A Clustering Approach for the Analysis of InSAR Time Series: Application to the Bandung Basin (Indonesia)
Abstract
:1. Introduction
2. Bandung Basin
3. InSAR Data
4. Data Mining Methods
4.1. Retrieval of Vertical and East-West Deformation Fields
4.2. Clustering Workflow
4.2.1. Dimensionality Reduction with UMAP
4.2.2. Time Series Clustering with HDBSCAN
4.3. Cluster Gradient Change Detection
5. Results
5.1. Decomposition of Vertical and Horizontal Displacement Fields
- Both the GNSS and InSAR displacement time series are resampled using a 7 day moving average so that the dates of the displacement measurements from both sources coincide.
- Linear regression is used to approximate the displacement time series of both the GNSS and the InSAR measurements.
- The difference between the linear models is subtracted from the InSAR time series measurements of all MPs to reference the displacement dataset to this point.
- We note that the GNSS reference location is also subsiding at a rate of −0.41 cm/y, so the broader subsidence pattern remains underestimated by this amount. Thus, 0.41 cm/y is subtracted from the InSAR vertical displacement rates.
5.2. Time Series Clustering
5.2.1. UMAP Dimensionality Reduction
5.2.2. HDBSCAN Time Series Clustering
5.3. Cluster Gradient Change Detection
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erten, E.; Reigber, A.; Hellwich, O. Generation of Three-Dimensional Deformation Maps from InSAR Data Using Spectral Diversity Techniques. ISPRS J. Photogramm. Remote Sens. 2010, 65, 388–394. [Google Scholar] [CrossRef]
- Bernardi, M.S.; Africa, P.C.; de Falco, C.; Formaggia, L.; Menafoglio, A.; Vantini, S. On the Use of Interferometric Synthetic Aperture Radar Data for Monitoring and Forecasting Natural Hazards. Math. Geosci. 2021, 53, 1781–1812. [Google Scholar] [CrossRef]
- Ma, P.; Zheng, Y.; Zhang, Z.; Wu, Z.; Yu, C. Building Risk Monitoring and Prediction Using Integrated Multi-Temporal InSAR and Numerical Modeling Techniques. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103076. [Google Scholar] [CrossRef]
- Venmans, A.A.M.; op de Kelder, M.; de Jong, J.; Korff, M.; Houtepen, M. Reliability of InSAR Satellite Monitoring of Buildings near Inner City Quay Walls. Proc. IAHS 2020, 382, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Castellazzi, P.; Garfias, J.; Martel, R. Assessing the Efficiency of Mitigation Measures to Reduce Groundwater Depletion and Related Land Subsidence in Querétaro (Central Mexico) from Decadal InSAR Observations. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102632. [Google Scholar] [CrossRef]
- Bonì, R.; Bosino, A.; Meisina, C.; Novellino, A.; Bateson, L.; McCormack, H. A Methodology to Detect and Characterize Uplift Phenomena in Urban Areas Using Sentinel-1 Data. Remote Sens. 2018, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Delgado Blasco, J.M.; Foumelis, M.; Stewart, C.; Hooper, A. Measuring Urban Subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sens. 2019, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Parker, A.L.; Pigois, J.-P.; Filmer, M.S.; Featherstone, W.E.; Timms, N.E.; Penna, N.T. Land Uplift Linked to Managed Aquifer Recharge in the Perth Basin, Australia. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102637. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Urban Growth and Land Subsidence: Multi-Decadal Investigation Using Human Settlement Data and Satellite InSAR in Morelia, Mexico. Sci. Total Environ. 2022, 811, 152211. [Google Scholar] [CrossRef]
- Aslan, G.; Foumelis, M.; Raucoules, D.; Michele, M.D.; Bernardie, S.; Cakir, Z. Landslide mapping and monitoring using persistent scatterer interferometry (PSI) technique in the french alps. Remote Sens. 2020, 12, 1305. [Google Scholar] [CrossRef] [Green Version]
