Satellite-Based Mapping of Gold-Mining-Related Land-Cover Changes in the Magadan Region, Northeast Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Compilation of GIS Datasets of Mining-Related Land Degradation
2.2.1. Initial Data
Data Type | Data Source | Spatial Resolution | Time Period | Work Stage |
---|---|---|---|---|
Satellite images | Landsat-7 ETM+ and Landsat-5 TM | 30 m | 2000–2002 | Delineation of lands impacted by gold mining over 20 years ago |
2003–2012 | Identification of land-cover changes and vegetation recovery on mining areas | |||
Landsat-8 OLI | 30 m | 2013–2022 | ||
Sentinel-2 images | 10 m | 2016–2018 and 2022 | Assessment of the actual area of impacted lands and its changes between 2016–2018 and 2022 | |
High-resolution satellite images from open map services (Google Earth, Bing Maps, ESRI) | ≈0.5 m | All available images (2009—present) | Visual inspection of selected mining sites | |
Additional data | ALOS WTD digital surface model | 30 m | − | Identification of thalwegs, terrain classification, delineation of river basins |
Land allotments for gold mining | − | 2021 | Separation of mining areas from other spectrally similar surfaces | |
NASA active fire data [53] | 700/1000 m | 2000–2022 | Discrimination of mining areas from fire scars | |
Land-cover/land-use maps GlobCover-2009 [54], and the map of vegetation cover of Russia [55] | 230 m | 2018 | Determination of vegetation cover types impacted by gold mining |
2.2.2. Spectral Characteristics of Mining Sites and Natural Bare Areas
2.2.3. Identification of Mining Sites from Landsat Images for 2000–2002
2.2.4. Identification of Mining Sites from Sentinel-2 Images
2.2.5. Validation of Identified Mining Sites Using High-Resolution Image
2.3. Identification of Vegetation Recovery on Mining-Impacted Lands
3. Results
3.1. Overview of Mining-Related Land-Cover Changes in the Magadan Region
3.2. Assessment of Vegetation Recovery at Historical Gold-Mining Sites in the Berelekh River Basin
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hooke, R.L.; Martín-Duque, J.F.; Pedraza, J. Land transformation by humans: A review. Geol. Soc. Am. Today 2012, 22, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Chetty, S.; Pillay, L.; Humphries, M.S. Gold mining’s toxic legacy: Pollutant transport and accumulation in the Klip River catchment, Johannesburg. S. Afr. J. Sci. 2021, 117, 8668. [Google Scholar] [CrossRef] [PubMed]
- Bridge, G. Contested Terrain: Mining and the environment. Annu. Rev. Environ. Resour. 2004, 29, 205–259. [Google Scholar] [CrossRef]
- Laker, M.C. Environmental Impacts of Gold Mining—With Special Reference to South Africa. Mining 2023, 3, 205–220. [Google Scholar] [CrossRef]
- Guidebook for Evaluating Mining Project EIAs. Environmental Law Alliance Worldwide (ELAW). 2010. Available online: https://www.elaw.org/mining-eia-guidebook (accessed on 30 June 2023).
- Schueler, V.; Kuemmerle, T.; Schröder, H. Impacts of surface gold mining on land use systems in Western Ghana. Ambio 2011, 40, 528–539. [Google Scholar] [CrossRef] [Green Version]
- Kharuk, V.L.; Ranson, K.J.; Im, S.T.; Fedotova, E.V. Impact of Gold Mining on Middle Siberian Taiga Landscapes from Landsat-7 Data. Mapp. Sci. Remote Sens. 2002, 39, 139–156. [Google Scholar] [CrossRef]
- Obodai, J.; Adjei, K.A.; Odai, S.N.; Lumor, M. Land use/land cover dynamics using Landsat data in a gold mining basin-the Ankobra, Ghana. Remote Sens. Appl. Soc. Environ. 2013, 13, 247–256. [Google Scholar] [CrossRef]
