; Zhang, J.; Hou, Z.; Wang, S.; Ding, X. Research on time series InSAR monitoring method for multiple types of surface deformation in mining area. Nat. Hazards 2022, 114, 2479–2508. [Google Scholar] [CrossRef]
- Dai, K.; Deng, J.; Xu, Q.; Li, Z.; Shi, X.; Hancock, C.; Wen, N.; Zhang, L.; Zhuo, G. Interpretation and sensitivity analysis of the InSAR line of sight displacements in landslide measurements. GISci. Remote Sens. 2022, 59, 1226–1242. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Z.; Zhu, J.; Yi, H.; Hu, J.; Feng, G. Deriving Dynamic Subsidence of Coal Mining Areas Using InSAR and Logistic Model. Remote Sens. 2017, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- Cascini, L.; Fornaro, G.; Peduto, D. Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS-J. Photogramm. Remote Sens. 2009, 64, 598–611. [Google Scholar] [CrossRef]
- Notti, D.; Davalillo, J.C.; Herrera, G.; Mora, O. Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Nat. Hazards Earth Syst. Sci. 2010, 10, 1865–1875. [Google Scholar] [CrossRef]
- Bonì, R.; Bordoni, M.; Vivaldi, V.; Troisi, C.; Tararbra, M.; Lanteri, L.; Zucca, F.; Meisina, C. Assessment of the Sentinel-1 based ground motion data feasibility for large scale landslide monitoring. Landslides 2020, 17, 2287–2299. [Google Scholar] [CrossRef]
- Del Soldato, M.; Solari, L.; Novellino, A.; Monserrat, O.; Raspini, F. A New Set of Tools for the Generation of InSAR Visibility Maps over Wide Areas. Geosciences 2021, 11, 229. [Google Scholar] [CrossRef]
- Novellino, A.; Cigna, F.; Brahmi, M.; Sowter, A.; Bateson, L.; Marsh, S. Assessing the Feasibility of a National InSAR Ground Deformation Map of Great Britain with Sentinel-1. Geosciences 2017, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Sun, Q.; Hu, J. Generation of Complete SAR Geometric Distortion Maps Based on DEM and Neighbor Gradient Algorithm. Appl. Sci. 2018, 8, 2206. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Hu, J.; Li, Z.; Sun, Q.; Zheng, W. Recent progress in landslide monitoring with InSAR. Acta Geod. Et Cartogr. Sin. 2022, 51, 2001–2019. [Google Scholar]
- Van Natijne, A.L.; Bogaard, T.A.; Van Leijen, F.J.; Hanssen, R.F.; Lindenbergh, R.C. World-wide InSAR sensitivity index for landslide deformation tracking. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102829. [Google Scholar] [CrossRef]
- Qiu, Z.; Jiang, T.; Zhou, L.; Wang, C.; Luzi, G. Study of subsidence monitoring in Nanjing City with small-baseline InSAR approach. Geomat. Nat. Hazards Risk 2019, 10, 1412–1424. [Google Scholar] [CrossRef]
- Ma, C.; Cheng, X.; Yang, Y.; Zhang, X.; Guo, Z.; Zou, Y. Investigation on Mining Subsidence Based on Multi-Temporal InSAR and Time-Series Analysis of the Small Baseline Subset-Case Study of Working Faces 22201-1/2 in Bu’ertai Mine, Shendong Coalfield, China. Remote Sens. 2016, 8, 951. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Remy, D.; Froger, J.-L.; Peltier, A.; Villeneuve, N.; Darrozes, J.; Perfettini, H.; Bonvalot, S. Long-term ground displacement observations using InSAR and GNSS at Piton de la Fournaise volcano between 2009 and 2014. Remote Sens. Environ. 2017, 194, 230–247. [Google Scholar] [CrossRef]