- Fuhrmann, T.; Garthwaite, M.C. Resolving Three-Dimensional Surface Motion with InSAR: Constraints from Multi-Geometry Data Fusion. Remote Sens. 2019, 11, 241. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Guo, J.; Hu, J.; Li, J.; Xu, Y.; Pan, Y.; Shi, M. Wuhan Surface Subsidence Analysis in 2015–2016 Based on Sentinel-1A Data by SBAS-InSAR. Remote Sens. 2017, 9, 982. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Deng, K.; Fan, H.; Du, S. Monitoring and Analysis of Surface Deformation in Mining Area Based on InSAR and GRACE. Remote Sens. 2018, 10, 1392. [Google Scholar] [CrossRef] [Green Version]
- Cigna, F.; Tapete, D. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sens. Environ. 2021, 253, 112161. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico. Remote Sens. Environ. 2021, 254, 112254. [Google Scholar] [CrossRef]
- Aslan, G.; Cakir, Z.; Lasserre, C.; Renard, F. Investigating Subsidence in the Bursa Plain, Turkey, Using Ascending and Descending Sentinel-1 Satellite Data. Remote Sens. 2019, 11, 85. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, R. Radar Interferometry Data Interpretation and Error Analysis; Springer: Dordrecht, The Netherlands, 2021. [Google Scholar] [CrossRef] [Green Version]
- Biggs, J.; Wright, T.J. How Satellite InSAR Has Grown from Opportunistic Science to Routine Monitoring over the Last Decade. Nat. Commun. 2020, 11, 3863. [Google Scholar] [CrossRef]
- Hussain, E.; Novellino, A.; Jordan, C.; Bateson, L. Offline-Online Change Detection for Sentinel-1 InSAR Time Series. Remote Sens. 2021, 13, 1656. [Google Scholar] [CrossRef]
- Festa, D.; Novellino, A.; Hussain, E.; Bateson, L.; Casagli, N.; Confuorto, P.; Del Soldato, M.; Raspini, F. Unsupervised Detection of InSAR Time Series Patterns Based on PCA and K-Means Clustering. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103276. [Google Scholar] [CrossRef]
- Chang, L.; Hanssen, R.F. A Probabilistic Approach for InSAR Time-Series Postprocessing. IEEE Trans. Geosci. Remote Sens. 2016, 54, 421–430. [Google Scholar] [CrossRef] [Green Version]
- van de Kerkhof, B.; Pankratius, V.; Chang, L.; van Swol, R.; Hanssen, R.F. Individual Scatterer Model Learning for Satellite Interferometry. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1273–1280. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D.; Casagli, N. Semi-Automated Extraction of Deviation Indexes (DI) from Satellite Persistent Scatterers Time Series: Tests on Sedimentary Volcanism and Tectonically-Induced Motions. Nonlinear Process. Geophys. 2012, 19, 643–655. [Google Scholar] [CrossRef] [Green Version]
- Tapete, D.; Casagli, N. Testing Computational Methods to Identify Deformation Trends in RADARSAT Persistent Scatterers Time Series for Structural Assessment of Archaeological Heritage. In Computational Science and Its Applications—ICCSA 2013; Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; pp. 693–707. [Google Scholar] [CrossRef]
- Berti, M.; Corsini, A.; Franceschini, S.; Iannacone, J.P. Automated Classification of Persistent Scatterers Interferometry Time Series. Nat. Hazards Earth Syst. Sci. 2013, 13, 1945–1958. [Google Scholar] [CrossRef] [Green Version]
- Mirmazloumi, S.M.; Gambin, A.F.; Palamà, R.; Crosetto, M.; Wassie, Y.; Navarro, J.A.; Barra, A.; Monserrat, O. Supervised Machine Learning Algorithms for Ground Motion Time Series Classification from InSAR Data. Remote Sens. 2022, 14, 3821. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Chang, L.; Stein, A. Use of LSTM for Sinkhole-Related Anomaly Detection and Classification of InSAR Deformation Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4559–4570. [Google Scholar] [CrossRef]
- Khalili, M.A.; Voosoghi, B.; Guerriero, L.; Haji-Aghajany, S.; Calcaterra, D.; Di Martire, D. Mapping of Mean Deformation Rates Based on APS-Corrected InSAR Data Using Unsupervised Clustering Algorithms. Remote Sens. 2023, 15, 529. [Google Scholar] [CrossRef]
- Ansari, H.; Ruβwurm, M.; Ali, M.; Montazeri, S.; Parizzi, A.; Zhu, X.X. InSAR Displacement Time Series Mining: A Machine Learning Approach. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 3301–3304. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Fielding, E.J.; Sangha, S.S.; Bekaert, D.P.S. Landslide Sensitivity and Response to Precipitation Changes in Wet and Dry Climates. Geophys. Res. Lett. 2022, 49, e2022GL099499. [Google Scholar] [CrossRef]