- Finer, M.; Novoa, S. MAAP Synthesis # 1: Patterns and Drivers of Deforestation in the Peruvian Amazon; ACCA: Lima, Peru, 2015. [Google Scholar]
- Caballero Espejo, J.; Messinger, M.; Román-Dañobeytia, F.; Ascorra, C.; Fernandez, L.E.; Silman, M. Deforestation and Forest Degradation Due to Gold Mining in the Peruvian Amazon: A 34-Year Perspective. Remote Sens. 2018, 10, 1903. [Google Scholar] [CrossRef] [Green Version]
- Jarsjö, J.; Chalov, S.R.; Pietroń, J.; Alekseenko, A.V.; Thorslund, J. Patterns of soil contamination, erosion and river loading of metals in a gold mining region of northern Mongolia. Reg. Environ. Chang. 2017, 17, 1991–2005. [Google Scholar] [CrossRef]
- Glotov, V.E.; Chlachula, J.; Glotova, L.P.; Little, E. Causes and environmental impact of the gold-tailings dam failure at Karamken, the Russian Far East. Eng. Geol. 2018, 245, 236–247. [Google Scholar] [CrossRef]
- Gallo Corredor, J.A.; Lizeth Vargas González, G.; Velasco Granados, M.; Gutiérrez, L.; Pérez, E.H. Use of the gray water footprint as an indicator of contamination caused by artisanal mining in Colombia. Res. Policy 2021, 73, 102197. [Google Scholar] [CrossRef]
- Maus, V.; Giljum, S.; da Silva, D.M.; Gutschlhofer, J.; da Rosa, R.P.; Luckeneder, S.; Gass, S.L.B.; Lieber, M.; McCallum, I. An update on global mining land use. Sci. Data 2022, 9, 433. [Google Scholar] [CrossRef] [PubMed]
- S&P Global Market Intelligence. SNL Metals and Mining Database. 2023. Available online: https://www.spglobal.com/marketintelligence/en/campaigns/metals-mining (accessed on 30 June 2023).
- Li, Y.; Zhao, H.; Fan, J. Application of Remote Sensing Technology in Mine Environment Monitoring. MATEC Web Conf. 2015, 22, 4008. [Google Scholar] [CrossRef]
- Moomen, A.-W.; Lacroix, P.; Benvenuti, A.; Planque, M.; Piller, T.; Davis, K.; Miranda, M.; Ibrahim, E.; Giuliani, G. Assessing the Applications of Earth Observation Data for Monitoring Artisanal and Small-Scale Gold Mining (ASGM) in Developing Countries. Remote Sens. 2022, 14, 2971. [Google Scholar] [CrossRef]
- Lobo, F.D.L.; Costa, M.; Novo, E.M.L.M.; Telmer, K. Distribution of Artisanal and Small-Scale Gold Mining in the Tapajós River Basin (Brazilian Amazon) over the Past 40 Years and Relationship with Water Siltation. Remote Sens. 2016, 8, 579. [Google Scholar] [CrossRef] [Green Version]
- Dethier, E.N.; Sartain, S.L.; Lutz, D.A. Heightened Levels and Seasonal Inversion of Riverine Suspended Sediment in a Tropical Biodiversity Hot Spot Due to Artisanal Gold Mining. Proc. Natl. Acad. Sci. USA 2019, 116, 23936–23941. [Google Scholar] [CrossRef] [PubMed]
- Telmer, K.; Stapper, D. Evaluating and Monitoring Small Scale Gold Mining and Mercury Use: Building a Knowledge-Base with Satellite Imagery and Field Work; United Nations Industrial Development Organization: Victoria, BC, Canada, 2007. [Google Scholar]
- Malik, K.; Robertson, C.; Braun, D.; Greig, C. U-Net convolutional neural network models for detecting and quantifying placer mining disturbances at watershed scales. Int. J. Appl. Earth Obs. Geoinf 2021, 104, 102510. [Google Scholar] [CrossRef]
- Mhangara, P.; Tsoeleng, L.T.; Mapurisa, W. Monitoring the Development of Artisanal Mines in South Africa. J. S. Afr. Inst. Min. Metall. 2020, 120, 299–306. [Google Scholar] [CrossRef]
