Coupled MOP and PLUS-SA Model Research on Land Use Scenario Simulations in Zhengzhou Metropolitan Area, Central China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Research Methods of LUC
2.3.2. Multi-Objective Programming Model
2.3.3. PLUS-SA Model
2.3.4. Model Validation Method
3. Results
3.1. LUC between 2000 and 2020
3.2. Simulation of the Demand for Land Use Structures in Multiple Scenarios
3.3. The Accuracy Comparison of PLUS-SA, PLUS, and FLUS Models
3.4. Spatial Layout of Future Land Use for Different Scenarios
4. Discussion
4.1. Urban Expansion-Exacerbated LUC
4.2. Coupling Model Contributing to the Sustainable Development of Land Resources
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, X.; Huang, Z. Ecological and environmental effects of land use change in rapid urbanization: The case of Hangzhou, China. Ecol. Indic. 2017, 81, 243–251. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land use transitions and the associated impacts on ecosystem services in the middle reaches of the Yangtze river economic belt in China based on the geo-informatic Tupu method. Sci. Total Environ. 2020, 701, 134690. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Dullinger, I.; Gattringer, A.; Wessely, J.; Moser, D.; Plutzar, C.; Willner, W.; Egger, C.; Gaube, V.; Haberl, H.; Mayer, A.; et al. A socio-ecological model for predicting impacts of land-use and climate change on regional plant diversity in the Austrian Alps. Glob. Chang. Biol. 2020, 26, 2336–2352. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.F.; Zhang, F.F.; Wang, H.Y. The response of ecosystem service value to land use change in the middle and lower Yellow River: A case study of the Henan section. Ecol. Indic. 2022, 140, 109019. [Google Scholar] [CrossRef]
- Luyssaert, S.; Jammet, M.; Stoy, P.C.; Estel, S.; Pongratz, J.; Ceschia, E.; Churkina, G.; Don, A.; Erb, K.; Ferlicoq, M.; et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Chang. 2014, 4, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Grainger, A. Is land degradation neutrality feasible in dry areas? J. Arid. Environ. 2015, 112, 14–24. [Google Scholar] [CrossRef]
- Vliet, J.; de Groot, H.L.F.; Rietvwld, P.; Verburg, P.H. Manifestations and underlying drivers of agricultural land use change in Europe. Landsc. Urban Plan. 2015, 133, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Ran, J.; Dong, L.; Du, Q.; Ji, M.; Yao, S.; Sun, Y.; Gong, C.; Hou, Q.; Gong, H.; et al. Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nat. Commun. 2021, 12, 5350. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, F.; Wang, H.; Qin, F. Suitability evaluation and layout optimization of the spatial distribution of rural residential areas. Sustainability 2020, 12, 2409. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, H.; Qin, F.; Han, Z.; Miao, C. Mapping an urban boundary based on multi-temporal Sentinel-2 and POI data: A case study of Zhengzhou City. Remote Sens. 2020, 12, 4103. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Fu, B.J.; Zhang, L.W. Land-use change and ecosystem services: Concepts, methods and progress. Prog. Geogr. 2014, 33, 441–446. [Google Scholar]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Cao, S.; Jin, X.B.; Yang, X.H.; Sun, R.; Liu, J.; Han, B.; Xu, W.; Zhou, Y. Coupled MOP and GeoSOS-FLUS models research on optimization of land use structure and layout in Jintan district. J. Nat. Resour. 2019, 34, 1171–1185. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; He, L.; Men, M. Multi-scenario simulation of land use structure based on dual combined models. Acta Ecol. Sin. 2016, 36, 5391–5400. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Chen, G.; Guo, S.; Yao, Y. Mixed-cell cellular automata: A new approach for simulating the spatio-temporal dynamics of mixed land use structures. Landsc. Urban Plan. 2021, 205, 103960. [Google Scholar] [CrossRef]
