Combined PS-InSAR Technology and High-Resolution Optical Remote Sensing for Identifying Illegal Underground Mining in the Suburb of Yangquan City, Shanxi Province, China
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Dataset
2.2.1. PALSAR Data
2.2.2. Optical Remote Sensing Images
2.2.3. DEM Data
3. Methodology
3.1. Extraction of Surface Building Subsidence Information by Using Combined PS-InSAR Technology and Optical Remote Sensing
3.1.1. Extraction of Building Elements in Mining Area Based on Optical Remote Sensing
- (I).
- Construct sample database
- (II).
- Construct semantic segmentation (SegNet) model
- (III).
- Extract buildings
3.1.2. Surface Deformation Monitoring by PS-InSAR Technology in Mining Area
3.1.3. Extraction of Deformation Information of Surface Buildings (Structures) in the Mining Area
3.2. Method of Identifying Illegal Underground Mining Based on Spatiotemporal Characteristics of Building Subsidence
4. Results
4.1. Acquisition of Settlement Information by PS-InSAR
4.2. Extraction of Building Contours by Optical Images
4.3. Identification of Illegal Underground Mining
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Jiang, X. Coal Mining: Most Deadly Job in China [EB]. 13 November 2004. Available online: http://www.chinadaily.com.cn/english/doc/2004-11/13/content_391242.htm (accessed on 12 March 2005).
- Zhou, X.; Yue, C.; Xu, T.; Gao, H.; Man, S. Monitoring of Mining Order in Shenfu Coal Based on RS and GIS. Geospat. Inf. 2013, 11, 58–60. [Google Scholar]
- Jia, L. Research on Application of Remote Sensing Investigation and Monitoring of Mine Development Based on High Resolution Image. West. Resour. 2016, 3, 11–13. [Google Scholar]
- Liu, L.; Gao, J.; Yu, D.; Li, C.; Li, G. Remote Sensing Study on the Relationship between Cross-border Mining and Mining Rights Area. Geospat. Inf. 2019, 17, 47–50+55+9. [Google Scholar]
- Yang, X. Research and Implementation on Location Monitoring Algorithm for Mining Cross-Border Areas; Guilin University of Electronic Technology: Guilin, China, 2015. [Google Scholar]
- Xu, S.; Li, Q.; Li, Y.; Xie, R.; Yang, L. Application of the Dense Network Micro-Seismic Location Method to Dynamic Mining Monitoring. China Earthq. Eng. J. 2015, 37, 266–270. [Google Scholar]
- Li, W.; Mu, Y.; Zhang, J.; Xu, Y. Optimization of Surface Detection Technology and Method of Mine Goaf. Coal Sci. Technol. 2011, 39, 102–106. [Google Scholar]
- Panigrahi, D.C.; Bhattacherjee, R.M. Development of Modified Gas Indices for Early Detection of Spontaneous Heating in Coal Pillars. J. S. Afr. Inst. Min. Metall. 2004, 104, 367–380. [Google Scholar]
- Huang, C.; Huang, X. Method and Application of Mine Water Disaster Monitoring Warning. J. N. China Inst. Sci. Technol. 2009, 6, 11–18. [Google Scholar]
- Azcue, J.M.; Ripley, E.A.; Redman, R.E. Environmental Impacts of Mining Activities; Springer: New York, NY, USA, 1999. [Google Scholar]
- Hu, Z.; Ge, L.; Li, X.; Rizos, C. Designing an Illegal Mining Detection System Based on DinSAR. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 3952–3955. [Google Scholar]
- Hu, Z.; Ge, L.; Li, X.; Zhang, K.; Zhang, L. An Underground-Mining Detection System Based on DInSAR. IEEE Trans. Geosci. Remote Sens. 2013, 51, 615–625. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Y.; Du, S.; Liu, X.; Zhou, H. Integration of D-InSAR and GIS Technology for Identifying Illegal Underground Mining in Yangquan District, Shanxi Province, China. Environ. Earth Sci. 2018, 77, 319. [Google Scholar] [CrossRef]
- Liu, S.; Meng, J.; Zhang, C. An Analysis on Types and Causes of Land Desertification in the Coal Mining Area of Shanxi Province. Res. Soil Water Conserv. 2006, 13, 163–165. [Google Scholar]
- Xie, H. Thoughts about Current Situation and Future Development of Yangquan learning from the Development Experience of Ruhr in Germany. Econ. Probl. 2007, 5, 124–126. [Google Scholar]
- Zhang, W.; Zhang, Z. Status Quo and Its Tendency of High-production and High-effective Mine Construction in Yangquan Mine Area. Coal Min. Technol. 2007, 12, 8–10. [Google Scholar]
- Liao, C. Study on Landscape Ecological Effects and Restoration of Yangquan Coal Mine; Tsinghua University: Beijing, China, 2009. [Google Scholar]
- Available online: http://www.jcrb.com/prosecutor/thepractice/201411/t20141112_1448862.html (accessed on 20 June 2023).
