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Abstract: Interferometric synthetic aperture radar (InSAR) technology has been widely applied to
measure Earth surface motions related to natural and anthropogenic crustal deformation phenomena.
With the widespread uptake of data captured by the European Space Agency’s Sentinel-1 mission
and other recently launched or planned space-borne SAR missions, the usage of the InSAR technique
to detect and monitor Earth surface displacements will increase even more in the coming years.
However, InSAR can only measure a one-dimensional motion along the radar line of sight (LOS),
which makes interpretation and communication of InSAR measurements challenging, and can
add ambiguity to the modelling process. Within this paper, we investigate the implications of
the InSAR LOS geometry using simulated and observed deformation phenomena and describe a
methodology for multi-geometry data fusion of LOS InSAR measurements from many viewing
geometries. We find that projecting LOS measurements to the vertical direction using the incidence
angle of the satellite sensor (and implicitly assuming no horizontal motions are present) may result in
large errors depending on the magnitude of horizontal motion and on the steepness of the incidence
angle. We quantify these errors as the maximum expected error from simulated LOS observations
based on a Mogi deformation model. However, we recommend to use LOS observations from
several image geometries wherever data are available, in order to solve for vertical and E–W oriented
horizontal motion. For an anthropogenic deformation phenomenon observed in seven independent
InSAR analyses of Envisat SAR data from the Sydney region, Australia, we find that the strong
horizontal motion present could lead to misinterpretation of the actual motion direction when
projecting LOS measurements to vertical (uplift instead of subsidence). In this example, the difference
between multi-geometry data fusion and vertical projection of LOS measurements (at an incidence
angle of 33.8◦) reach up to 67% of the maximum vertical displacement rate. Furthermore, the position
of maximum vertical motion is displaced horizontally by several hundred metres when the LOS
measurements are projected.

Keywords: InSAR; surface displacements; line-of-sight; multi-geometry; data fusion; Mogi model;
Envisat; crustal deformation

1. Introduction

In the past three decades, InSAR has proven to be a valuable geodetic technique to detect and
quantify motion of the Earth’s surface (either defined as a displacement or a displacement rate, aka
velocity). In contrast to other geodetic techniques, InSAR can image large areas giving a high spatial
resolution of measurement points. Time series InSAR analysis allows us to accurately measure surface
motions at the millimetre to centimetre scale at a subset of pixels with consistent backscattering
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characteristics (e.g., [1–5]). A major limitation of InSAR is that the resulting motion measurements are
restricted to a one-dimensional (1D) line of sight (LOS) viewing geometry. However, surface motions
(resulting from subsurface deformation processes) generally occur in the three spatial dimensions
(i.e., east (E), north (N) and up (U)). This means that the InSAR analysis of a stack of synthetic aperture
radar (SAR) images acquired in a single viewing geometry is not able to fully capture the magnitude
and direction of surface motions (e.g., [6], p. 163). As a consequence, these LOS measurements are hard
to interpret and communicate to stakeholders unfamiliar with the concept of a 1D viewing geometry.
For this reason, InSAR-derived LOS measurements are interpreted as vertical deformation in some
studies without discussing the horizontal contribution to the original measurements (e.g., [7–12]).
In many scientific and commercial studies LOS measurements are converted into the vertical direction
by projecting the data using the sensor incidence angle. This procedure neglects the horizontal
components of motion that would also be mapped into the LOS. The assumption of a purely vertical
motion field is mentioned in most of these studies (e.g., [13–31]). However, some studies apply
the projection of LOS to vertical without stating the assumption of no horizontal motion occurring
(e.g., [32–38]). In general, the LOS to vertical projection is usually only valid for specific parts of a
deforming area (e.g., the centre of a subsidence bowl). For certain crustal deformation mechanisms,
the horizontal components of motion can be even larger than the vertical component, depending
on position within the deformation field and on the SAR sensor’s incidence angle. To the authors’
knowledge, the error made when projecting LOS to vertical and neglecting any horizontal motion has
not yet been quantified with observations.

Previous works have already emphasised the importance of combining multi-geometry InSAR
data sets to accurately retrieve the local displacement field (e.g., [39–41]). When InSAR observations
from both ascending and descending satellite passes are available, it is possible to combine LOS
displacements to separate the vertical component from one horizontal component (usually E–W)
(e.g., [42–45]). In many cases the N–S component cannot be separated because it is poorly constrained
by the satellite geometry (see Section 4.1), even when data is acquired in both left- and right-looking
imaging modes. However, for large motion events (at the metre-scale) it is possible to recover the full
3D motion field by combining conventional InSAR with motion in the azimuth direction derived from
the pixel offset tracking or multi-aperture interferometry approaches [46–51]. Different approaches
to resolve 3D surface motion from InSAR data are reviewed in reference [52], with the conclusion
that a particular approach should be chosen according to the type of deformation and the available
InSAR and other geodetic data. If independent geodetic data sources are available, such as GNSS
(Global Navigation Satellite Systems) measurements, the horizontal motion can be constrained by
these data sets in order to extract vertical motion from the InSAR LOS signal. This is particularly
applicable when a long wavelength deformation signal is the target of investigation because the
relatively sparse sampling of GNSS measurements is less of an issue when the deformation signal has
a long wavelength [53–56]. Furthermore, independent geodetic data can be used to solve for a full 3D
motion vector by combining the data sets mathematically on a pixel-by-pixel basis [57–62].