- Liu, S.Y.; Liu, X.P.; Li, X.; Chen, J. Simulation model of land use dynamics and application: Progress and prospects. Remote Sens. 2017, 21, 329–340. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.; Wang, M.; Wang, Q. Developing China’s ecological redline policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borana, S.L.; Yadav, S.K. Chapter 10—Urban land-use susceptibility and sustainability—Case study. In Water, Land, and Forest Susceptibility and Sustainability; Academic Press: Cambridge, MA, USA, 2023; Volume 2, pp. 261–286. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Sohl, T.L.; Sayler, K.L.; Drummond, M.A.; Loveland, T.R. The FORE-SCE model: A practical approach for projecting land cover change using scenario-based modeling. Land Use Sci. 2007, 2, 103–123. [Google Scholar] [CrossRef]
- Sohl, T.; Sayler, K. Using the FORE-SCE model to project land-cover change in the southeastern United States. Eco. Modell. 2008, 219, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.H.; Xu, L.J.; Pan, X.J. Research progress on land-use and land-cover change scenario simulation. Hangzhou Norm. Univ. 2017, 16, 551–560. [Google Scholar]
- Chen, Y.; Li, X.; Liu, X.; Ai, B. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. Int. J. Geogr. Inf. Sci. 2014, 28, 234–255. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.; Lv, L. A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecol. Modell. 2012, 233, 11–19. [Google Scholar] [CrossRef]
- Tian, H.; Liang, X.; Li, X.; Liu, X.; Ou, J.; Hong, Y.; He, Z. Simulating multiple land use scenarios in China during 2010–2050 based on system dynamic model. Trop. Geogr. 2017, 37, 547–561. [Google Scholar] [CrossRef]
- Wang, H.H.; Liu, Y.F. Optimal allocation of land resources based on MOP-CA. Geomat. Inf. Sci. Wuhan Univ. 2009, 34, 174–177. [Google Scholar]
- Liu, X.; Li, X.; Ai, B.; Tao, H.; Wu, S.; Liu, T. Multi-agent systems for simulating and planning land use development. Acta Geogr. Sin. 2006, 61, 1101–1112. [Google Scholar] [CrossRef]
- Guan, D.J.; Li, H.F.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol. Modell. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Littleboy, M.; Simith, D.M.; Bryant, M.J. Simulation modelling to determine suitability of agricultural land. Ecol. Modell. 1996, 86, 219–225. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Su, W.; Li, Y. Simulating the optimal land-use pattern in the farming-pastoral transitional zone of Northern China. Comput. Environ. Urban. Syst. 2008, 32, 407–414. [Google Scholar] [CrossRef]
- Castella, J.C.; Kam, S.P.; Dang, D.Q.; Verburg, P.H.; Chu, T.H. Combining top-down and bottom-up modelling approaches of land use/cover change to support public policies: Application to sustainable management of natural resources in northern Vietnam. Land Use Policy 2007, 24, 531–545. [Google Scholar] [CrossRef]
- Tobler, W.R. Cellular geography. In Philosophy in Geography; Theory and Decision Library (An International Series in the Philosophy and Methodology of the Social and Behavioral, Sciences); Gale, S., Olsson, G., Eds.; Springer: Dordrecht, The Netherlands, 1979; Volume 20. [Google Scholar]
- Zhou, C.; Ou, Y.; Ma, T.; Qin, B. Theoretical perspectives of CA-based geographical system modeling. Prog. Geogr. 2009, 28, 833–838. [Google Scholar] [CrossRef]
- Borana, S.L.; Yadav, S.K. Prediction of Land Cover Changes of Jodhpur City Using Cellular Automata Markov Modelling Techniques. Int. J. Eng. Sci. 2017, 17, 15402–15406. [Google Scholar] [CrossRef]
- Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Math. Comput. Modell. 2011, 54, 938–943. [Google Scholar] [CrossRef]
- Veldkamp, A.; Fresco, L.O. CLUE-CR: An integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecol. Modell. 1996, 91, 231–248. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Charles, D.; Keith, C.C. Toward optimal calibration of the sleuth land use change model. Trans. GIS 2007, 11, 29–45. [Google Scholar] [CrossRef]
- Aytaç, E. Modeling future impacts on land cover of rapid expansion of hazelnut orchards: A case study on Samsun, Turkey. Eur. J. Sustain. Dev. Res. 2022, 6, em0193. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, Y.; Wang, Y.; Liu, Z. Evaluating potential impacts of land use changes on water supply–demand under multiple development scenarios in dryland region. J. Hydrol. 2022, 610, 127811. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Wang, W.; Cai, W.; Chen, N.; Hu, S.; Luo, X.; Li, J.; Zhan, C. Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios. Sci. Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Wang, H.; Liu, S. The ecosystem service values simulation and driving force analysis based on land use/land cover: A case study in inland rivers in arid areas of the Aksu River Basin, China. Ecol. Indic. 2022, 138, 108828. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, T.; Chen, J.; Xue, S.; Zhou, Q.; Wang, Y.; Wang, Y.; Huang, Z.; Yang, S. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef]