- Bonì, R.; Meisina, C.; Poggio, L.; Fontana, A.; Tessari, G.; Riccardi, P.; Floris, M. Ground Motion Areas Detection (GMA-D): An Innovative Approach to Identify Ground Deformation Areas Using the SAR-Based Displacement Time Series. Proc. IAHS 2020, 382, 277–284. [Google Scholar] [CrossRef] [Green Version]
- McInnes, L.; Healy, J.; Saul, N.; Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 2018, 3, 861. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Astels, S. Hdbscan: Hierarchical Density Based Clustering. J. Open Source Softw. 2017, 2, 205. [Google Scholar] [CrossRef]
- Jiang, H.; Balz, T.; Cigna, F.; Tapete, D. Land Subsidence in Wuhan Revealed Using a Non-Linear PSInSAR Approach with Long Time Series of COSMO-SkyMed SAR Data. Remote Sens. 2021, 13, 1256. [Google Scholar] [CrossRef]
- Schlögl, M.; Gutjahr, K.; Fuchs, S. The Challenge to Use Multi-Temporal InSAR for Landslide Early Warning. Nat. Hazards 2022, 112, 2913–2919. [Google Scholar] [CrossRef]
- Bovenga, F.; Refice, A.; Pasquariello, G.; Nutricato, R.; Nitti, D. Identification and Analysis of Nonlinear Trends in InSAR Displacement Time Series. In Microwave Remote Sensing: Data Processing and Applications; SPIE: Bellingham, WA, USA, 2021; Volume 11861, p. 118610G. [Google Scholar] [CrossRef]
- Park, S.-W.; Hong, S.-H. Nonlinear Modeling of Subsidence From a Decade of InSAR Time Series. Geophys. Res. Lett. 2021, 48, e2020GL090970. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Gumilar, I.; Andreas, H.; Murdohardono, D.; Fukuda, Y. On Causes and Impacts of Land Subsidence in Bandung Basin, Indonesia. Environ. Earth Sci. 2013, 68, 1545–1553. [Google Scholar] [CrossRef]
- Gumilar, I.; Sidiq, T.; Meilano, I.; Bramanto, B.; Pambudi, G. Extensive Investigation of the Land Subsidence Impressions on Gedebage District, Bandung, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 873, 012044. [Google Scholar] [CrossRef]
- Tarigan, A.K.M.; Sagala, S.; Samsura, D.A.A.; Fiisabiilillah, D.F.; Simarmata, H.A.; Nababan, M. Bandung City, Indonesia. Cities 2016, 50, 100–110. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Andreas, H.; Gamal, M.; Wirakusumah, A.D.; Darmawan, D.; Deguchi, T.; Maruyama, Y. Land Subsidence Characteristics of the Bandung Basin, Indonesia, as Estimated from GPS and InSAR. J. Appl. Geod. 2008, 2, 167–177. [Google Scholar] [CrossRef]
- Gumilar, I.; Abidin, H.Z.; Hutasoit, L.M.; Hakim, D.M.; Sidiq, T.P.; Andreas, H. Land Subsidence in Bandung Basin and Its Possible Caused Factors. Procedia Earth Planet. Sci. 2015, 12, 47–62. [Google Scholar] [CrossRef] [Green Version]
- Widodo, J.; Naryanto, H.S.; Wisyanto; Hidayat, N.; Putra, A.P.; Izumi, Y.; Perissin, D.; Sri Sumantyo, J.T. Land Subsidence Assessment of Bandung City, Indonesia in Geological Perspective, Based on Interferometric SAR Using C-Band Data. In Proceedings of the 2021 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 21–25 November 2021; pp. 2377–2381. [Google Scholar] [CrossRef]
- Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S.-H. Sinking Cities in Indonesia: ALOS PALSAR Detects Rapid Subsidence Due to Groundwater and Gas Extraction. Remote Sens. Environ. 2013, 128, 150–161. [Google Scholar] [CrossRef]
- Tirtomihardjo, H. Chapter 10—Groundwater Environment in Bandung, Indonesia. In Groundwater Environment in Asian Cities; Shrestha, S., Pandey, V.P., Shivakoti, B.R., Thatikonda, S., Eds.; Butterworth-Heinemann: Oxford, UK, 2016; pp. 193–228, Reprinted from Groundwater Environment in Asian Cities, Haryadi Tirtomihardjo, Chapter 10—Groundwater Environment in Bandung, Indonesia, 193-228, Copyright (2016), with permission from Elsevier. [Google Scholar] [CrossRef]
- Rosen, P.A.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR Scientific Computing Environment. In Proceedings of the EUSAR 2012, 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012; pp. 730–733. [Google Scholar]
- ISCE2: Interferometric synthetic aperture radar Scientific Computing Environment (ISCE), v2. Available online: https://github.com/isce-framework/isce2 (accessed on 1 June 2021).