In this paper we conduct an investigation into the implications of the LOS geometry of InSAR
measurements and the fusion of ascending and descending LOS measurements using simulated and
observed deformation phenomena. The paper will address the following questions:

• What magnitude of error is made when projecting LOS to vertical and neglecting the possibility
of horizontal motion?

• How can we rigorously estimate vertical and horizontal surface motions from the InSAR
LOS geometry?

• Can we solve for the N–S component of motion using a multi-geometry data fusion of InSAR LOS
measurements (without using the less precise pixel offset tracking or multi-aperture interferometry
methods, independent geodetic data sources or data from right- and left-looking geometries)?
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To answer these questions, we use a simulated deformation field based on a Mogi model [63] and
an observed deformation field captured by Envisat SAR data across seven different viewing geometries.
In Section 2, we present the theory on rigorous estimation of vertical and horizontal surface motions
from LOS InSAR data measured in multiple viewing geometries. The simulated deformation case is
presented in Section 3, and the observed data case in Section 4. The paper finishes with a discussion of
the findings and some major conclusions.

2. Methods

2.1. InSAR Line of Sight Viewing Geometry

The viewing geometry of the satellite LOS is defined by incidence angle θ (the angle between
the local zenith and the looking vector of the satellite) and satellite heading α. The LOS observations
are made in a direction orthogonal to the satellite heading, with all simulated and real data used in
this paper being acquired in a right-looking imaging geometry relative to the heading (see Figure 1).
In what follows we describe surface motions in terms of displacement rate (aka velocity), though the
same description holds for discrete displacements. A LOS velocity vLOS is composed of the 3D velocity
components vE, vN , vU (e.g., [46] or [6], p. 162):

vLOS =
(

−sinθcosα sinθsinα cosθ
) vE

vN
vU

 (1)
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Figure 1. Schematic view of the interferometric synthetic aperture radar (InSAR) viewing geometry for
line of sight (LOS) measurements on ascending and descending satellite passes.

For most SAR sensors, α is around −15◦ for ascending satellite passes (flight direction NNW) and
around −165◦ for descending passes (flight direction SSW). The incidence angle varies for different
SAR sensors depending on the image extent (near-range vs. far-range) and the image mode (see [64],
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Table 3.1, for a list of typical incidence angles for different SAR sensors). For the ERS and Envisat
satellites the default incidence angle was 23◦ at mid-range with a variation of 19◦ to 27◦ from near- to
far-range [65]. For the Sentinel-1 Interferometric Wide Swath mode the variation between near-range
and far-range incidence angles ranges from 29◦ to 46◦ [66]. The LOS measurements vary considerably
with incidence angle. For example, a 3D velocity vector of

(
2 3 4

)
mm/yr in E, N and U

directions results in a LOS velocity of 2.2 mm/yr for the Sentinel-1 near range (θ = 29◦) and 0.8 mm/yr
for the Sentinel-1 far range (θ = 46◦) for an ascending pass heading of −15◦. Furthermore, the variation
in LOS velocity between near and far range increases in proportion with the magnitude of the 3D
velocity vector.

2.2. Multi-Geometry Data Fusion

Multi-geometry InSAR data fusion aims to combine LOS measurements from two or more
independent InSAR viewing geometries in order to derive the vertical and horizontal components
of the observed displacement signal. Fusion of multiple independent InSAR analyses is possible if
LOS measurements are available (i) at the same location and (ii) within the same time period. To fulfil
(i), spatial interpolation is needed because the location of selected InSAR pixels is generally different
in each analysed stack of images. We apply the kriging technique [67] to interpolate pixel-wise
LOS measurements to a regular grid at each epoch. Interpolation is only performed if a certain
number of InSAR pixels is available in the surroundings of a given interpolation location. To fulfil (ii),
interpolation in time is needed, since the image acquisition dates are usually different in each viewing
geometry. However, if it is known (or assumed) that steady-state motion is happening throughout the
total observation period, linear displacement rates (velocities) can be used for the multi-geometry data
fusion. In Section 4 we combine velocities that result from a linear regression of a displacement time
series at each grid pixel. The standard deviation of the linear regression indicates the goodness-of-fit
of the linear model to the displacement time series.

The fusion of LOS velocities is performed on a pixel-by-pixel basis on the interpolated grid
nodes. This approach also enables other geodetic data to be incorporated if available, such as
GNSS or levelling observations [61,62]. Furthermore, it is possible to fuse InSAR-derived LOS
measurements from different SAR sensors and with different operating frequencies (X-band, C-band,
L-band; see reference [68]). We apply least-squares adjustment (LSA) to the interpolated LOS velocities
(observation vector y), solving for velocities in the E, N and U directions (unknown parameters x):

y = A·x + e (2)

vasc1

vasc2
...

vdesc1
vdesc2

...


=



−sinθasc1cosαasc1 sinθasc1sinαasc1 cosθasc1

−sinθasc2cosαasc2 sinθasc2sinαasc2 cosθasc2
...

...
...

−sinθdesc1cosαdesc1 sinθdesc1sinαdesc1 cosθdesc1
−sinθdesc2cosαdesc2 sinθdesc2sinαdesc2 cosθdesc2

...
...