- Jiang, X.; Duan, H.; Liao, J.; Song, X.; Xue, X. Land use in the Gan-lin-gao region of middle reaches of Heihe River Basin based on a PLUS-SD coupling model. Arid. Zone Res. 2022, 39, 1246–1258. [Google Scholar]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region. Ecol. Indic. 2022, 136, 108642. [Google Scholar] [CrossRef]
- Wu, G.; Zeng, Y.; Xiao, P.; Feng, X.; Hu, X. Using autologistic spatial models to simulate the distribution of land-use patterns in Zhangjiajie, Hunan Province. J. Geogr. Sci. 2010, 20, 310–320. [Google Scholar]
- Mei, Z.; Wu, H.; Li, S. Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modeling: A case study in Zengcheng District, Guangzhou, China. Front. Earth Sci. 2018, 12, 299–310. [Google Scholar] [CrossRef]
- Zhang, J.; Mei, Z.; Lv, J.; Chen, J. Simulating multiple land use scenarios based on the FLUS model considering spatial autocorrelation. J. Geo-Inf. Sci. 2020, 22, 531–542. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, Q.; Li, J.; Zhou, X. Projections of future land use changes: Multiple scenarios-based impacts analysis on ecosystem services for Wuhan city, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Gao, Y. Multi-Scenario Simulation of Green Space Landscape Pattern in Harbin City Based on FLUS Model. Int. J. Environ. Res. Public Health 2023, 20, 4286. [Google Scholar] [CrossRef]
- Yu, R.; Cheng, H.; Ye, Y.; Wang, Q.; Fan, S.; Li, T.; Wang, C.; Su, Y.; Zhang, X. Optimization of the Territorial Spatial Patterns Based on MOP and PLUS Models: A Case Study from Hefei City, China. Int. J. Environ. Res. Public Health 2023, 20, 1804. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Shi, M.J.; Cao, Y.E.; Jiang, Y.L. Optimization of land use landscape pattern and multi scenario simulation in Aksu region of Xinjiang based on MOP-PLUS model. Southwest. China J. Agric. Sci. 2022, 35, 2256–2264. [Google Scholar] [CrossRef]
- Zhao, S.L.; Li, S.H.; Xu, X.H.; Li, Y.X.; Yang, W.X.; Qiu, L.D. Production-Life-Ecological Space Pattern Optimization of the Urban Agglomeration in Central Yunnan Based on Coupled MOP and FLUS Model. Res. Soil. Water Conserv. 2022, 29, 322–328. [Google Scholar] [CrossRef]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Wang, B.S.; Liao, J.F.; Zhu, W.; Qiu, Q.Y.; Wang, L.; Tang, L.N. The weight of neighborhood setting of the FLUS model based on a historical scenario: A case study of land use simulation of urban agglomeration of the Golden Triangle of Southern Fujian in 2030. Acta Ecol. Sin. 2019, 39, 4284–4298. [Google Scholar]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Z.; Bai, F.; Sun, C. Evaluation of urban sprawl and urban landscape pattern in a rapidly developing region. Environ. Monit. Assess. 2012, 184, 6437–6448. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, Q.; Wei, P.; Zhao, H.; Zhang, X.; Pang, C. Explore the mitigation mechanism of urban thermal environment by integrating geographic detector and standard deviation ellipse (SDE). Remote Sens. 2022, 14, 3411. [Google Scholar] [CrossRef]
- Cai, E.; Bi, Q.; Lu, J.; Hou, H. The spatiotemporal characteristics and rationality of emerging megacity urban expansion: A case study of Zhengzhou in central China. Front. Environ. Sci. 2022, 10, 860814. [Google Scholar] [CrossRef]
- Mukherjee, F. Environmental impacts of urban sprawl in Surat, Gujarat: An examination using Landsat data. J. Indian Soc. Remote Sens. 2022, 50, 1003–1020. [Google Scholar] [CrossRef]
- Jia, M.Y.; Liu, Y.; Lieske, S.N. Public policy change and its impact on urban expansion: An evaluation of 265 cities in China. Land Use Policy 2020, 97, 104754. [Google Scholar] [CrossRef]
