Comparison of Spring Wind Gusts in the Eastern Part of the Tibetan Plateau and along the Coast: The Role of Turbulence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scope
2.2. Doppler Lidar Data Quality Control
2.3. Parameters and Definitions
3. Comparison of Wind Gusts Parameters at Two Sites: Phenomenon
4. The Role of Turbulence: A Possible Explanation
5. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Black, A.W.; Ashley, W.S. Fatalities Associated with Nonconvective High-Wind Events in the United States. J. Appl. Meteorol. Climatol. 2008, 47, 717–725. [Google Scholar] [CrossRef]
- Pryor, S.C.; Conrick, R.; Miller, C.; Tytell, J.; Barthelmie, R.J. Intense and Extreme Wind Speeds Observed by Anemometer and Seismic Networks: An Eastern U.S. Case Study. J. Appl. Meteorol. Climatol. 2014, 53, 2417–2429. [Google Scholar] [CrossRef]
- Yao, Z.; Li, X.; Xiao, J. Characteristics of daily extreme wind gusts on the Qinghai-Tibet Plateau, China. J. Arid Land 2018, 10, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Wu, L.; Hu, F.; Zeng, Q.-C. Parameterizations of some important characteristics of turbulent fluctuations and gusty wind disturbances in the atmospheric boundary layer. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Letson, F.; Barthelmie, R.J.; Pryor, S.C. Wind Gust Characterization at Wind Turbine Relevant Heights in Moderately Complex Terrain. J. Appl. Meteorol. Climatol. 2018, 57, 1459–1476. [Google Scholar] [CrossRef]
- Letson, F.; Barthelmie, R.J.; Hu, W.; Pryor, S.C. Characterizing wind gusts in complex terrain. Atmos. Chem. Phys. 2019, 19, 3797–3819. [Google Scholar] [CrossRef] [Green Version]
- Monahan, A.H.; Rees, T.; He, Y.; McFarlane, N. Multiple Regimes of Wind, Stratification, and Turbulence in the Stable Boundary Layer. J. Atmos. Sci. 2015, 72, 3178–3198. [Google Scholar] [CrossRef]
- Xie, J.; Lan, C.; Yang, H.; Gao, R.; Lu, C.; Wang, B.; Chan, P.W.; Fan, S.; Li, L. Tower-observed structural evolution of the low-level boundary layer before, during, and after gust front passage in a coastal area at low latitude. Weather Clim. Extrem. 2022, 36, 100429. [Google Scholar] [CrossRef]
- Luchetti, N.T.; Friedrich, K.; Rodell, C.E.; Lundquist, J.K. Characterizing Thunderstorm Gust Fronts near Complex Terrain. Mon. Weather Rev. 2020, 148, 3267–3286. [Google Scholar] [CrossRef]
- He, J.Y.; Chan, P.W.; Li, Q.S.; Li, L.; Zhang, L.; Yang, H.L. Observations of wind and turbulence structures of Super Typhoons Hato and Mangkhut over land from a 356 m high meteorological tower. Atmos. Res. 2022, 265, 105910. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Lee, G.; Joo, S.; Ahn, K.-D. Observational study of surface wind along a sloping surface over mountainous terrain during winter. Adv. Atmos. Sci. 2018, 35, 276–284. [Google Scholar] [CrossRef]
- Xia, J.; Li, H.; Kang, Y.; Yu, C.; Ji, L.; Wu, L.; Lou, X.; Zhu, G.; Wang, Z.; Yan, Z.; et al. Machine Learning-based Weather Support for the 2022 Winter Olympics. Adv. Atmos. Sci. 2020, 37, 927–932. [Google Scholar] [CrossRef]
- Wang, K.; Lyu, X.; Huang, J.; Luo, M.; Xu, F. Influence of Topography and the Underlying Surface of the Bohai Sea on Wind and Gust Forecasts. Earth Space Sci. 2022, 10, e2022EA002705. [Google Scholar] [CrossRef]
- Harper, B.A.; Kepert, J.D.; Ginger, J.D. Guidelines for Converting between Various Wind Averaging Periods in Tropical Cyclone Conditions. World Meteorological Organization Technical Document WMO/TD-1555. Available online: https://library.wmo.int/index.php?lvl=notice_display&id=135 (accessed on 1 January 2010).