...



 vE
vN
vU

+ e (3)

Due to the variation of incidence angle θ with range, the values in the design matrix A differ
for each pixel. The satellite’s heading α can be treated as a constant value for each geometry, since
the variation in α is usually within 1◦ over the extent of a SAR image and hence has a negligible
influence on the values in matrix A. A variance matrix Qyy is used to weight the LSA. It consists of
the uncertainties of LOS velocities (σasc1, σdesc1, · · · ) resulting from spatial interpolation and linear
regression of the LOS displacement time series performed independently for each geometry. Due
to the different accuracies of displacements and velocities resulting from spatial interpolation of
heterogeneous data sets and linear regression in time, each pixel has its own matrix Qyy. We assume
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no correlation between LOS velocities resulting from independent InSAR analyses, hence Qyy is a
diagonal matrix containing only variances:

Qyy =



σ2
asc1 0 · · · 0 0 · · ·
0 σ2

asc2 · · · 0 0 · · ·
...

...
. . .

...
...

...
0 0 · · · σ2

desc1 0 · · ·
0 0 · · · 0 σ2

desc2 · · ·
...

... · · ·
...

...
. . .


(4)

Note that the number of lines in the observation vector y and the design matrix A, as well as
the number of lines and columns in the variance-covariance matrix Qyy is variable depending on
the number of observations available at each grid node. Theoretically, measurements in E, N and U
directions can be estimated from ascending and descending LOS measurements at every grid node
containing at least three observations. However, LSA can only be performed in this case if four or
more observations are available. Even when applying this method to the case where LOS velocities are
available from many geometries, the N component is still poorly constrained. To illustrate this issue
with actual values, the design matrix A for the case of the Envisat SAR database used in Section 4 is:

A =



−0.32 −0.08 0.95
−0.47 −0.13 0.88
−0.54 −0.15 0.83
−0.66 −0.21 0.72
0.31 −0.08 0.95
0.38 −0.10 0.92
0.54 −0.15 0.83


(5)

The matrix consists of seven rows for the seven independent viewing geometries, but is close to
singularity and will result in inaccurate estimates when solving the least-squares equation system with
noisy input data. The condition number of a matrix (cond) is a measure of the sensitivity of the solution
of a system of linear equations to errors in the data. It gives an indication of the accuracy of the results
from matrix inversion and the linear equation solution. A linear system for which cond(A) is close to 1
is considered well-conditioned; a linear system for which cond(A) >> 1 is considered ill-conditioned
(see [69], p. 281). The condition number of a non-square design matrix A can be obtained as the ratio
of maximum and minimum values of a singular value decomposition (svd) of A:

cond(A) =
max(svd(A))

min(svd(A))
(6)

For the case of estimating all three components using the design matrix in Equation (5), cond(A)
results in a value of 19.1. This means that the relative error of the solution may amount to almost
20 times the relative data error.

The simulations performed in Section 3 are loosely based on the real data case described in
Section 4. We also perform simulations on whether it is better to omit the N component completely
from Equation (3) and only solve for E and U velocity components. For the case of neglecting the N
component from the linear equation system, the second column of matrix A is erased. The condition
number of A is then 1.9 for the example given in in Equation (5), proving that the linear system is much
better conditioned (by a factor of 10) compared to the case when estimating all three components. When
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the N component is omitted, Equation (3) can be solved when velocity data is available from only one
ascending and one descending geometry, which is a common observation scenario for InSAR studies:(

vasc

vdesc

)
=

(
−sinθasccosαasc cosθasc

−sinθdesccosαdesc cosθdesc

)(
vE
vU

)
(7)

Equation (7) is solved by inversion of the linear equation system (instead of weighted LSA) and
without redundancy and the opportunity to derive least-squares error estimates. The error made by
neglecting the N component is investigated using simulated observations in Section 3.2. An alternative
formulation of Equation (7) has been proposed by [44] using a simplified but approximate set of
equations which assume the same, constant incidence angle for all pixels in both ascending and
descending image geometries. However, we argue that the notation given in Equation (7) is preferable
since the exact incidence angle can easily be used at each grid node.

A projection of LOS to vertical would omit the E component and calculate vU by dividing the
ascending or descending LOS velocity by cosθasc or cosθdesc, respectively. However, depending on the
deformation phenomenon causing the surface displacements this can result in large errors at some
pixels as shown in Sections 3 and 4.

3. Application to Simulated Data

In this section, we first define a simulated deformation field using the widely used Mogi model.
Second, we apply multi-geometry data fusion to simulated InSAR velocities and compare the results
to the original simulated deformation field as well as to velocities resulting from projection of LOS
measurements to vertical. The purpose of this simulation is to quantify errors resulting from the
LOS geometry. In the real world the magnitudes of horizontal and vertical displacements within a
deforming area are unknown in the first instance or only known for sparse locations (in the case of
levelling or GNSS measurements). A simulated deformation field, in contrast, enables us to directly
compare displacements resulting from LOS projection and multi-geometry data fusion to a known
deformation field.

3.1. Simulated Deformation Using a Mogi Model

The Mogi model was originally developed to describe deformation occurring beneath
volcanoes [63], but it is suitable as a first-order approximation for many deformation
phenomena [6,70,71]. The Mogi model is a simple analytical model that describes the magnitude and
direction of surface displacements resulting from the volume (or pressure) change at a point singularity
within a homogeneous elastic half-space. This is a gross approximation to deformation of the Earth’s
crust. Nevertheless, the Mogi model has found substantial success and ongoing use in explaining the
first-order effects of a large number of real-world deformation phenomena (e.g., occurring at volcanoes,
or related to mining, underground nuclear tests and groundwater withdrawal) on account of its
simplicity. In fact, the Mogi model is the simplest existing model of crustal deformation, with only four
variable parameters. In our simulation, the Mogi model serves as a representation of three-dimensional
surface motion that we use in a general comparison with observed motion (see Section 4).