- Barenblitt, A.; Payton, A.; Lagomasino, D.; Fatoyinbo, L.; Asare, K.; Aidoo, K.; Pigott, H.; Som, C.K.; Smeets, L.; Seidu, O.; et al. The Large Footprint of Small-Scale Artisanal Gold Mining in Ghana. Sci. Total Environ. 2021, 781, 146644. [Google Scholar] [CrossRef]
- Ibrahim, E.; Lema, L.; Barnabé, P.; Lacroix, P.; Pirard, E. Small-Scale Surface Mining of Gold Placers: Detection, Mapping, and Temporal Analysis through the Use of Free Satellite Imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102194. [Google Scholar] [CrossRef]
- Nyamekye, C.; Ghansah, B.; Agyapong, E.; Kwofie, S. Mapping Changes in Artisanal and Small-Scale Mining (ASM) Landscape Using Machine and Deep Learning Algorithms—A Proxy Evaluation of the 2017 Ban on ASM in Ghana. Environ. Chall. 2021, 3, 100053. [Google Scholar] [CrossRef]
- Gallwey, J.; Robiati, C.; Coggan, J.; Vogt, D.; Eyre, M. A Sentinel-2 Based Multispectral Convolutional Neural Network for Detecting Artisanal Small-Scale Mining in Ghana: Applying Deep Learning to Shallow Mining. Remote Sens. Environ. 2020, 248, 111970. [Google Scholar] [CrossRef]
- Lymburner, L.; Botha, E.; Hestir, E.; Anstee, J.; Sagar, S.; Dekker, A.; Malthus, T. Landsat 8: Providing Continuity and Increased Precision for Measuring Multi-Decadal Time Series of Total Suspended Matter. Remote Sens. Environ. 2016, 185, 108–118. [Google Scholar] [CrossRef]
- Xing, Q.; Lou, M.; Chen, C.; Shi, P. Using in Situ and Satellite Hyperspectral Data to Estimate the Surface Suspended Sediments Concentrations in the Pearl River Estuary. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 731–738. [Google Scholar] [CrossRef]
- Forkuor, G.; Ullmann, T.; Griesbeck, M. Mapping and Monitoring Small-Scale Mining Activities in Ghana Using Sentinel-1 Time Series (2015–2019). Remote Sens. 2020, 12, 911. [Google Scholar] [CrossRef] [Green Version]
- Kimijima, S.; Sakakibara, M.; Nagai, M. Characterizing Time-Series Roving Artisanal and Small-Scale Gold Mining Activities in Indonesia Using Sentinel-1 Data. Int. J. Environ. Res. Public Health 2022, 19, 6266. [Google Scholar] [CrossRef]
- Gilvear, D.J.; Waters, T.M.; Milner, A.M. Image analysis of aerial photography to quantify changes in channel morphology and instream habitat following placer mining in interior Alaska. Freshw. Biol. 1995, 34, 389–398. [Google Scholar] [CrossRef]
- Park, S.; Choi, Y. Applications of Unmanned Aerial Vehicles in Mining from Exploration to Reclamation: A Review. Minerals 2020, 10, 663. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J. Coal. Sci. Technol. 2019, 6, 320–333. [Google Scholar] [CrossRef] [Green Version]
- Padró, J.C.; Carabassa, V.; Balagué, J.; Brotons, L.; Alcañiz, J.M.; Pons, X. Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Sci. Total Environ. 2019, 657, 1602–1614. [Google Scholar] [CrossRef]
- Jackisch, R.; Lorenz, S.; Zimmermann, R.; Möckel, R.; Gloaguen, R. Drone-borne hyperspectral monitoring of acid mine drainage: An example from the Sokolov Lignite District. Remote Sens. 2018, 10, 385. [Google Scholar] [CrossRef] [Green Version]
- Egidarev, E.G.; Simonov, E.A. Assessment of the Environmental Effect of Placer Gold Mining in the Amur River Basin. Water Resour. 2015, 42, 897–908. [Google Scholar] [CrossRef]
- Khristov, V.K. History Pages. 80 Years of Susuman GOK. 65 Years of Susumansky District; Okhotnik publisher: Magadan, Russia, 2018; 280p. (In Russian) [Google Scholar]
- Gold Mining in the Magadan Region. Available online: https://zolotodb.ru/article/11259/?page=all (accessed on 30 June 2023). (In Russian).