- Hennig, T.A.; Kretsch, J.L.; Pessagno, C.J.; Salamonowicz, P.H.; Stein, W.L. The Shuttle Radar Topography Mission. In Proceedings of the Digital Earth Moving: First International Symposium, DEM 2001, Manno, Switzerland, 5–7 September 2001. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, R.; Usai, S. Interferometric Phase Analysis for Monitoring Slow Deformation Processes. Eur. Space Agency 1997, 414, 487–491. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.enea.it/it/seguici/events/duomoorvieto_9apr13/Borfecchia_Orvieto.pdf (accessed on 20 June 2023).
- Wang, Y.; Liao, M.-S.; Li, D.-R.; Wei, Z.-X.; Fang, Z. Subsidence Velocity Retrieval from Long-term Coherent Targets in Radar Interferometric Stacks. Chin. J. Geophys. 2007, 50, 598–604. [Google Scholar]
SCNID | DATE | OPEMD | POLARIZATION | PATHNO | PASS |
---|---|---|---|---|---|
1 | 29 Dec. 2006 | FBS | HH | 454 | A |
2 | 13 Feb. 2007 | FBS | HH | 454 | A |
3 | 1 Jul. 2007 | FBS | HH | 454 | A |
4 | 16 Aug. 2007 | FBD | HH | 454 | A |
5 | 1 Oct. 2007 | FBD | HH | 454 | A |
6 | 1 Jan. 2008 | FBS | HH | 454 | A |
7 | 16 Feb. 2008 | FBS | HH | 454 | A |
8 | 2 Apr. 2008 | FBS | HH | 454 | A |
9 | 18 May 2008 | FBD | HH | 454 | A |
10 | 3 Jul. 2008 | FBD | HH | 454 | A |
11 | 3 Jan. 2009 | FBS | HH | 454 | A |
12 | 18 Feb. 2009 | FBS | HH | 454 | A |
13 | 6 Jul. 2009 | FBD | HH | 454 | A |
14 | 21 Aug. 2009 | FBD | HH | 454 | A |
15 | 6 Oct. 2009 | FBD | HH | 454 | A |
16 | 6 Jan. 2010 | FBS | HH | 454 | A |
17 | 8 Apr. 2010 | FBS | HH | 454 | A |
18 | 9 Jul. 2010 | FBD | HH | 454 | A |
19 | 9 Oct. 2010 | FBD | HH | 454 | A |
20 | 9 Jan. 2011 | FBS | HH | 454 | A |
Data | Bands | Band Width (nm) | Spatial resolution (m) |
---|---|---|---|
QuickBird02 (2008) | Blue | 450–520 | 2.4 (panchromatic 0.61) |
Green | 529–600 | ||
Red | 630–690 | ||
Near-infrared (NIR) | 760–900 |
Data | Bands | Band Width (nm) | Spatial Resolution (m) |
---|---|---|---|
Worldview02 (2010) | Blue | 450–510 | 1.8 (panchromatic 0.5) |
Green | 510–580 | ||
Red | 630–690 | ||
Near-infrared (NIR) | 770–895 |
ID | Main Image | Secondary Image | Spatial Baseline (m) | Time Baseline (d) |
---|---|---|---|---|