- Yao, J.; Yao, X.; Liu, X. Landslide Detection and Mapping Based on SBAS-InSAR and PS-InSAR: A Case Study in Gongjue County, Tibet, China. Remote Sens. 2022, 14, 4728. [Google Scholar] [CrossRef]
- Dai, K.; Li, Z.; Tomás, R.; Liu, G.; Yu, B.; Wang, X.; Cheng, H.; Chen, J.; Stockamp, J. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sens. Environ. 2016, 186, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Cigna, F.; Bateson, L.B.; Jordan, C.J.; Dashwood, C. Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sens. Environ. 2014, 152, 441–466. [Google Scholar] [CrossRef] [Green Version]
- Cigna, F.; Bianchini, S.; Casagli, N. How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): The PSI-based matrix approach. Landslides 2012, 10, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Jonsson, S.; Cao, Y. Interseismic Deformation From Sentinel-1 Burst-Overlap Interferometry: Application to the Southern Dead Sea Fault. Geophys. Res. Lett. 2021, 48, e2021GL093481. [Google Scholar] [CrossRef]
- Dong, L.; Wang, C.; Tang, Y.; Tang, F.; Zhang, H.; Wang, J.; Duan, W. Time Series InSAR Three-Dimensional Displacement Inversion Model of Coal Mining Areas Based on Symmetrical Features of Mining Subsidence. Remote Sens. 2021, 13, 2143. [Google Scholar] [CrossRef]
- Fuhrmann, T.; Garthwaite, M.C. Resolving Three-Dimensional Surface Motion with InSAR: Constraints from Multi-Geometry Data Fusion. Remote Sens. 2019, 11, 241. [Google Scholar] [CrossRef] [Green Version]
- Bayramov, E.; Buchroithner, M.; Kada, M.; Zhuniskenov, Y. Quantitative Assessment of Vertical and Horizontal Deformations Derived by 3D and 2D Decompositions of InSAR Line-of-Sight Measurements to Supplement Industry Surveillance Programs in the Tengiz Oilfield (Kazakhstan). Remote Sens. 2021, 13, 2579. [Google Scholar] [CrossRef]
- He, L.; Wu, L.; Liu, S.; Wang, Z.; Su, C.; Liu, S. Mapping Two-Dimensional Deformation Field Time-Series of Large Slope by Coupling DInSAR-SBAS with MAI-SBAS. Remote Sens. 2015, 7, 12440–12458. [Google Scholar] [CrossRef] [Green Version]
- Cascini, L.; Fornaro, G.; Peduto, D. Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng. Geol. 2010, 112, 29–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Jin, M.; Jing, Y.; Liu, Y.; Liu, Y.; Sun, W.; Wei, J.; Chen, Y. Monitoring Land Subsidence in Wuhan City (China) using the SBAS-InSAR Method with Radarsat-2 Imagery Data. Sensors 2019, 19, 743. [Google Scholar] [CrossRef] [Green Version]
- He, L.; PEI, P.; Wu, L.; Zhang, X. Analysis of surface movement characteristics before a landslide in mining area based on time series InSAR. J. Northeast. (Nat. Sci.) 2022, 43, 1314–1321. [Google Scholar] [CrossRef]
- Grebby, S.; Sowter, A.; Gee, D.; Athab, A.; De la Barreda-Bautista, B.; Girindran, R.; Marsh, S. Remote Monitoring of Ground Motion Hazards in High Mountain Terrain Using InSAR: A Case Study of the Lake Sarez Area, Tajikistan. Appl. Sci. 2021, 11, 8378. [Google Scholar] [CrossRef]