Assuming a rate of volume change ∆V at depth d, velocities (vertical and horizontal components
vU and vH) at points located on a flat surface with horizontal distance r to the surface projection of the
source position are given by reference [72] (p. 288) and reference [73] (p. 207):

vU =
3∆Vd

4π(d2 + r2)
3
2

(8)

vH =
3∆Vr

4π(d2 + r2)
3
2

(9)
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Note that Equations (8) and (9) also apply for a discrete volume change between two observation
times, in which case a surface displacement is the outcome. Figure 2 shows an example of velocities
calculated using a Mogi model with a simulated, negative rate of volume change of 10,000 m3/yr at a
depth of 500 m. The resulting subsidence rate (downward motion) is strongest at the location directly
above the source and decreases with distance away from that location. Maximum horizontal velocities
are offset from the source location, with the offset magnitude depending on the source depth. In this
example the maximum vertical velocity is −9.55 mm/yr. The maximum horizontal velocity is ±3.68
mm/yr and located at a horizontal distance of 350 m from the source location.
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Figure 2. Simulated velocity fields resulting from a Mogi deformation source with a volume change of
10,000 m3/yr at 500 m depth: (a) vertical surface velocity (subsidence rate) resulting from a negative
rate of volume change, (b) E–W component of velocity resulting from the same rate of volume change.
Top-view images of (a) and (b) are displayed in Figure 4b and a, respectively.

Maximum vertical and horizontal velocities for varying source depths are displayed in Figure 3.
A greater rate of volume change results in larger velocities. Furthermore, a larger velocity is observed
for the same rate of volume change at shallower depths. However, the spatial extent of the deformation
pattern reduces with decreasing depth. The ratio of maximum horizontal and vertical velocity is
constant at a value of 0.385 for all source depths and rates of volume change (see also [72], p. 289).
As an example, this means that for a maximum vertical displacement rate of −10 mm/yr, maximum
horizontal displacement rates of ±3.85 mm/yr can be expected if the deformation source is Mogi-like.
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Figure 3. Maximum vertical and horizontal displacement rates resulting from Mogi model simulations
with varying source depths and volume changes. Displacement rate is expressed as velocity in mm/yr
assuming a steady volume change resulting in a constant displacement rate. Three discrete rates
of volume change are compared for vertical and horizontal motion in (a). Contours of maximum
vertical (b) and horizontal (c) velocities in mm/yr plotted as a function of depth and volume change of
the source.
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3.2. Fusion of Simulated Displacement Data

From the deformation model described in Section 3.1, we derive a 3D velocity field with signal
components in the E, N and U directions. In order to simulate a multi-geometry fusion of InSAR data,
we convert each 3D velocity vector

(
vE vN vU

)
into a LOS velocity vLOS using Equation (1). We

consider LOS observations from different viewing geometries using the seven Envisat LOS geometries
presented in Section 4. Furthermore, different levels of noise are added to the simulated LOS velocity
observations by drawing random numbers from a Gaussian distribution with a defined standard
deviation in order to investigate the performance of the LSA under different noise conditions. While
a single InSAR interferogram usually exhibits non-Gaussian noise characteristics [74,75], spatially
correlated nuisance terms are largely reduced in time series InSAR analysis (e.g., by spatio-temporal
filtering of atmospheric effects). Therefore it can be shown that the resulting set of LOS velocity
observations are usually close to a Gaussian distribution ([76] or [77], p. 141). Figure 4 displays
the E and U components of the simulated velocity field along with the resulting velocity fields for
one ascending and one descending Envisat LOS geometry. The descending geometry has a steeper
incidence angle and is hence more similar to the vertical velocity field. A lateral shift of the maximum
LOS velocity from the centre (where the maximum vertical velocity resides) is visible in both ascending
and descending LOS velocity fields.
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Figure 4. Simulated velocities from a Mogi deformation model: (a) E component, (b) U component,
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component is equivalent to the E–W component due to the symmetry of the Mogi model, but rotated
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Comparing the vertical signal component derived from projection of LOS to vertical to the original
simulated vertical signal component reveals errors with a magnitude that depends on the incidence
angle and the amount of horizontal deformation. Table 1 lists the mean absolute difference (MAD)
and maximum difference (MAX) for different incidence angles for the simulated Mogi velocity field
(Figure 4).

Table 1. Mean absolute difference (MAD) and maximum difference (MAX) between projected vertical
velocities and simulated velocities (both without adding noise) for different incidence angles. The
maximum vertical velocity of this simulation is −9.55 mm/yr.

Incidence Angle MAD (mm/yr) MAX (mm/yr)

15◦ 0.15 0.98
20◦ 0.20 1.34
25◦ 0.26 1.71
30◦ 0.32 2.12
35◦ 0.38 2.57
40◦ 0.46 3.08
45◦ 0.55 3.68
50◦ 0.65 4.38
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From Equation (1) we can mathematically derive the maximum error in the projected vertical
component ∆vU,proj,max (the maximum difference between the projected vertical to the original
simulated vertical signal component; see Appendix A for a full derivation):

∆vU,proj,max = vH,max·tanθ (10)

where vH,max represents the maximum horizontal deformation (in the look direction of the sensor if
the horizontal deformation is not symmetrical; see also reference [78]). This error is consistent with the
numbers in Table 1 resulting from our simulation. For a Mogi-like deformation phenomenon, Equation
(10) results in 0.385·tanθ of the maximum vertical velocity or displacement. For example, an incidence
angle of 38◦ and a maximum vertical displacement of 10 mm results in a maximum difference of 3 mm.
Consequently, large errors are introduced when projecting LOS measurements to vertical by neglecting
the horizontal component of the signal, particularly for viewing geometries with a shallow incidence
angle (θ > 30◦).

