The Antarctic Amplification Based on MODIS Land Surface Temperature and ERA5
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
3. Results
3.1. The Performance of MODIS Land Surface Temperature and ERA5 in Antarctica
3.2. Temperature Trends over Antarctica and Its Sub Regions from MODIS Observations and ERA5
3.3. The Antarctic Amplification from MODIS Observations and ERA5
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- King, J.; Turner, J. Antarctic Meteorology and Climatology; Cambridge Atmospheric and Space Science Series; Cambridge University Press: Cambridge, UK, 1997; pp. 1–12. [Google Scholar] [CrossRef]
- Rintoul, S.R.; Chown, S.L.; DeConto, R.M.; England, M.H.; Fricker, H.A.; Masson-Delmotte, V.; Naish, T.R.; Siegert, M.J.; Xavier, J.C. Choosing the future of Antarctica. Nature 2018, 558, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Roussel, M.-L.; Lemonnier, F.; Genthon, C.; Krinner, G. Brief communication: Evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations. Cryosphere 2020, 14, 2715–2727. [Google Scholar] [CrossRef]
- Gomez, N.; Pollard, D.; Holland, D. Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss. Nat. Commun. 2015, 6, 8798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene, C.A.; Gardner, A.S.; Schlegel, N.-J.; Fraser, A.D. Antarctic calving loss rivals ice-shelf thinning. Nature 2022, 609, 948–953. [Google Scholar] [CrossRef]
- Turner, J.; Colwell, S.R.; Marshall, G.J.; Lachlan-Cope, T.A.; Carleton, A.M.; Jones, P.D.; Lagun, V.; Reid, P.A.; Iagovkina, S. Antarctic climate change during the last 50 years. Int. J. Climatol. 2005, 25, 279–294. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 2002, 296, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Marshall, G.J. Half-century seasonal relationships between the Southern Annular Mode and Antarctic temperatures. Int. J. Climatol. 2007, 27, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Clem, K.R.; Fogt, R.L. South Pacific circulation changes and their connection to the tropics and regional Antarctic warming in austral spring, 1979–2012. J. Geophys. Res. Atmos. 2015, 120, 2773–2792. [Google Scholar] [CrossRef]
- Raphael, M.N.; Marshall, G.J.; Turner, J.; Fogt, R.L.; Schneider, D.; Dixon, D.A.; Hosking, J.S.; Jones, J.M.; Hobbs, W.R. The Amundsen Sea Low Variability, Change, and Impact on Antarctic Climate. Bull. Am. Meteorol. Soc. 2016, 97, 111–121. [Google Scholar] [CrossRef]
- Sato, K.; Simmonds, I. Antarctic skin temperature warming related to enhanced downward longwave radiation associated with increased atmospheric advection of moisture and temperature. Environ. Res. Lett. 2021, 16, 064059. [Google Scholar] [CrossRef]
- Turner, J.; Lu, H.; White, I.; King, J.C.; Phillips, T.; Hosking, J.S.; Bracegirdle, T.J.; Marshall, G.J.; Mulvaney, R.; Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 2016, 535, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, S.; Fortuny, D. How robust are the temperature trends on the Antarctic Peninsula? Antarct. Sci. 2018, 30, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Steig, E.J.; Schneider, D.P.; Rutherford, S.D.; Mann, M.E.; Comiso, J.C.; Shindell, D.T. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 2009, 457, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Bromwich, D.H.; Nicolas, J.P.; Monaghan, A.J.; Lazzara, M.A.; Keller, L.M.; Weidner, G.A.; Wilson, A.B. Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. 2013, 6, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Lachlan-Cope, T.; Connolley, W. Constellations between the tropical Pacific and the Amundsen-Bellingshausen Seas: Role of the El Niño-Southern Oscillation. J. Geophys. Res. 2006, 111, D23101. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.; Steig, E.J.; Battisti, D.S.; Kuettel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci. 2011, 4, 398–403. [Google Scholar] [CrossRef] [Green Version]