- Cenni, N.; Fiaschi, S.; Fabris, M. Integrated use of archival aerial photogrammetry, GNSS, and InSAR data for the monitoring of the Patigno landslide (Northern Apennines, Italy). Landslides 2021, 18, 2247–2263. [Google Scholar] [CrossRef]
- Carla, T.; Tofani, V.; Lombardi, L.; Raspini, F.; Bianchini, S.; Bertolo, D.; Thuegaz, P.; Casagli, N. Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment. Geomorphology 2019, 335, 62–75. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Q.; Ding, X.; Zhao, C.; Yang, C.; Qu, F.; Qu, W. Landslide monitoring by combining of CR-InSAR and GPS techniques. Adv. Space Res. 2014, 53, 430–439. [Google Scholar] [CrossRef]
- Tiwari, A.; Narayan, A.B.; Dwivedi, R.; Dikshit, O.; Nagarajan, B. Monitoring of landslide activity at the Sirobagarh landslide, Uttarakhand, India, using LiDAR, SAR interferometry and geodetic surveys. Geocarto Int. 2020, 35, 535–558. [Google Scholar] [CrossRef]
- Dun, J.; Feng, W.; Yi, X.; Zhang, G.; Wu, M. Detection and Mapping of Active Landslides before Impoundment in the Baihetan Reservoir Area (China) Based on the Time-Series InSAR Method. Remote Sens. 2021, 13, 3213. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Zhang, Q.; Lu, Z.; Li, Z.; Yang, C.; Zhu, W.; Liu-Zeng, J.; Chen, L.; Liu, C. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China. Eng. Geol. 2021, 284, 106033. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Zhang, Q.; Yin, Y.; Lu, Z.; Samsonov, S.; Yang, C.; Wang, M.; Tomas, R. Three-dimensional and long-term landslide displacement estimation by fusing C- and L-band SAR observations: A case study in Gongjue County, Tibet, China. Remote Sens. Environ. 2021, 267, 17–40. [Google Scholar] [CrossRef]
- Ren, T.; Gong, W.; Gao, L.; Zhao, F.; Cheng, Z. An Interpretation Approach of Ascending-Descending SAR Data for Landslide Identification. Remote Sens. 2022, 14, 1299. [Google Scholar] [CrossRef]
- Hayati, N.; Niemeier, W.; Sadarviana, V. Ground Deformation in The Ciloto Landslides Area Revealed by Multi-Temporal InSAR. Geosciences 2020, 10, 156. [Google Scholar] [CrossRef]
- Notti, D.; Herrera, G.; Bianchini, S.; Meisina, C.; García-Davalillo, J.C.; Zucca, F. A methodology for improving landslide PSI data analysis. Int. J. Remote Sens. 2014, 35, 2186–2214. [Google Scholar] [CrossRef]
Satellite | Orbit | Incidence Angle (°) | Heading Angle (°) | Period | Number of Scenes | Maximum Spatial Baseline (m) | Resolution Azimuth × Range (m2) |
---|---|---|---|---|---|---|---|
Sentinel-1A | Ascending | 33.7 | −13.54 | 22 October 2018–14 May 2019 | 18 | 83.4 | 5 m × 20 m |
Sentinel-1B | Descending | 36.1 | 166.37 | 26 October 2018–18 May 2019 | 17 | 135.6 | 5 m × 20 m |
Satellite | Orbit | Incidence Angle (°) | Heading Angle (°) | Period | Number of Scenes |
---|---|---|---|---|---|
Sentinel-1A | Ascending1 (T25) | 38.87 | −13.53 | 7 June 2019–22 November 2019 | 14 |
Sentinel-1A | Descending (T98) | 38.86 | −13.53 | 12 June 2019–15 November 2019 | 15 |