- Wood, N. Wind Flow Over Complex Terrain: A Historical Perspective and the Prospect for Large-Eddy Modelling. Bound. Layer Meteorol. 2000, 96, 11–32. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Wang, H.; Doubrawa, P.; Giroux, G.; Pryor, S.C. Effects of an escarpment on flow parameters of relevance to wind turbines. Wind Energy 2016, 19, 2271–2286. [Google Scholar] [CrossRef]
- Wagenbrenner, N.S.; Forthofer, J.M.; Lamb, B.K.; Shannon, K.S.; Butler, B.W. Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja. Atmos. Chem. Phys. 2016, 16, 5229–5241. [Google Scholar] [CrossRef] [Green Version]
- Jubayer, C.M.; Hangan, H. A hybrid approach for evaluating wind flow over a complex terrain. J. Wind Eng. Ind. Aerodyn. 2018, 175, 65–76. [Google Scholar] [CrossRef]
- Hasager, C.B.; Nielsen, N.W.; Jensen, N.O.; Boegh, E.; Christensen, J.H.; Dellwik, E.; Soegaard, H. Effective Roughness Calculated from Satellite-Derived Land Cover Maps and Hedge-Information used in a Weather Forecasting Model. Bound. Layer Meteorol. 2003, 109, 227–254. [Google Scholar] [CrossRef]
- Earl, N.; Dorling, S.; Starks, M.; Finch, R. Subsynoptic-scale features associated with extreme surface gusts in UK extratropical cyclone events. Geophys. Res. Lett. 2017, 44, 3932–3940. [Google Scholar] [CrossRef] [Green Version]
- Tieleman, H.W. Wind characteristics in the surface layer over heterogeneous terrain. J. Wind Eng. Ind. Aerodyn. 1992, 41, 329–340. [Google Scholar] [CrossRef]
- Markowski, P.M.; Dotzek, N. A numerical study of the effects of orography on supercells. Atmos. Res. 2011, 100, 457–478. [Google Scholar] [CrossRef] [Green Version]
- Bechmann, A.; Sørensen, N.N.; Berg, J.; Mann, J.; Réthoré, P.E. The Bolund Experiment, Part II: Blind Comparison of Microscale Flow Models. Bound. Layer Meteorol. 2011, 141, 245–271. [Google Scholar] [CrossRef] [Green Version]
- Berg, J.; Mann, J.; Bechmann, A.; Courtney, M.S.; Jørgensen, H.E. The Bolund Experiment, Part I: Flow Over a Steep, Three-Dimensional Hill. Bound. Layer Meteorol. 2011, 141, 219–243. [Google Scholar] [CrossRef] [Green Version]
- Butler, B.W.; Wagenbrenner, N.S.; Forthofer, J.M.; Lamb, B.K.; Shannon, K.S.; Finn, D.; Eckman, R.M.; Clawson, K.; Bradshaw, L.; Sopko, P.; et al. High-resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon. Atmos. Chem. Phys. 2015, 15, 3785–3801. [Google Scholar] [CrossRef] [Green Version]
- Suomi, I.; Vihma, T. Wind Gust Measurement Techniques—From Traditional Anemometry to New Possibilities. Sensors 2018, 18, 1300. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Zhai, P.; Wu, L.; Cribb, M.; Li, Z.; Ma, Z.; Wang, F.; Chu, D.; Wang, P.; Zhang, J. Diurnal variation and the influential factors of precipitation from surface and satellite measurements in Tibet. Int. J. Climatol. 2014, 34, 2940–2956. [Google Scholar] [CrossRef]
- Fang, X.; Han, Y.; Ma, J.; Song, L.; Yang, S.; Zhang, X. Dust storms and loess accumulation on the Tibetan Plateau: A case study of dust event on 4 March 2003 in Lhasa. Chin. Sci. Bull. 2004, 49, 953–960. [Google Scholar] [CrossRef]
- Han, Y.; Fang, X.; Kang, S.; Wang, H.; Kang, F. Shifts of dust source regions over central Asia and the Tibetan Plateau: Connections with the Arctic oscillation and the westerly jet. Atmos. Environ. 2008, 42, 2358–2368. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Su, Z.; Fan, X. Changes in wind activity from 1957 to 2011 and their possible influence on aeolian desertification in northern China. J. Arid Land 2015, 7, 755–764. [Google Scholar] [CrossRef]