- Clem, K.R.; Renwick, J.A.; McGregor, J. Autumn Cooling of Western East Antarctica Linked to the Tropical Pacific. J. Geophys. Res. Atmos. 2018, 123, 89–107. [Google Scholar] [CrossRef]
- van den Broeke, M.R.; van Lipzig, N.P.M. Factors controlling the near-surface wind field in Antarctica. Mon. Weather. Rev. 2003, 131, 733–743. [Google Scholar] [CrossRef]
- Marshall, G.J.; Orr, A.; Turner, J. A Predominant Reversal in the Relationship between the SAM and East Antarctic Temperatures during the Twenty-First Century. J. Clim. 2013, 26, 5196–5204. [Google Scholar] [CrossRef] [Green Version]
- Lambert, F.; Kug, J.S.; Park, R.J.; Mahowald, N.; Winckler, G.; Abe-Ouchi, A.; O’Ishi, R.; Takemura, T.; Lee, J.H. The role of mineral-dust aerosols in polar temperature amplification. Nat. Clim. Chang. 2013, 3, 487–491. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Kageyama, M.; Braconnot, P.; Charbit, S.; Krinner, G.; Ritz, C.; Guilyardi, E.; Jouzel, J.; Abe-Ouchi, A.; Crucifix, M.; et al. Past and future polar amplification of climate change: Climate model intercomparisons and ice-core constraints. Clim. Dyn. 2006, 26, 513–529. [Google Scholar] [CrossRef]
- Stuecker, M.F.; Bitz, C.M.; Armour, K.C.; Proistosescu, C.; Kang, S.M.; Xie, S.-P.; Kim, D.; McGregor, S.; Zhang, W.; Zhao, S.; et al. Polar amplification dominated by local forcing and feedbacks. Nat. Clim. Chang. 2018, 8, 1076–1081. [Google Scholar] [CrossRef]
- Holland, M.M.; Bitz, C.M. Polar amplification of climate change in coupled models. Clim. Dyn. 2003, 21, 221–232. [Google Scholar] [CrossRef]
- Goosse, H.; Kay, J.E.; Armour, K.C.; Bodas-Salcedo, A.; Chepfer, H.; Docquier, D.; Jonko, A.; Kushner, P.J.; Lecomte, O.; Massonnet, F.; et al. Quantifying climate feedbacks in polar regions. Nat. Commun. 2018, 9, 1919. [Google Scholar] [CrossRef] [Green Version]
- Gao, K.; Duan, A.; Chen, D.; Wu, G. Surface energy budget diagnosis reveals possible mechanism for the different warming rate among Earth’s three poles in recent decades. Sci. Bull. 2019, 64, 1140–1143. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-L.; Kang, S.-C.; Meng, X.-H.; You, Q.-L. Assessments of the Arctic amplification and the changes in the Arctic sea surface. Adv. Clim. Chang. Res. 2019, 10, 193–202. [Google Scholar] [CrossRef]
- Cohen, J.; Zhang, X.; Francis, J.; Jung, T.; Kwok, R.; Overland, J.; Ballinger, T.J.; Bhatt, U.S.; Chen, H.W.; Coumou, D.; et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Chang. 2020, 10, 20–29. [Google Scholar] [CrossRef]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvarinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- You, Q.; Cai, Z.; Pepin, N.; Chen, D.; Ahrens, B.; Jiang, Z.; Wu, F.; Kang, S.; Zhang, R.; Wu, T.; et al. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Sci. Rev. 2021, 217, 103625. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Long-Term Climate Change: Projections, Commitments and Irreversibility; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Marshall, J.; Scott, J.R.; Armour, K.C.; Campin, J.M.; Kelley, M.; Romanou, A. The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Clim. Dyn. 2015, 44, 2287–2299. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.M.; Screen, J.A.; Deser, C.; Cohen, J.; Fyfe, J.C.; Garcia-Serrano, J.; Jung, T.; Kattsov, V.; Matei, D.; Msadek, R.; et al. The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification. Geosci. Model. Dev. 2019, 12, 1139–1164. [Google Scholar] [CrossRef] [Green Version]