Now we combine the simulated LOS velocities using LSA as described in Section 2 to solve for 3D
velocities. For the simulated LOS velocities with added random Gaussian noise, the LSA is repeated
1000 times (each with a different realisation of random noise) in order to derive statistically valid results.
Furthermore, we use different combinations of available velocity observations (i.e., two, four and
seven different LOS viewing geometries) to estimate velocity components in E, N and U directions or,
when omitting the N component, in the E and U directions only. Figure 5 displays an example of a LOS
velocity field with the addition of spatially un-correlated Gaussian noise (sigma: 0.5 mm/yr) along with
the resulting vertical velocities derived from combining seven viewing geometries. For comparison,
the projection of the LOS to vertical (by neglecting the horizontal signal component) and the residuals
to the combined solution are also shown in Figure 5. From Figure 5d it becomes obvious that large
errors are introduced to the vertical velocities when only a projection is used instead of rigorous data
fusion. In our example the maximum difference between the two solutions are around 5 mm/yr,
which is more than 50% of the maximum vertical velocity (around −11 mm/yr after noise has been
added to the simulated observations).
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Figure 5. Simulated velocities at Gaussian noise level 0.5 mm/yr (one realisation from 1000 runs):
(a) ascending LOS with −16.0◦ heading and 33.9◦ incidence angle, (b) estimated U component from
fusion of seven viewing geometries, (c) U component from projection of LOS velocities, (d) difference
between (b) and (c). Note that the colour scale saturates at ±5 mm/yr.

When comparing the 3D velocities resulting from multi-geometry data fusion to the original
velocity field derived from the Mogi deformation model, we find that without the presence of noise
in the observations, LSA delivers the exact solution of the simulated input data when all three
velocity components are estimated (see Figure 6a at zero noise level). However, if only the E and U
components are estimated, a slight error is introduced which is greatest at locations where the surface
velocities are mainly N–S directed (maximum difference of 0.7 mm/yr in the simulation with two
tracks only for the U component, MAD: 0.1 mm/yr). This error is the result of neglecting the N–S
component of deformation, but is acceptable in many cases with regards to the general noise level
of InSAR measurements. However, for non-isotropic deformation phenomena, such as earthquakes
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or landslides, where the N–S component of deformation can be significantly larger than the E–W
component, neglecting the N component may result in much larger errors compared to this simulation.
The MAD of the estimated E, N and U velocities with respect to the model are shown in Figure 6 for the
two cases when estimating all three components and when estimating only the E and U components.
Using more viewing geometries in the data fusion results in lower MAD values. A linear increase
of MAD values is observed when the noise level of the velocity observations increases. MAD and
MAX values are summarised in Table 2 for the Gaussian noise level of 0.5 mm/yr, which represents
a typical noise level for C-band InSAR-derived velocities [62]. The MAD and MAX values of the
N component are around a factor of 10 worse compared to the corresponding values of E and U
components. From Figure 6 and Table 2 it also becomes obvious that in the presence of spatially
un-correlated noise, it is better to omit the N velocity component and solve only for the E and U
components of velocity when combining LOS velocities from three or more InSAR viewing geometries.
In particular, the U component benefits from omitting the N component from the LSA, as evidenced
by the fact that MAD and MAX values are better than a factor of two smaller (see Table 2).
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different noise levels and for different combinations, i.e., all seven viewing geometries (solid lines),
four viewing geometries (dashed lines), and two viewing geometries (dotted lines): (a) least-squares
adjustment (LSA) of all three velocity components, (b) LSA of E and U velocity components only. Note
that the y-scale is different in (a) and (b) to allow for visualisation of the smaller MAD values in the
(b) case.

Table 2. Difference of estimated velocities to original model values for Gaussian noise level of 0.5
mm/yr, mean absolute difference (MAD) and maximum difference (MAX).

Type of Fusion
E (mm/yr) N (mm/yr) U (mm/yr)

MAD MAX MAD MAX MAD MAX

all three components
Seven tracks 0.37 2.12 3.21 18.41 0.48 2.73
Four tracks 0.45 2.61 4.60 26.32 0.63 3.63
Two tracks - - - - - -
E and U only
Seven tracks 0.33 1.84 - - 0.20 1.23
Four tracks 0.45 2.51 - - 0.24 1.43
Two tracks 0.53 3.02 - - 0.36 2.14
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4. Application to Observed Data

Within this section, we present the results of multi-geometry data fusion of InSAR-derived velocity
observations from Envisat SAR data. We also compare the estimates of vertical velocities resulting from
multi-geometry data fusion to those obtained by projecting the InSAR LOS to vertical and neglecting
horizontal surface motions.