Sentinel-1B | Descending (T105) | 39.02 | 166.42 | 6 June 2019–21 November 2019 | 15 |
GNSS Site | Method | Three-Dimensional Sliding Magnitude (mm) | LOS Sliding Magnitude (mm) | Slope Slip (mm) | (%) | (%) | (%) | (%) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
U | E | N | Ascending | Descending | |||||||
QK01 | GNSS | −8.9 | −10.4 | −2.5 | −1.5 | −13.5 | −13.1 | 11.5 | 16.0 | 103.0 | 43.5 |
InSAR | −2.1 | −5.7 | |||||||||
QK02 | GNSS | −26.4 | −25.1 | −13.4 | −6.7 | −37.5 | −36.2 | 18.5 | 17.4 | 103.6 | 47.0 |
InSAR | −6.3 | −17 | |||||||||
QK03 | GNSS | −96.9 | −86.2 | −60.9 | −26.2 | −136.0 | −139.9 | 18.7 | 14.2 | 97.2 | 35.7 |
InSAR | −19.9 | −50 |
GNSS Site | Landslide Angle (°) | Slope (°) | Aspect (°) | Hterrain | |
---|---|---|---|---|---|
Ascending | Descending | ||||
QK01 | 50.13 | 53.25 | 234.9 | 0.46 | 0.86 |
QK02 | 47.14 | 41.37 | 213.3 | 0.47 | 0.62 |
QK03 | 47.44 | 53.33 | 225.6 | 0.53 | 0.79 |
No. | Authors | Satellite Mission | Area of Study | Methodology | Study Time | Number of Stations | Typical Station | TGNSS | PGNSS |
---|---|---|---|---|---|---|---|---|---|
Case 1 | [43] | Sentinel-1 | Northern Apennines | PS-InSAR | March 2015–May 2019 | 1 | PATG | 76.6% | 54.7% |
Case 2 | [44] | Sentinel-1 | Bosmatto | SqueeSAR | April 2014–April 2016 | 4 | A-06 | 92.8% | 68.3% |
Case 3 | [45] | TerraSAR | Shananxi Province | CR-InSAR | April 2011–August 2011 | 6 | DJ-08 | 88.0% | 64.4% |
Case 4 | [46] | Sentinel-1 | Uttarakhand | MT-InSAR | November 2015–August 2017 | 4 | GPS4 | 99.8% | 135.9% |
Landslides | GNSS Site/ SAR Datasets | Slope (φ) | Aspect (α) | R-Index | Hterrain | ||
---|---|---|---|---|---|---|---|
Ascending | Descending | Ascending | Descending | ||||
Qidashan open-pit mine | QK01 | 53.25 | 234.9 | −0.03 | −0.27 | 0.34 | 0.99 |
QK02 | 41.37 | 213.3 | 0.34 | 0.06 | 0.25 | 0.86 | |
QK03 | 53.33 | 225.6 | 0.09 | −0.21 | 0.38 | 0.95 | |
Yabaling open-pit mine | Ascending1 (T25) | 39.95 | 49.82 | 0.81 | 0.90 | ||
Ascending2 (T98) | 0.89 | 0.93 | |||||
Descending (T105) | 0.97 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Pei, P.; Zhang, X.; Qi, J.; Cai, J.; Cao, W.; Ding, R.; Mao, Y. Sensitivity Evaluation of Time Series InSAR Monitoring Results for Landslide Detection. Remote Sens. 2023, 15, 3906. https://doi.org/10.3390/rs15153906
He L, Pei P, Zhang X, Qi J, Cai J, Cao W, Ding R, Mao Y. Sensitivity Evaluation of Time Series InSAR Monitoring Results for Landslide Detection. Remote Sensing. 2023; 15(15):3906. https://doi.org/10.3390/rs15153906
Chicago/Turabian StyleHe, Liming, Panke Pei, Xiangning Zhang, Ji Qi, Jiuyang Cai, Wang Cao, Ruibo Ding, and Yachun Mao. 2023. "Sensitivity Evaluation of Time Series InSAR Monitoring Results for Landslide Detection" Remote Sensing 15, no. 15: 3906. https://doi.org/10.3390/rs15153906
APA StyleHe, L., Pei, P., Zhang, X., Qi, J., Cai, J., Cao, W., Ding, R., & Mao, Y. (2023). Sensitivity Evaluation of Time Series InSAR Monitoring Results for Landslide Detection. Remote Sensing, 15(15), 3906. https://doi.org/10.3390/rs15153906