- Ilyushina, P.G.; Shikhov, A.N.; Makarieva, O.M. Satellite-Based Mapping of the Negative Impact of Gold Mining Enterprises on the Natural Environment of the Cryolithozone (On the Example of the Magadan Region). Issled. Zemli Iz Kosmosa 2023, 1, 41–52. [Google Scholar]
- Grandmont, K.; Roy, L.-P.; de Grandpré, I.; Fortier, D.; Benkert, B.; Lewkowicz, A. Impact of land cover disturbance on permafrost landscapes. In case studies from Yukon communities. In Proceedings of the GeoQuebec 2015—7th Canadian Permafrost Conf. and 68th Canadian Geotechnical Conference, Quebec City, QC, Canada, 20–23 September 2015; p. 8. [Google Scholar] [CrossRef]
- Zarovnyaev, B.; Shubin, G.; Sobakina, M.; Budikina, M. Development of environmentally safe mining technologies taking into account thermomechanical conditions of the permafrost zone. IOP Conf. Series Earth Environ. Sci. 2019, 221, 012118. [Google Scholar] [CrossRef]
- Kornienko, S.G. Characteristics of anthropogenic transformations of landscapes in the area of Bovanenkovo gas field based on Landsat satellite data. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosmosa 2022, 19, 106–129. [Google Scholar] [CrossRef]
- Tikhmenev, P.E.; Smirnov, A.A.; Tikhmenev, E.A.; Stanchenko, G.V. Anthropogenic dynamics and recovery of disturbed landscapes at the Far East Russia permafrost area. E3S Web Conf. 2020, 169, 3009. [Google Scholar] [CrossRef]
- Rosnedra. Federal Agency for Subsoil Use. Available online: https://www.rosnedra.gov.ru/ (accessed on 15 May 2023).
- Makarieva, O.; Nesterova, N.; Shikhov, A.; Zemlianskova, A.; Luo, D.; Ostashov, A.; Alexeev, V. Giant Aufeis—Unknown Glaciation in North-Eastern Eurasia According to Landsat Images 2013–2019. Remote Sens. 2022, 14, 4248. [Google Scholar] [CrossRef]
- Zveryaev, I.I.; Arkhipkin, A.V. Variability and Changes of the Growing Season Length and Frost Days Number in Russian sub-Arctic. Geogr. Environ. Sustain. 2019, 12, 13–22. [Google Scholar] [CrossRef]
- Kovalskyy, V.; Roy, D.P. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30m Landsat data product generation. Remote Sens. Environ. 2013, 130, 280–293. [Google Scholar] [CrossRef] [Green Version]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the SPIE Remote Sensing, Warsaw, Poland, 11–12 September 2017; Volume 10427, p. 1042704. [Google Scholar] [CrossRef] [Green Version]
- USGS EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 15 May 2023).
- EOS LandViewer. Available online: https://eos.com/landviewer (accessed on 15 May 2023).
- ALOS Global Digital Surface Model “ALOS World 3D—30m (AW3D30)”. Available online: https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm (accessed on 15 May 2023).
- Fire Information for Resource Management System. Available online: https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms/active-fire-data (accessed on 15 May 2023).
- Arino, O.; Bicheron, P.; Achard, F.; Latham, J.; Witt, R.; Weber, J.-L. GlobCover: The most detailed portrait of Earth. Eur. Space Agency Bull. 2008, 136, 24–31. [Google Scholar]
- Bartalev, S.A.; Egorov, V.A.; Zharko, V.O.; Lupyan, E.A.; Plotnikov, D.E.; Khvostikov, S.A.; Shabanov, N.V. Satellite-Based Mapping of the Vegetation Cover of Russia; Institute of Space Research of RAS: Moscow, Russia, 2016; Volume 208. (In Russian) [Google Scholar]
- Ngom, N.M.; Mbaye, M.; Baratoux, D.; Baratoux, L.; Catry, T.; Dessay, N.; Faye, G.; Sow, E.H.; Delaitre, E. Mapping artisanal and small-scale gold mining in Senegal using Sentinel 2 data. GeoHealth 2020, 4, e2020GH000310. [Google Scholar] [CrossRef] [PubMed]
- Xu, H. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Wilson, J.P.; Gallant, J.C. Terrain Analysis—Principles and Applications; John Wiley: New York, NY, USA, 2000. [Google Scholar]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Belikovich, A.V. Vegetation Cover of the Susuman District of the Magadan Region. Komarovsky Readings; Dal’nauka: Vladivostok, Russia, 2001; Volume 48, pp. 125–154. (In Russian) [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth Inc.: Middleburg Heights, OH, USA, 1984. [Google Scholar]
- Konstantinov, M.M. Gold Mining Provinces of the World; Nauchnyy mir: Moscow, Russia, 2006; 358p. (In Russian) [Google Scholar]
- State Report on the State and Use of Mineral Resources of the Russian Federation in 2020; Ministry of Natural Resources and Environment of the Russian Federation: Moscow, Russia, 2021; 572p. (In Russian)
- Chupachenko, O.N. Educational and Methodological Manual for Public Monitoring of River Pollution during the Extraction of Alluvial Gold Using Satellite Images; World Wildlife Fund (WWF): Moscow, Russia, 2020; 36p. (In Russian) [Google Scholar]
- Egidarev, E. Map of Satellite Monitoring of Alluvial Gold Mining in Siberia and the Far East. Available online: https://zolotari.net/map (accessed on 30 June 2023). (In Russian).