4.1. Envisat SAR Database in the Sydney Region

We use Envisat SAR data acquired in the Sydney region, on the east coast of Australia, between
June 2006 and September 2010. This database is particularly suitable for an investigation of
multi-geometry data fusion because a large number of images were acquired covering a similar
ground area from four ascending and three descending orbital tracks (see Figure 7 and Table 3).
From the different viewing geometry of each track, the pixels on the ground are observed with a
different incidence angle and heading. Figure 7b,c visualise the different geometries by displaying
the satellite positions in orbit at the time of acquisition with respect to a common position on the
ground. The satellite positions are well distributed over the sky in the E–W plane (see Figure 7b).
Multi-geometry data fusion is hence able to estimate E and U velocities when mathematically
combining the LOS velocities from all seven viewing geometries. However, the variation of satellite
positions in N–S plane is small (Figure 7c), meaning that any N–S directed motion will be poorly
constrained even if a pixel on the ground is observed from all seven viewing geometries (cf. Equation
(5)). Note that the situation shown in Figure 7 is similar for all space-borne SAR sensors since all
past and current missions have a sun-synchronous low polar orbit. However, in most cases less data
from different viewing geometries is available. The geometry slightly improves when data from both
right- and left-looking geometries are available, which is a feature of some SAR sensors (ALOS-2,
RADARSAT-2 and TerraSAR-X). However, the N–S signal component is still a factor of 4–5 worse
compared to the E–W and vertical components [39,79].
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Figure 7. Overview of the Envisat SAR database used within this paper: (a) footprint of ascending and
descending Envisat SAR images in the Sydney region, and position of Envisat satellite at time of image
acquisition from the seven orbital tracks in E–U plane (b) and in N–U plane (c).

Detailed information on the image acquisitions and properties of all seven Envisat viewing
geometries are given in Table 3. Except for track 467, all tracks cover a similar time period of more
than four years with image acquisitions regularly distributed over time (the minimum repeat time
for Envisat was 35 days). Generally, more than 20 images are required to achieve high quality InSAR
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results [80]. The Envisat data sets in the seven viewing geometries contain between 26 and 43 usable
images, which allows for a high quality InSAR analysis.

Table 3. Overview of the seven Envisat data sets including information on the LOS geometries. A:
ascending, D: descending.

Orbital
Track

Pass
Direction Start Date End Date Number of

Images Used
Number of

Interferograms
Satellite
Heading

Incidence
Angle

Envisat Image
Mode

338 A 15 June 2006 2 September 2010 42 109 −14.5◦ 19.0◦ IS1
381 A 18 June 2006 5 September 2010 43 117 −15.5◦ 28.9◦ IS3
152 A 2 June 2006 24 September 2010 36 97 −16.0◦ 33.9◦ IS4
467 A 31 March 2007 31 October 2009 26 83 −17.3◦ 44.1◦ IS7
173 D 8 July 2006 25 September 2010 31 81 −165.5◦ 18.9◦ IS1
402 D 19 June 2006 6 September 2010 42 130 −165.1◦ 22.9◦ IS2
359 D 16 June 2006 3 September 2010 41 129 −164.1◦ 33.8◦ IS4

We apply the following processing strategy consistently and independently to all seven Envisat
data sets:

• Calculation of a small baseline subset (SBAS) network of interferograms using the GAMMA
software [81]. The SBAS network is generated based on coherence and the requirement for a
minimum and maximum number of connections for each image. The results of this step are
interferometric phase images with major orbital and topographic contributions to the phase
signal removed.

• Time series analysis of interferometric phase using the SBAS approach [82] as implemented in the
StaMPS software [83–85]. The results of this step are LOS displacement time series at a subset of
image pixels with slowly-decorrelating phase observations.

• Quality check and outlier filtering of the resulting subset of image pixels, including the exclusion
of pixels with phase unwrapping errors. Furthermore, a stable area (zero-mean and low variation
of displacement values), common to all seven independent InSAR analyses is defined. The stable
area then serves as a spatial reference for all InSAR-derived data sets.

• Interpolation of the LOS displacements at each measurement epoch to a regular 100 m grid (no
interpolation is performed at grid nodes where no InSAR pixels are in the vicinity) and calculation
of a linear displacement rate (velocity). This step is described in detail by references [62,77].

4.2. Fusion of Envisat Velocity Data

We combine the LOS velocities derived from the seven Envisat InSAR analyses by applying
LSA at every interpolated grid node where there are at least three observations (for a particular grid
node a LOS velocity is available from at least one ascending plus two descending geometries, or two
descending plus one ascending geometries). As we demonstrated in Section 3.2, the estimated E and
U velocities become more accurate when the N component is omitted from the LSA by discarding
the second row of the design matrix in Equation (3). This is only valid for isotropic deformation
phenomena where the N component is of the same order of magnitude as the E component. The N
component should not be neglected if it is expected to be significantly greater than the E component
(in the case of earthquake and landslide deformation).

Figure 8 shows the LOS velocities for one ascending and one descending geometry along with the
derived E and U components derived by data fusion of the seven Envisat data sets. The northern part
of the investigated area is stable, with velocities within a few millimetres per year. However, velocities
of 10 mm/yr (or more) are observed in several locations in the southern part of the analysed area.
Two localised patterns of surface motion can be clearly distinguished; the first southwest of Picton and
the second east of Picton. In both cases, a different motion behaviour is revealed by the ascending and
descending geometry. The ascending LOS velocities show negative values in the western part of the
patterns and positive values in the eastern parts. The descending LOS velocities behave in the opposite
fashion. These observations from different viewing geometries indicate the presence of horizontal
motions in these locations. Multi-geometry data fusion of all seven data sets allows us to unravel and