- Yue, W.; Liu, Y.; Fan, P. Measuring urban sprawl and its drivers in large Chinese cities: The case of Hangzhou. Land Use Policy 2013, 31, 358–370. [Google Scholar] [CrossRef]
- Du, X.; Jin, X.; Yang, X.; Yang, X.; Zhou, Y. Spatial pattern of land use change and its driving force in Jiangsu Province. Int. J. Environ. Res. Public Health 2014, 11, 3215–3232. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chen, L.; Yang, Z.; Zhao, Y.; Zhang, X. Unraveling the spatio-temporal relationship between ecosystem services and socioeconomic development in Dabie Mountain area over the Last 10 Years. Remote Sens. 2022, 14, 1059. [Google Scholar] [CrossRef]
- Huang, X.X.; Wang, H.J.; Xiao, F.T. Simulating urban growth affected by national and regional land use policies: Case study from Wuhan, China. Land Use Policy 2022, 112, 105850. [Google Scholar] [CrossRef]
- Li, W.; Wang, L.; Yang, X.; Liang, T.; Zhang, Q.; Liao, X.; White, J.R.; Rinklebe, J. Interactive influences of meteorological and socioeconomic factors on ecosystem service values in a river basin with different geomorphic features. Sci. Total Environ. 2022, 829, 154595. [Google Scholar] [CrossRef]
- Long, H.; Ge, D.; Zhang, Y.; Tu, S.; Qu, Y.; Ma, L. Changing man-land interrelations in China’s farming area under urbanization and its implications for food security. J. Environ. Manag. 2018, 209, 440–451. [Google Scholar] [CrossRef]
- Lasanta, T.; Vicente-Serrano, S.M. Complex land cover change processes in semiarid Mediterranean regions: An approach using Landsat images in northeast Spain. Remote Sens. Environ. 2012, 124, 1–14. [Google Scholar] [CrossRef]
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Zhang, Y.; Huang, M. Quantifying the teleconnections between local consumption and domestic land uses in China. Landsc. Urban Plan. 2019, 187, 60–69. [Google Scholar] [CrossRef]
Data Types | Data Name | Years | Attributes/ Resolution | Data Sources |
---|---|---|---|---|
Government report | integrated land-use planning | 2006–2020 | Text, atlas | Zhengzhou Municipal People’s Government network (http://www.zhengzhou.gov.cn/, accessed on 12 June 2023) |
Statistic data | Socioeconomic data | 2000–2020 | Excel | Henan Provincial Bureau of Statistics (http://www.ha.stats.gov.cn/, accessed on 12 June 2023) |
Land use | Land use data | 2000–2020 | TIFF/30 m | Resource and Environmental Sciences and Data Center (http://www.resdc.cn/, accessed on 12 June 2023) |
Socioeconomic data | Traffic data | 2020 | SHP | Open Street Map (https://www.openstreetmap.org/, accessed on 12 June 2023) |
Population | 2015 | TIFF/1 km | Global Change Scientific Research Data Publishing & Repository (http://www.resdc.cn/, accessed on 12 June 2023) | |
GDP | 2015 | TIFF/1 km | ||
POI | 2020 | SHP | Baidu Map crawler (https://map.baidu.com/, accessed on 12 June 2023) | |
Climate data | Temperature | 2018 | TIFF/1 km | National Meteorological Science Data Center (http://data.cma.cn/, accessed on 12 June 2023) |
Average annual precipitation | 2018 | TIFF/1 km | ||
Natural conditions | DEM | 2015 | TIFF/30 m | NASA SRTM1 v3.0 |
Slope, aspect | 2015 | TIFF/30 m | Extracted from DEM data | |
Aspect | 2015 | TIFF/30 m | ||
Soil type | 2012 | SHP | National Earth System Science Data Center (http://www.geodata.cn/, accessed on 12 June 2023) |
Efficiency Coefficient | Cultivated Land | Forestland | Grassland | Water Bodies | Construction Land | Unused Land |
---|---|---|---|---|---|---|
6.54 | 1.86 | 189.72 | 1.68 | 1890.36 | 0 | |
1.19 | 4.23 | 1.76 | 7.62 | 0 | 0.21 |
Constraint Class | Constraint Conditions | Evidence and Description |
---|---|---|
Total area constraints | = A = 7567.80 km2 | The sum of the six land use types area must equal the total area of Zhengzhou City. |
Total population constraint | 75.81 () + 6744.06 | By 2035, the population of Zhengzhou is expected to be 18 million. According to Wang et al. [55], the population densities on agricultural land (cropland, woodland, and grassland) and construction land will be 75.81 and 6744.06 people per square kilometer by 2035. |