- Simonov, E.A. Golden Rivers: Issue 1. Amur Basin; World Wildlife Fund (WWF): Vladivostok, Russia, 2012; 120p. (In Russian) [Google Scholar]
- Yaborov, V.T. Restoration of vegetation cover on man-made landscapes of allower gold mining in the Amur region. Far East. Agrar. Bull. 2008, 1, 86–92. (In Russian) [Google Scholar]
- Tsydypova, M.V.; Suprunenko, A.G. GIS mapping of anthropogenic impact on the environment by the extraction of placer gold (on the example of Eravninsky district of the Republic of Buriatia). Bull. Sib. State Univ. Geosyst. Tech. 2017, 22, 119–127. (In Russian) [Google Scholar]
- Yu, L.; Xu, Y.; Xue, Y.; Li, X.; Cheng, Y.; Liu, X.; Porwal, A.; Holden, E.-J.; Yang, J.; Gong, P. Monitoring surface mining belts using multiple remote sensing datasets. Ore Geol. Rev. 2018, 101, 675–687. [Google Scholar] [CrossRef]
Land-Cover Class | Total Area, km2 | Impacted Area, km2 |
---|---|---|
Bare areas | 38,091.1 | 14.52 |
Closed (>40%) broad-leaved deciduous forest (>5m) | 678.8 | − |
Closed to open (>15%) mixed broad-leaved and needle-leaved forest (>5m) | 2639.7 | − |
Mosaic forest or shrubland (50–70%)/grassland (20–50%) | 44,409.4 | 12.04 |
Mosaic grassland (50–70%)/forest or shrubland (20–50%) | 59,217.1 | 31.15 |
Open (15–40%) needle-leaved deciduous or evergreen forest (>5m) | 234,777.0 | 182.22 |
Permanent snow and ice | 348.5 | − |
Sparse (<15%) vegetation | 78,127.4 | 19.94 |
Water bodies | 3112.3 | − |
Land-Cover Class | Total Area, km2 | Impacted Area, km2 |
---|---|---|
Burned areas | 2364.7 | 1.1 |
Coniferous evergreen shrubs | 104,776.0 | 71.9 |
Coniferous Larch forests | 54,080.1 | 27.3 |
Deciduous forests | 1114.9 | − |
Grasslands | 208.9 | − |
Mixed forests | 12.2 | − |
Mixed forests with coniferous dominating | 161.8 | − |
Mixed forests with deciduous dominating | 54.4 | − |
Open ground and rocks | 43,549.6 | 16.4 |
Sparse larch forests | 65,948.9 | 41.5 |
Shrublands | 17,984.3 | 8.2 |
Swamps | 33,368.9 | 41.7 |
Tundra | 137,571.0 | 49.1 |
Urban areas | 14.0 | − |
Water bodies | 1535.4 | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikhov, A.; Ilyushina, P.; Makarieva, O.; Zemlianskova, A.; Mozgina, M. Satellite-Based Mapping of Gold-Mining-Related Land-Cover Changes in the Magadan Region, Northeast Russia. Remote Sens. 2023, 15, 3564. https://doi.org/10.3390/rs15143564
Shikhov A, Ilyushina P, Makarieva O, Zemlianskova A, Mozgina M. Satellite-Based Mapping of Gold-Mining-Related Land-Cover Changes in the Magadan Region, Northeast Russia. Remote Sensing. 2023; 15(14):3564. https://doi.org/10.3390/rs15143564
Chicago/Turabian StyleShikhov, Andrey, Polina Ilyushina, Olga Makarieva, Anastasiia Zemlianskova, and Maria Mozgina. 2023. "Satellite-Based Mapping of Gold-Mining-Related Land-Cover Changes in the Magadan Region, Northeast Russia" Remote Sensing 15, no. 14: 3564. https://doi.org/10.3390/rs15143564
APA StyleShikhov, A., Ilyushina, P., Makarieva, O., Zemlianskova, A., & Mozgina, M. (2023). Satellite-Based Mapping of Gold-Mining-Related Land-Cover Changes in the Magadan Region, Northeast Russia. Remote Sensing, 15(14), 3564. https://doi.org/10.3390/rs15143564