Remote Sens. 2019, 11, 241 13 of 21

better understand the E and U components of these motion patterns. The E component of velocity
(Figure 8c) displays the behaviour of a subsidence bowl (cf. Figures 2b and 4a), with east-directed
motion on the western side of the subsidence zone and west-directed motion in the eastern part.
The U component reveals subsidence in both locations. In contrast to the ratio of vertical to horizontal
velocities resulting from a Mogi model, the horizontal velocity field has a similar magnitude as the
vertical velocity field. This indicates that the source of deformation that is causing the surface motion
in these cases differs from the Mogi deformation model.
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We now further investigate the deforming zone southwest of Picton. Figure 9 shows a close-up
view of the descending LOS velocity field (Figure 8b), the U component derived by data fusion
(Figure 8d) and the U component derived by projecting LOS to vertical (and neglecting horizontal
signal components). Furthermore, we show the difference between the two derivations of the vertical
velocity field (Figure 9d). The projected vertical velocities deviate from the combined vertical velocities
derived from data fusion, similarly to the simulated results shown in Figure 5. However, because of
the larger ratio of horizontal surface motion to vertical surface motion, the differences are larger than
the simulation. In fact, the results of projecting LOS to vertical would erroneously indicate that surface
uplift is occurring in the area with a velocity of up to 4.8 mm/yr (Figure 9c). The pixel-wise differences
between projected vertical and combined vertical (shown in Figure 9d) range between −6.2 mm/yr
and +10.2 mm/yr, which is up to 67% of the maximum absolute combined velocity (−15.2 mm/yr).Remote Sens. 2019, 9, x  14 of 22 
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Figure 9. Velocities observed at the deforming zone southwest of Picton: (a) descending LOS (track
359), (b) estimated U component from fusion of seven tracks, (c) U component from projection of LOS
velocities, (d) difference between (b) and (c). Dashed black lines denote the envelope of points used to
derive the E–W profiles shown in Figure 10. Coordinate axes: UTM, zone 56.
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Figure 10. Profile through the deforming zone shown in Figure 9. E and U velocity components from
Mogi model (dotted lines) and from multi-geometry data fusion (solid lines), projected U components
from ascending (track 467) and descending (track 359) LOS velocities (dashed lines). Data gaps are
reduced for the combined and projected signals by averaging the velocities of pixels falling within an
envelope of 1.8 km width on either side of the profile line (see dashed black lines in Figure 9) and at
intervals of 100 m along profile, and subsequently smoothing the profiles in the east direction.

To further illustrate the implications for interpreting 3D surface motions from InSAR-derived
measurements, in Figure 10 we show E–W profiles of the combined and projected velocities crossing
the deforming zone shown in Figure 9. Furthermore, we compute (and show in Figure 10) a Mogi
simulation that produces E and U velocities broadly matching the velocities observed in the Envisat
data. The vertical velocities simulated by the Mogi model provide a good fit to the combined vertical
velocity estimate, indicating that the chosen depth (500 m) and volume change rate (10,000 m3/yr) of
the model are applicable to this deforming zone. However, as previously discussed, the horizontal
velocities produced by this real-world deformation phenomenon exceed those of the Mogi model.
This indicates that in this case the deformation source cannot be described by a single point source
within an elastic half-space. Both projected U components (ascending and descending) can be seen to
deviate significantly from the combined vertical and modelled vertical components. The maximum
subsidence values of both projections exceed the combined ones and are shifted by several hundred
metres to the west (ascending) or to the east (descending). The ascending track displayed in Figure 10
(track 467) has a relatively shallow incidence angle (θ = 44◦), which further compounds the error
effect on the projected vertical component (when compared to the descending track 359, with a steeper
incidence angle, θ = 34◦). Both ascending and descending projected U velocity estimates indicate
uplift (ascending: east of the subsidence bowl, descending: west of the subsidence bowl), whereas
the combined U component as well as the Mogi model indicate only subsidence. This example
from a real-world data set demonstrates that projecting LOS measurements to vertical may result in
misleading interpretation of InSAR-derived motions, particularly when a strong horizontal signal
component is present.

5. Discussion

In Sections 3 and 4 we have shown that projecting InSAR LOS measurements to the vertical
direction whilst neglecting horizontal motion can ultimately lead to erroneous interpretation of InSAR
results. Our investigations are based on velocities since these are mostly used to describe slow
motion events measured with InSAR, but all results and conclusions are equally applicable to the
case of displacement data. Deformation of the Earth’s crust results in surface displacements in three
dimensions. The assumption of a purely vertical motion behaviour is usually only valid for a certain
part of the deforming area (the central part of a subsidence bowl). Many natural and anthropogenic
deformation phenomena follow a Mogi-like behaviour (to first order), which means that the maximum
horizontal surface motion is around 38.5% of the maximum vertical surface motion. When projecting
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LOS measurements to the vertical direction by assuming there is no (or negligible) horizontal motion,
an error is introduced with a magnitude that depends on the incidence angle and on the amount of
horizontal motion. For an incidence angle of 26.5◦, the error is 50% of the maximum horizontal motion,
for an incidence angle of 45◦, the error is 100% of the maximum horizontal motion. We therefore
recommend not to project LOS measurements to vertical if only one image geometry is available,
particularly if the incidence angle is shallow (above 30◦). Instead the InSAR measurements should be
interpreted in the LOS geometry, with the implications of the 1D viewing geometry clearly explained
to stakeholders. When a projection of LOS to vertical is absolutely required, the maximum theoretical
error can be calculated from Equation (10). This results in 0.385·tanθ of the maximum vertical motion
for a Mogi deformation source. However, depending on the deformation phenomenon, we find that
this error can be much larger in the real world. For surface motions observed in the Sydney region in
Envisat SAR data, an error of up to 67% of the maximum vertical motion is introduced when projecting
LOS measurements at an incidence angle of 33.8◦. Apart from incorrect magnitude and direction
of resulting vertical surface motions (uplift instead of subsidence in some parts of the deformation
field), the location of the maximum vertical motion was found (in the case of the deforming zone
southwest of Picton) to be shifted by several hundred metres. These implications could lead to
incorrect validation of InSAR observations with those derived from GNSS or other geodetic techniques,
and ultimately may lead to a lack of trust in the InSAR technique. Instead of comparing a projected
vertical InSAR displacement to the vertical GNSS component [30], we recommend transforming the
3D GNSS measurements into the corresponding InSAR LOS geometry for validation purposes [86].