- Yunjun, Z.; Fattahi, H.; Amelung, F. Small Baseline InSAR Time Series Analysis: Unwrapping Error Correction and Noise Reduction. Comput. Geosci. 2019, 133, 104331. [Google Scholar] [CrossRef] [Green Version]
- Manzo, M.; Ricciardi, G.P.; Casu, F.; Ventura, G.; Zeni, G.; Borgström, S.; Berardino, P.; Del Gaudio, C.; Lanari, R. Surface Deformation Analysis in the Ischia Island (Italy) Based on Spaceborne Radar Interferometry. J. Volcanol. Geotherm. Res. 2006, 151, 399–416. [Google Scholar] [CrossRef]
- Notti, D.; Herrera, G.; Bianchini, S.; Meisina, C.; García-Davalillo, J.C.; Zucca, F. A Methodology for Improving Landslide PSI Data Analysis. Int. J. Remote Sens. 2014, 35, 2186–2214. [Google Scholar] [CrossRef]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward Mapping Surface Deformation in Three Dimensions Using InSAR. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Cigna, F.; Esquivel Ramírez, R.; Tapete, D. Accuracy of Sentinel-1 PSI and SBAS InSAR Displacement Velocities against GNSS and Geodetic Leveling Monitoring Data. Remote Sens. 2021, 13, 4800. [Google Scholar] [CrossRef]
- Rani, R.; Khurana, M.; Kumar, A.; Kumar, N. Big Data Dimensionality Reduction Techniques in IoT: Review, Applications and Open Research Challenges. Clust. Comput. 2022, 25, 4027–4049. [Google Scholar] [CrossRef]
- Lovrić, M.; Đuričić, T.; Tran, H.T.N.; Hussain, H.; Lacić, E.; Rasmussen, M.A.; Kern, R. Should We Embed in Chemistry? A Comparison of Unsupervised Transfer Learning with PCA, UMAP, and VAE on Molecular Fingerprints. Pharmaceuticals 2021, 14, 758. [Google Scholar] [CrossRef] [PubMed]
- Keogh, E.; Mueen, A. Curse of Dimensionality. In Encyclopedia of Machine Learning and Data Mining; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2017; pp. 314–315. [Google Scholar] [CrossRef]
- Venna, J.; Kaski, S. Local Multidimensional Scaling. Neural Netw. 2006, 19, 889–899. [Google Scholar] [CrossRef]
- Sainburgh, T.; McInnes, L.; Gentner, T.Q. Parametric UMAP Embeddings for Representation and Semisupervised Learning. Neural Comput. 2021, 33, 2881–2907. [Google Scholar] [CrossRef]
- Kolmogorov–Smirnov Test. In The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 2008; pp. 283–287. [CrossRef]
- Available online: https://github.com/scikit-learn-contrib/hdbscan (accessed on 13 July 2022).
- Kendall, M.G. A New Measure of Rank Correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Jekel, C.; Venter, G. Pwlf: A Python Library for Fitting 1D Continuous Piecewise Linear Functions; 2019. Available online: https://github.com/cjekel/piecewise_linear_fit_py (accessed on 29 August 2022).