- Ding, J.; Cuo, L.; Zhang, Y.; Zhang, C. Varied spatiotemporal changes in wind speed over the Tibetan Plateau and its surroundings in the past decades. Int. J. Climatol. 2021, 41, 5956–5976. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, S.; Wang, L.; Gao, Z.; Zhang, Y.; Zou, H.; Miao, S.; Li, Y.; Huang, M.; Yim, S.H.L.; et al. Diurnal Evolution of the Wintertime Boundary Layer in Urban Beijing, China: Insights from Doppler Lidar and a 325-m Meteorological Tower. Remote Sens. 2020, 12, 3935. [Google Scholar] [CrossRef]
- De Arruda Moreira, G.; Guerrero-Rascado, J.L.; Benavent-Oltra, J.A.; Ortiz-Amezcua, P.; Román, R.; Bedoya-Velásquez, A.E.; Bravo-Aranda, J.A.; Olmo Reyes, F.J.; Landulfo, E.; Alados-Arboledas, L. Analyzing the turbulent planetary boundary layer by remote sensing systems: The Doppler wind lidar, aerosol elastic lidar and microwave radiometer. Atmos. Chem. Phys. 2019, 19, 1263–1280. [Google Scholar] [CrossRef] [Green Version]
- Steinheuer, J.; Detring, C.; Beyrich, F.; Löhnert, U.; Friederichs, P.; Fiedler, S. A new scanning scheme and flexible retrieval for mean winds and gusts from Doppler lidar measurements. Atmos. Meas. Tech. 2022, 15, 3243–3260. [Google Scholar] [CrossRef]
- Liu, J.; Song, X.; Long, W.; Fu, Y.; Yun, L.; Zhang, M. Structure Analysis of the Sea Breeze Based on Doppler Lidar and Its Impact on Pollutants. Remote Sens. 2022, 14, 324. [Google Scholar] [CrossRef]
- Suomi, I.; Gryning, S.E.; O’Connor, E.J.; Vihma, T. Methodology for obtaining wind gusts using Doppler lidar. Q. J. R. Meteorol. Soc. 2017, 143, 2061–2072. [Google Scholar] [CrossRef] [Green Version]
- Clifton, A.; Clive, P.; Gottschall, J.; Schlipf, D.; Simley, E.; Simmons, L.; Stein, D.; Trabucchi, D.; Vasiljevic, N.; Würth, I. IEA Wind Task 32: Wind Lidar Identifying and Mitigating Barriers to the Adoption of Wind Lidar. Remote Sens. 2018, 10, 406. [Google Scholar] [CrossRef] [Green Version]
- Hill, C. Coherent Focused Lidars for Doppler Sensing of Aerosols and Wind. Remote Sens. 2018, 10, 466. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Wu, K.; Wei, T.; Wang, L.; Shu, Z.; Yang, Y.; Xia, H. Cloud Seeding Evidenced by Coherent Doppler Wind Lidar. Remote Sens. 2021, 13, 3815. [Google Scholar] [CrossRef]
- Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, C.; Li, Y.; Chen, Z.; Zhang, J.; Ding, X. Wind Gust Parameters in the Lower Troposphere Based on Doppler Lidar Data. J. Geophys. Res. Atmos. 2023, 128, e2022JD038156. [Google Scholar] [CrossRef]
- O’Connor, E.J.; Illingworth, A.J.; Brooks, I.M.; Westbrook, C.D.; Hogan, R.J.; Davies, F.; Brooks, B.J. A Method for Estimating the Turbulent Kinetic Energy Dissipation Rate from a Vertically Pointing Doppler Lidar, and Independent Evaluation from Balloon-Borne In Situ Measurements. J. Atmos. Ocean. Technol. 2010, 27, 1652–1664. [Google Scholar] [CrossRef] [Green Version]
- Suomi, I.; Gryning, S.E.; Floors, R.; Vihma, T.; Fortelius, C. On the vertical structure of wind gusts. Q. J. R. Meteorol. Soc. 2014, 141, 1658–1670. [Google Scholar] [CrossRef]
- Harris, A.R.; Kahl, J.D.W. Gust Factors: Meteorologically Stratified Climatology, Data Artifacts, and Utility in Forecasting Peak Gusts. J. Appl. Meteorol. Climatol. 2017, 56, 3151–3166. [Google Scholar] [CrossRef]