- Hahn, L.C.; Armour, K.C.; Zelinka, M.D.; Bitz, C.M.; Donohoe, A. Contributions to Polar Amplification in CMIP5 and CMIP6 Models. Front. Earth Sci. 2021, 9, 710036. [Google Scholar] [CrossRef]
- Xie, A.; Zhu, J.; Kang, S.; Qin, X.; Xu, B.; Wang, Y. Polar amplification comparison among Earth’s three poles under different socioeconomic scenarios from CMIP6 surface air temperature. Sci. Rep. 2022, 12, 16548. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xie, A.; Qin, X.; Wang, Y.; Xu, B.; Wang, Y. An Assessment of ERA5 Reanalysis for Antarctic Near-Surface Air Temperature. Atmos 2021, 12, 217. [Google Scholar] [CrossRef]
- Wang, S.M.; Xie, A.H.; Zhu, J.P. Does polar amplification exist in Antarctic surface during the recent four decades? J. Mt. Sci. 2021, 18, 2626–2634. [Google Scholar] [CrossRef]
- Zhu, J.; Xie, A.; Qin, X.; Xu, B.; Wang, Y. Assessment of Antarctic Amplification Based on a Reconstruction of Near-Surface Air Temperature. Atmosphere 2023, 14, 218. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I. (Eds.) IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Yang, Y.Z.; Cai, W.H.; Yang, J. Evaluation of MODIS Land Surface Temperature Data to Estimate Near-Surface Air Temperature in Northeast China. Remote Sens. 2017, 9, 410. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zha, Y. Estimating monthly average temperature by remote sensing in China. Adv. Space Res. 2019, 63, 2345–2357. [Google Scholar] [CrossRef]
- Zhu, W.B.; Lu, A.F.; Jia, S.F. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens. Environ. 2013, 130, 62–73. [Google Scholar] [CrossRef]
- Reinart, A.; Reinhold, M. Mapping surface temperature in large lakes with MODIS data. Remote Sens. Environ. 2008, 112, 603–611. [Google Scholar] [CrossRef]
- Fréville, H.; Brun, E.; Picard, G.; Tatarinova, N.; Arnaud, L.; Lanconelli, C.; Reijmer, C.; van den Broeke, M. Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica. Cryosphere 2014, 8, 1623. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, X.; Ning, W.; Lazzara, M.A.; Ding, M.; Reijmer, C.H.; Smeets, P.C.J.P.; Grigioni, P.; Heil, P.; Thomas, E.R.; et al. The AntAWS dataset: A compilation of Antarctic automatic weather station observations. Earth Syst. Sci. Data 2023, 15, 411–429. [Google Scholar] [CrossRef]
- Hind, A.; Zhang, Q.; Brattstrom, G. Problems encountered when defining Arctic amplification as a ratio. Sci. Rep. 2016, 6, 30469. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, F.; Fan, T. Spatio-temporal variations of Arctic amplification and their linkage with the Arctic oscillation. Acta Oceanol. Sin. 2017, 36, 42–51. [Google Scholar] [CrossRef]
- Fang, M.; Li, X.; Chen, H.W.; Chen, D. Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales. Nat. Commun. 2022, 13, 1865. [Google Scholar] [CrossRef]
- Pietroni, I.; Argentini, S.; Petenko, I. One Year of Surface-Based Temperature Inversions at Dome C, Antarctica. Bound.-Layer Meteorol. 2014, 150, 131–151. [Google Scholar] [CrossRef] [Green Version]
- Parish, T.R.; Bromwich, D.H. Instrumented aircraft observations of the katabatic wind regime near Terra Nova Bay. Mon. Weather Rev. 1989, 117, 1570–1585. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Carrasco, J.F.; Stearns, C.R. Satellite observations of katabatic-wind propagation for great distances across the Ross Ice Shelf. Mon. Weather Rev. 1992, 120, 1940–1949. [Google Scholar] [CrossRef]