If InSAR data is available on multiple tracks for the same area of interest, multi-geometry data
fusion is the best way to gain insight into the 3D surface behaviour of subsurface deformation processes.
Spatial interpolation is needed to provide LOS measurements from InSAR analysis of several viewing
geometries at the same locations. Rigorous results of combined E–W and vertical motion estimates are
then derived from LSA of LOS measurements and their uncertainties derived from single-geometry
InSAR analysis. For the case of LOS measurements being available in three or more viewing geometries,
we find that it is better to omit the N–S component from the LSA, as the poor condition of the design
matrix introduces errors into the estimated parameters, particularly the vertical component. The usage
of exact incidence angles for each grid pixel in the design matrix shown in Equation (3) becomes
particularly important when combining Interferometric Wide Swath data from the European Space
Agency’s Sentinel-1 mission [87] because of the large variation of the incidence angle from near-range
to far-range. Sentinel-1 InSAR measurements are particularly suited to multi-geometry data fusion,
since for many regions on Earth, data are available from both ascending and descending orbital passes
and with a large overlap of images acquired from adjacent orbital tracks.

The approach we have described in this paper can also be used with input data from different
SAR sensors, and measured over different time periods. Note that interpolation in time and fusion of
displacements at different time steps (instead of velocities) is needed if the deformation is non-linear.
Furthermore, the matrix notation used in the LSA can be extended to add in other geodetic data
such as levelling or GNSS measurements [61,62]. In addition, surface motions derived from GNSS
data are particularly valuable for validation of large-scale InSAR products and for incorporation of
relative InSAR measurements derived on numerous adjacent orbital tracks into seamless mosaicked
products [88–91] that can be used to add a much higher density of geodetic measurements to national
geodetic products such as a height datum [86].

6. Conclusions

In this paper we have investigated the implications of the InSAR LOS geometry for measuring 3D
surface motions. We have compared the results of multi-geometry InSAR data fusion of simulated
and observed LOS velocities to the results of projecting LOS velocities to vertical (by neglecting the
presence of horizontal motions). This comparison has demonstrated the advantages of fusing LOS
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measurements from several different viewing geometries. With regards to the research questions
defined in Section 1, we give the following conclusions and recommendations:

• Projection of InSAR LOS measurements into the vertical direction without considering the impact
of horizontal motion is generally not recommended. Instead, data from ascending and descending
geometries should be combined whenever available in the area of interest. The error in the
projected vertical measurement depends on the amount of horizontal motion as well as on the
incidence angle θ of the LOS geometry. As a rule of thumb (assuming Mogi-like deformation),
the maximum error introduced into the projected vertical measurement can be approximated by
0.385·tanθ of the maximum vertical motion. Vertical measurements resulting from LOS projection
can be wrong in terms of magnitude, direction and location.

• Multi-geometry data fusion of LOS InSAR measurements from several viewing geometries allows
for robust estimation of horizontal and vertical motions. Weighted LSA can be applied when
data from three or more viewing geometries are available with at least one ascending and one
descending geometry. The matrix formulation for data fusion on a pixel-by-pixel basis allows for
inclusion of data from different sensors (X-band, C-band, L-band, etc.) as well as independent
data sources such as GNSS. Using exact incidence angles for each pixel is recommended, since
large variations of incidence angle across range exist for most InSAR imaging geometries (17◦

over the full 250 km extent of a Sentinel-1 Interferometric Wide Swath image).
• The N–S component of motion resulting from multi-geometry data fusion of LOS InSAR

measurements derived from past or current space-borne SAR sensors is poorly constrained,
even if several different geometries are available (InSAR data from seven different tracks). If the
N–S component is expected to be at a similar magnitude as the E–W component or smaller, less
error is introduced into the combined results by omitting the N–S component from the LSA and
only solving for the vertical and E–W components of motion.
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Appendix A

Derivation of Maximum Error Resulting from Projection of LOS into Vertical (Equation (10)):
Following Equation (1) the LOS velocity can be expressed as:

vLOS = −sinθcosαvE + sinθsinαvN + cosθvU
= −sinθ(cosαvE − sinαvN) + cosθvU
= −sinθvH,max + cosθvU

(A1)

with vH,max being the horizontal velocity component perpendicular to the satellite heading, which has
the highest sensitivity to horizontal motion and will therefore introduce the largest error into the
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vertical component when projecting LOS to vertical by neglecting horizontal motion. The vertical
velocity component then results in:

vU =
vLOS+sinθvH,max

cosθ

= vLOS
cosθ + tanθvH,max

(A2)

The maximum error resulting from projection of LOS into vertical by neglecting horizontal motion
as shown in Equation (10) then follows from:

∆vU,proj,max = vU − vU,proj
= vLOS

cosθ + tanθvH,max − vLOS
cosθ

= tanθvH,max

(A3)
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