- Urgilez Vinueza, A.; Handwerger, A.L.; Bakker, M.; Bogaard, T. A New Method to Detect Changes in Displacement Rates of Slow-Moving Landslides Using InSAR Time Series. Landslides 2022, 19, 2233–2247. [Google Scholar] [CrossRef]
- Luo, Q.; Li, J.; Zhang, Y. Monitoring Subsidence over the Planned Jakarta–Bandung (Indonesia) High-Speed Railway Using Sentinel-1 Multi-Temporal InSAR Data. Remote Sens. 2022, 14, 4138. [Google Scholar] [CrossRef]
- Tolomei, C.; Lugari, A.; Salvi, S. Bandung (Indonesia) Area InSAR Mean Velocity Maps [Data Set]. Zenodus. 2016. Available online: https://zenodo.org/record/49676 (accessed on 6 July 2023).
- Prasetyo, Y.; Tetuko, J.; Ismullah, I.H.; Abidin, H.Z.; Wikantika, K. Data optimalization in Permanent Scatterer Interferometric Synthetic Aperture Radar (PS-INSAR) technique for land subsidence estimation. INA-Rxiv 2013. [Google Scholar] [CrossRef]
- Duan, L.; Gong, H.; Chen, B.; Zhou, C.; Lei, K.; Gao, M.; Yu, H.; Cao, Q.; Cao, J. An Improved Multi-Sensor MTI Time-Series Fusion Method to Monitor the Subsidence of Beijing Subway Network during the Past 15 Years. Remote Sens. 2020, 12, 2125. [Google Scholar] [CrossRef]
- Rusli, S.R.; Weerts, A.H.; Taufiq, A.; Bense, V.F. Estimating water balance components and their uncertainty bounds in highly groundwater-dependent and data-scarce area: An example for the Upper Citarum basin. J. Hydrol. Reg. Stud. 2021, 37, 100911. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.-M.; Zhu, Q.; Yang, X.; Li, L. Correlating the Subsidence Pattern and Land Use in Bandung, Indonesia with Both Sentinel-1/2 and ALOS-2 Satellite Images. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 54–68. [Google Scholar] [CrossRef]
- Ar Rahiem, M.M. Development of an Interactive WebGIS Platform for the Visualization of Hydrogeological Information, Bandung Basin, Indonesia. Master’s Thesis, TU Darmstadt, Darmstadt, Germany, 2021. [Google Scholar]
- Ohgaki, S.; Takizawa, S.; Herath, G.; Kataoka, Y.; Hara, K.; Kathiwada, N.R.; Moon, H.-J. The State of the Groundwater; Sustainable Groundwater Management in Asian Cities; Institute for Global Environmental Strategies: Hayama, Japan, 2006; pp. 12–21. Available online: https://www.jstor.org/stable/resrep00865.12 (accessed on 15 March 2023).
- Sidiq, T.; Gumilar, I.; Abidin, H.Z. Land Subsidence Induced by Agriculture Activity in Bandung, West Java Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 389, 012024. [Google Scholar] [CrossRef] [Green Version]
- Bonì, R.; Pilla, G.; Meisina, C. Methodology for Detection and Interpretation of Ground Motion Areas with the A-DInSAR Time Series Analysis. Remote Sens. 2016, 8, 686. [Google Scholar] [CrossRef] [Green Version]
- Cohen-waeber, J.; Bürgmann, R.; Chaussard, E.; Giannico, C.; Ferretti, A. Spatiotemporal Patterns of Precipitation-modulated Landslide Deformation from Independent Component Analysis of InSar Time Series. Geophys. Res. Lett. 2018, 45, 1878–1887. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Matsuoka, M. Ground Displacement in East Azerbaijan Province, Iran, Revealed by L-band and C-band InSAR Analyses. Sensors 2020, 20, 6913. [Google Scholar] [CrossRef]