1 | 3 Jan. 2009 | 29 Dec. 2006 | −109.7 | −736 |
2 | 3 Jan. 2009 | 13 Feb. 2007 | 1403.7 | −690 |
3 | 3 Jan. 2009 | 1 Jul. 2007 | 1983.6 | −552 |
4 | 3 Jan. 2009 | 16 Aug. 2007 | 2258.9 | −506 |
5 | 3 Jan. 2009 | 1 Oct. 2007 | 2476.5 | −460 |
6 | 3 Jan. 2009 | 1 Jan. 2008 | 2792.8 | −368 |
7 | 3 Jan. 2009 | 16 Feb. 2008 | 3824.4 | −322 |
8 | 3 Jan. 2009 | 2 Apr. 2008 | 4059.8 | −276 |
9 | 3 Jan. 2009 | 18 May 2008 | 4156.1 | −230 |
10 | 3 Jan. 2009 | 3 Jul. 2008 | 1097.4 | −184 |
11 | 3 Jan. 2009 | 3 Jan. 2009 | 0 | 0 |
12 | 3 Jan. 2009 | 18 Feb. 2009 | 482.3 | 46 |
13 | 3 Jan. 2009 | 6 Jul. 2009 | −854.1 | 184 |
14 | 3 Jan. 2009 | 21 Oct. 2009 | 1282.8 | 230 |
15 | 3 Jan. 2009 | 6 Oct. 2009 | 1717.8 | 276 |
16 | 3 Jan. 2009 | 6 Jan. 2010 | 2114.3 | 368 |
17 | 3 Jan. 2009 | 8 Apr. 2010 | 2945.7 | 460 |
18 | 3 Jan. 2009 | 9 Jul. 2010 | 3005.3 | 552 |
19 | 3 Jan. 2009 | 9 Oct. 2010 | 3760.5 | 644 |
20 | 3 Jan. 2009 | 9 Jan. 2011 | 4199.8 | 736 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Xia, F.; Hui, Z.; Li, H.; Wan, R.; Ai, J. Combined PS-InSAR Technology and High-Resolution Optical Remote Sensing for Identifying Illegal Underground Mining in the Suburb of Yangquan City, Shanxi Province, China. Remote Sens. 2023, 15, 3565. https://doi.org/10.3390/rs15143565
Xia Y, Xia F, Hui Z, Li H, Wan R, Ai J. Combined PS-InSAR Technology and High-Resolution Optical Remote Sensing for Identifying Illegal Underground Mining in the Suburb of Yangquan City, Shanxi Province, China. Remote Sensing. 2023; 15(14):3565. https://doi.org/10.3390/rs15143565
Chicago/Turabian StyleXia, Yuanping, Fei Xia, Zhenyang Hui, Huaizhan Li, Ranran Wan, and Jinquan Ai. 2023. "Combined PS-InSAR Technology and High-Resolution Optical Remote Sensing for Identifying Illegal Underground Mining in the Suburb of Yangquan City, Shanxi Province, China" Remote Sensing 15, no. 14: 3565. https://doi.org/10.3390/rs15143565
APA StyleXia, Y., Xia, F., Hui, Z., Li, H., Wan, R., & Ai, J. (2023). Combined PS-InSAR Technology and High-Resolution Optical Remote Sensing for Identifying Illegal Underground Mining in the Suburb of Yangquan City, Shanxi Province, China. Remote Sensing, 15(14), 3565. https://doi.org/10.3390/rs15143565