- Miller, S.T.K.; Keim, B.D.; Talbot, R.W.; Mao, H. Sea breeze: Structure, forecasting, and impacts. Rev. Geophys. 2003, 41. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xin, J.; Yin, Y.; Wang, Z.; Wang, D.; Ma, Y.; Jia, D.; Jiang, Y.; Wu, L.; Pan, X. Adaptability evaluation of boundary layer schemes for simulation of sea and land breeze circulation in the west coast of the Yellow Sea. Atmos. Res. 2022, 278, 106354. [Google Scholar] [CrossRef]
- Yus-Díez, J.; Udina, M.; Soler, M.R.; Lothon, M.; Nilsson, E.; Bech, J.; Sun, J. Nocturnal boundary layer turbulence regimes analysis during the BLLAST campaign. Atmos. Chem. Phys. 2019, 19, 9495–9514. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Cheng, X.; Hu, F.; Peng, Z. Gustiness and coherent structure of strong winds and their role in dust emission and entrainment. Adv. Atmos. Sci. 2009, 27, 1–13. [Google Scholar] [CrossRef]
- Sun, J.; Mahrt, L.; Banta, R.M.; Pichugina, Y.L. Turbulence Regimes and Turbulence Intermittency in the Stable Boundary Layer during CASES-99. J. Atmos. Sci. 2012, 69, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Lenschow, D.H.; LeMone, M.A.; Mahrt, L. The Role of Large-Coherent-Eddy Transport in the Atmospheric Surface Layer Based on CASES-99 Observations. Bound. Layer Meteorol. 2016, 160, 83–111. [Google Scholar] [CrossRef]
- Lv, Y.; Guo, J.; Li, J.; Cao, L.; Chen, T.; Wang, D.; Chen, D.; Han, Y.; Guo, X.; Xu, H.; et al. Spatiotemporal characteristics of atmospheric turbulence over China estimated using operational high-resolution soundings. Environ. Res. Lett. 2021, 16, 054050. [Google Scholar] [CrossRef]
- Viana, S.; Terradellas, E.; Yagüe, C. Analysis of Gravity Waves Generated at the Top of a Drainage Flow. J. Atmos. Sci. 2010, 67, 3949–3966. [Google Scholar] [CrossRef] [Green Version]
- Udina, M.; Soler, M.R.; Viana, S.; Yagüe, C. Model simulation of gravity waves triggered by a density current. Q. J. R. Meteorol. Soc. 2013, 139, 701–714. [Google Scholar] [CrossRef]
- Soler, M.R.; Udina, M.; Ferreres, E. Observational and Numerical Simulation Study of a Sequence of Eight Atmospheric Density Currents in Northern Spain. Bound. Layer Meteorol. 2014, 153, 195–216. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.K.; Newstein, H. The Variation of Gust Factors with Mean Wind Speed and with Height. J. Appl. Meteorol. 1968, 7, 372–378. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhang, C.; Li, Y.; Zhang, Z. Comparison of Spring Wind Gusts in the Eastern Part of the Tibetan Plateau and along the Coast: The Role of Turbulence. Remote Sens. 2023, 15, 3655. https://doi.org/10.3390/rs15143655
Zhou X, Zhang C, Li Y, Zhang Z. Comparison of Spring Wind Gusts in the Eastern Part of the Tibetan Plateau and along the Coast: The Role of Turbulence. Remote Sensing. 2023; 15(14):3655. https://doi.org/10.3390/rs15143655
Chicago/Turabian StyleZhou, Xingxu, Chao Zhang, Yunying Li, and Zhiwei Zhang. 2023. "Comparison of Spring Wind Gusts in the Eastern Part of the Tibetan Plateau and along the Coast: The Role of Turbulence" Remote Sensing 15, no. 14: 3655. https://doi.org/10.3390/rs15143655
APA StyleZhou, X., Zhang, C., Li, Y., & Zhang, Z. (2023). Comparison of Spring Wind Gusts in the Eastern Part of the Tibetan Plateau and along the Coast: The Role of Turbulence. Remote Sensing, 15(14), 3655. https://doi.org/10.3390/rs15143655