- Allaoui, M.; Kherfi, M.L.; Cheriet, A. Considerably Improving Clustering Algorithms Using UMAP Dimensionality Reduction Technique: A Comparative Study. In Image and Signal Processing. ICISP 2020; El Moataz, A., Mammass, D., Mansouri, A., Nouboud, F., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12119. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J. Accelerated Hierarchical Density Clustering. In Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, USA, 18–21 November 2017; pp. 33–42. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Ng, A.H.-M.; Li, X.; Abidin, H.Z.; Gumilar, I. Land Subsidence Characteristics of Bandung Basin as Revealed by ENVISAT ASAR and ALOS PALSAR Interferometry. Remote Sens. Environ. 2014, 154, 46–60. [Google Scholar] [CrossRef]
Abbreviation | Explanation |
---|---|
DBCV | Density-Based Clustering Validation |
ESDM | Office of Mineral and Energy Resources |
GNSS | Global Navigation Satellite System |
HDBSCAN | Hierarchical Density-Based Clustering |
InSAR | Interferometric Synthetic Aperture Radar |
K-S test | Kolmogorov–Smirnov test |
LOS | Line of Sight |
MintPy | Miami INsar Time-series software in Python |
MPs | Measuring Points |
PCA | Principal Component Analysis |
SAR | Synthetic Aperture Radar |
UMAP | Uniform Manifold Approximation and Projection |
Parameters | SAR Satellite | |
---|---|---|
S-1A&B * | S-1A&B * | |
Satellite orbit | Ascending | Descending |
Track | 98 | 149 |
Time span | 4 January 2015–27 December 2020 | 7 January 2015–30 December 2020 |
Mean incidence angle (°) | 48 | 43 |
Number of images | 190 | 154 |
Number of acquisitions | 153 | 146 |
Number of MPs | 650,863 | 735,333 |
MP density (MP/km2) | 680 | 769 |
ML Algorithm | Hyperparameter | Parameter Definition | Model Evaluation Metric |
---|---|---|---|
UMAP | n_neighbors | size of the local neighborhood | Trustworthiness |
min_dis | minimum distance between points | ||
HDBSCAN | min_samples | minimum number of neighbors to a core point | Density-Based Clustering Validation |
min_cluster_size | minimum size of a final cluster |
Cluster N° | N° of MPs | Relative N° of Subsiding MPs (%) | Area (km2) | Average Cumulative Displacement (cm) | Time of Detected Change |
---|---|---|---|---|---|
18 | 15,968 | 41 | 35.3 | −21.7 | NA |
25 | 7759 | 20 | 18.2 | −22.3 | April 2017 |
19 | 4585 | 12 | 12.1 | −0.5 | NA |
14 | 3972 | 10 | 11.3 | −3.5 | September 2017 |
23 | 1211 | 3 | 3.7 | −17.1 | January 2020 |
36 | 1135 | 3 | 3.0 | −1.2 | NA |
17 | 1101 | 3 | 2.7 | −16.3 | February 2017 & September 2018 |
12 | 776 | 2 | 2.1 | −1.2 | July 2017 |
21 | 766 | 2 | 2.6 | −9.5 | August 2016 |
24 | 707 | 2 | 2.0 | −10.5 | January 2020 |
20 | 482 | 1 | 1.7 | −9.8 | NA |
34 | 246 | <1 | 0.9 | −7.0 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rygus, M.; Novellino, A.; Hussain, E.; Syafiudin, F.; Andreas, H.; Meisina, C. A Clustering Approach for the Analysis of InSAR Time Series: Application to the Bandung Basin (Indonesia). Remote Sens. 2023, 15, 3776. https://doi.org/10.3390/rs15153776
Rygus M, Novellino A, Hussain E, Syafiudin F, Andreas H, Meisina C. A Clustering Approach for the Analysis of InSAR Time Series: Application to the Bandung Basin (Indonesia). Remote Sensing. 2023; 15(15):3776. https://doi.org/10.3390/rs15153776
Chicago/Turabian StyleRygus, Michelle, Alessandro Novellino, Ekbal Hussain, Fifik Syafiudin, Heri Andreas, and Claudia Meisina. 2023. "A Clustering Approach for the Analysis of InSAR Time Series: Application to the Bandung Basin (Indonesia)" Remote Sensing 15, no. 15: 3776. https://doi.org/10.3390/rs15153776
APA StyleRygus, M., Novellino, A., Hussain, E., Syafiudin, F., Andreas, H., & Meisina, C. (2023). A Clustering Approach for the Analysis of InSAR Time Series: Application to the Bandung Basin (Indonesia). Remote Sensing, 15(15), 3776. https://doi.org/10.3390/rs15153776