Cultivated land area constraint | With improvements in farming technology, the yield of cultivated land per unit area increases, which can effectively compensate for the food security problems caused by the expansion of construction land to cultivated land. Therefore, 56.32% (the proportion of cultivated land in 2020) is set as the upper limit and 49.01% (the predicted proportion of cultivated land in 2035 from the Markov chain) is set as the lower limit for the percentage of cultivated land in 2035. | |
Forestland area constraint | 0.0889 | Forestland should account for 7.41% (the proportion of forestland in 2020) to 8.89% (1.2 times the forestland area in 2020) of the total area. |
Grassland area constraint | 0.0499 0.0527 | 5.27% (cover degree of grassland in 2010) is set as the upper limit and 4.99% (predicted cover degree of grassland in 2035 from the Markov chain) is set as the lower limit for the percentage of grassland in 2035. |
Water bodies area constraint | In order to protect water resources with high ecosystem service value coefficients, the area of water bodies in Zhengzhou is required to be no less than 90% and no greater than 120% of the 2020 level. | |
Construction land area constraint | 0.27660.4150 | The percentage of construction land will be between 80% and 120% of the predicted construction land in 2035 from the Markov chain. |
Non-negative constraint | The area of each land type is non-negative. |
Land Use Type | Cultivated Land | Forestland | Grassland | Water Bodies | Construction Land | Unused Land | |
---|---|---|---|---|---|---|---|
2000 | Area (km2) | 5060.81 | 762.64 | 690.02 | 206.05 | 844.97 | 3.31 |
Percentage (%) | 66.87% | 10.08% | 9.12% | 2.72% | 11.17% | 0.04% | |
2010 | Area (km2) | 4629.13 | 564.65 | 398.48 | 281.92 | 1693.62 | 0.00 |
Percentage (%) | 61.17% | 7.46% | 5.27% | 3.73% | 22.38% | 0.00% | |
2020 | Area (km2) | 4262.44 | 560.96 | 392.27 | 312.90 | 2039.23 | 0.00 |
Percentage (%) | 56.32% | 7.41% | 5.18% | 4.13% | 26.95% | 0.00% | |
2000–2010 | −0.85% | −2.60% | −4.23% | 3.68% | 10.04% | −10.00% | |
2010–2020 | −0.79% | −0.07% | −0.16% | 1.10% | 2.04% | 0.00% | |
2000–2020 | −0.79% | −1.32% | −2.16% | 2.59% | 7.07% | −5.00% |
Type | 2020 Actual | 2035 Land Use Demand | |||
---|---|---|---|---|---|
ND Scenario | ED Scenario | EP Scenario | SD Scenario | ||
Cultivated land | 4262.44 | 3708.79 | 3708.97 | 4027.59 | 3708.97 |
Forestland | 560.96 | 552.99 | 560.77 | 672.78 | 667.56 |
Grassland | 392.27 | 377.96 | 398.82 | 398.82 | 378.96 |
Water bodies | 312.90 | 311.06 | 282.68 | 375.36 | 363.55 |
Construction land | 2039.23 | 2616.99 | 2616.54 | 2093.25 | 2439.76 |
Economic benefits (billion) | 3.96 × 104 | 5.04 × 104 | 5.05 × 104 | 4.06 × 104 | 4.71 × 104 |
Ecological benefits (billion) | 105.2 | 97.88 | 96.42 | 112.01 | 106.91 |
Model Type | Kappa | Overall Accuracy | FOM |
---|---|---|---|
FLUS model | 0.85 | 0.90 | 0.17 |
PLUS model | 0.87 | 0.92 | 0.22 |
PLUS-SA model | 0.91 | 0.95 | 0.29 |
Scenario | ED | EP | SD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CL | FL | GL | WB | CTL | CL | FL | GL | WB | CTL | CL | FL | GL | WB | CTL | |
CL | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
FL | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
GL | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
WB | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
CTL | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, P.; Wang, H.; Qin, F.; Miao, C.; Zhang, F. Coupled MOP and PLUS-SA Model Research on Land Use Scenario Simulations in Zhengzhou Metropolitan Area, Central China. Remote Sens. 2023, 15, 3762. https://doi.org/10.3390/rs15153762
Guo P, Wang H, Qin F, Miao C, Zhang F. Coupled MOP and PLUS-SA Model Research on Land Use Scenario Simulations in Zhengzhou Metropolitan Area, Central China. Remote Sensing. 2023; 15(15):3762. https://doi.org/10.3390/rs15153762
Chicago/Turabian StyleGuo, Pengfei, Haiying Wang, Fen Qin, Changhong Miao, and Fangfang Zhang. 2023. "Coupled MOP and PLUS-SA Model Research on Land Use Scenario Simulations in Zhengzhou Metropolitan Area, Central China" Remote Sensing 15, no. 15: 3762. https://doi.org/10.3390/rs15153762
APA StyleGuo, P., Wang, H., Qin, F., Miao, C., & Zhang, F. (2023). Coupled MOP and PLUS-SA Model Research on Land Use Scenario Simulations in Zhengzhou Metropolitan Area, Central China. Remote Sensing, 15(15), 3762. https://doi.org/10.3390/rs15153762