- Vihma, T.; Tuovinen, E.; Savijärvi, H. Interaction of katabatic winds and near-surface temperatures in the Antarctic. J. Geophys. Res. 2011, 116, D21119. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Dong, X.; Zeng, J.; Hou, S.G.; Smeets, P.C.J.P.; Reijmer, C.H.; Wang, Y.T. Spatiotemporal Reconstruction of Antarctic Near-Surface Air Temperature from MODIS Observations. J. Clim. 2022, 35, 5537–5553. [Google Scholar] [CrossRef]
- Turner, J.; Marshall, G.J.; Clem, K.; Colwell, S.; Phillips, T.; Lu, H. Antarctic temperature variability and change from station data. Int. J. Climatol. 2020, 40, 2986–3007. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, J.P.; Bromwich, D.H. New Reconstruction of Antarctic Near-Surface Temperatures: Multidecadal Trends and Reliability of Global Reanalyses. J. Clim. 2014, 27, 8070–8093. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Dai, H. Roles of Surface Albedo, Surface Temperature and Carbon Dioxide in the Seasonal Variation of Arctic Amplification. Geophys. Res. Lett. 2021, 48, e2020GL090301. [Google Scholar] [CrossRef]
- Singh, H.A.; Garuba, O.A.; Rasch, P.J. How Asymmetries Between Arctic and Antarctic Climate Sensitivity Are Modified by the Ocean. Geophys. Res. Lett. 2018, 45, 13031–13040. [Google Scholar] [CrossRef] [Green Version]
- Winton, M. Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett. 2006, 33, L03701. [Google Scholar] [CrossRef] [Green Version]
- Spielhagen, R.F.; Werner, K.; Sorensen, S.A.; Zamelczyk, K.; Kandiano, E.; Budeus, G.; Husum, K.; Marchitto, T.M.; Hald, M. Enhanced Modern Heat Transfer to the Arctic by Warm Atlantic Water. Science 2011, 331, 450–453. [Google Scholar] [CrossRef] [Green Version]
- Screen, J.A.; Deser, C.; Simmonds, I. Local and remote controls on observed Arctic warming. Geophys. Res. Lett. 2012, 39, L10709. [Google Scholar] [CrossRef] [Green Version]
MODIS | |||||
---|---|---|---|---|---|
Annual | SON | DJF | MAM | JJA | |
AIS | 1.41 | 1.37 | 1.27 | 1.36 | 1.53 |
EAIS | 1.58 | 1.66 | 1.45 | 1.49 | 1.61 |
WAIS | 1.12 | 0.85 | 0.92 | 1.16 | 1.42 |
AP | 0.12 | −0.79 | 0.12 | −0.05 | 0.47 |
ERA5 | |||||
AIS | 1.31 | 1.34 | 1.32 | 1.32 | 1.46 |
EAIS | 1.53 | 1.72 | 1.63 | 1.48 | 1.64 |
WAIS | 0.98 | 0.76 | 0.82 | 1.10 | 1.23 |
AP | −0.59 | −1.40 | −0.24 | −0.28 | −0.42 |
Daytime Observations | |||||
---|---|---|---|---|---|
Annual | SON | DJF | MAM | JJA | |
AIS | 1.35 | 1.31 | 1.31 | 1.33 | 1.52 |
EAIS | 1.51 | 1.56 | 1.47 | 1.47 | 1.59 |
WAIS | 1.09 | 0.86 | 1.00 | 1.10 | 1.42 |
AP | 0.12 | −0.61 | 0.18 | −0.03 | 0.37 |
nighttime observations | |||||
AIS | 1.44 | 1.43 | 1.32 | 1.39 | 1.55 |
EAIS | 1.62 | 1.76 | 1.54 | 1.51 | 1.63 |
WAIS | 1.13 | 0.83 | 0.90 | 1.20 | 1.43 |
AP | 0.11 | −0.94 | 0.06 | −0.08 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, A.; Zhu, J.; Qin, X.; Wang, S. The Antarctic Amplification Based on MODIS Land Surface Temperature and ERA5. Remote Sens. 2023, 15, 3540. https://doi.org/10.3390/rs15143540
Xie A, Zhu J, Qin X, Wang S. The Antarctic Amplification Based on MODIS Land Surface Temperature and ERA5. Remote Sensing. 2023; 15(14):3540. https://doi.org/10.3390/rs15143540
Chicago/Turabian StyleXie, Aihong, Jiangping Zhu, Xiang Qin, and Shimeng Wang. 2023. "The Antarctic Amplification Based on MODIS Land Surface Temperature and ERA5" Remote Sensing 15, no. 14: 3540. https://doi.org/10.3390/rs15143540
APA StyleXie, A., Zhu, J., Qin, X., & Wang, S. (2023). The Antarctic Amplification Based on MODIS Land Surface Temperature and ERA5. Remote Sensing, 15(14), 3540. https://doi.org/10.3390/rs15143540