Monitoring Mining-Induced Geo-Hazards in a Contaminated Mountainous Region of Indonesia Using Satellite Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Methodological Workflow
2.2. Study Area
2.3. Satellite Imagery and Data Processing
2.3.1. Sentinel-1 Series
2.3.2. PlanetScope Series
2.3.3. World Landcover Dataset
2.3.4. Climate Hazards Group InfraRed Precipitation with Station Dataset
2.4. Water Area Detection, Landcover Classification, and Accuracy Assessment
2.5. Potential Landslide Detection Using Plant Datasets
3. Results
3.1. Time-Series Flood Inundation Areas Using Multiple Satellite Datasets
3.2. Time-Series Landslide Areas Detection Using Plant CubeSat Datasets
3.3. Time-Series Precipitation Trend
4. Discussion
4.1. Time-Series Analysis of Multiple Mining-Enhanced Geo-hazards Combining Multiple Data
4.2. Potential Impacts of Multiple Mining-Enhanced Geo-Hazards in Contaminated Regions
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Geological Survey. Landslide Types and Processes. 2004. Available online: https://pubs.usgs.gov/fs/2004/3072/fs-2004-3072.html (accessed on 1 June 2023).
- Yang, Y.-Y.; Xu, Y.-S.; Shen, S.-L.; Yuan, Y.; Yin, Z.-Y. Mining-induced geo-hazards with environmental protection measures in Yunnan, China: An overview. Bull. Eng. Geol. Environ. 2015, 74, 141–150. [Google Scholar] [CrossRef]
- Kimijima, S.; Nagai, M. High Spatiotemporal Flood Monitoring Associated with Rapid Lake Shrinkage Using Planet Smallsat and Sentinel-1 Data. Remote Sens. 2023, 15, 1099. [Google Scholar] [CrossRef]
- Casagli, N.; Intrieri, E.; Tofani, V.; Gigli, G.; Raspini, F. Landslide detection, monitoring and prediction with remote-sensing techniques. Nat. Rev. Earth Environ. 2023, 4, 51–64. [Google Scholar] [CrossRef]
- Jiao, R.; Wang, S.; Yang, H.; Guo, X.; Han, J.; Pei, X.; Yan, C. Comprehensive Remote Sensing Technology for Monitoring Landslide Hazards and Disaster Chain in the Xishan Mining Area of Beijing. Remote Sens. 2022, 14, 4695. [Google Scholar] [CrossRef]
- Shao, L. Geological disaster prevention and control and resource protection in mineral resource exploitation region. Int. J. Low-Carbon Technol. 2019, 14, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi, V. Remote Sensing of Hydrological Extremes; Springer Remote Sensing/Photogrammetry: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- The UN Office for Disaster Risk Reduction. Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019); The UN Office for Disaster Risk Reduction: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Young, S.; Balluz, L.; Malilay, J. Natural and technologic hazardous material releases during and after natural disasters: A review. Sci. Total. Environ. 2004, 322, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Kimijima, S.; Nagai, M.; Sakakibara, M. Distribution of Enhanced Potentially Toxic Element Contaminations Due to Natural and Coexisting Gold Mining Activities Using Planet Smallsat Constellations. Remote Sens. 2023, 15, 861. [Google Scholar] [CrossRef]
- May, C.; Roering, J.; Eaton, L.; Burnett, K. Controls on valley width in mountainous landscapes: The role of landsliding and implications for salmonid habitat. Geology 2013, 41, 503–506. [Google Scholar] [CrossRef]
- Bekaert, D.P.; Handwerger, A.L.; Agram, P.; Kirschbaum, D.B. InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal. Remote Sens. Environ. 2020, 249, 111983. [Google Scholar] [CrossRef]
- Caretta, M.A.; Fernandez, R.; Zegre, N.; Shinn, J. Flooding Hazard and Vulnerability. An Interdisciplinary Experimental Approach for the Study of the 2016 West Virginia Floods. Front. Water 2021, 3, 60. [Google Scholar] [CrossRef]
- Zégre, N.P.; Maxwell, A.; Lamont, S. Characterizing streamflow response of a mountaintop-mined watershed to changing land use. Appl. Geogr. 2013, 39, 5–15. [Google Scholar] [CrossRef]
- Inside Climate News. Appalachia’s Strip-Mined Mountains Face a Growing Climate Risk: Flooding. 2019. Available online: https://insideclimatenews.org/news/21112019/appalachia-mountains-flood-risk-climate-change-coal-mining-west-virginia-extreme-rainfall-runoff-analysis/ (accessed on 1 June 2023).
- Deutsche Welle. Deforestation Causing Flash Floods in Papua; Deutsche Welle: Bonn, Germany, 2019. [Google Scholar]
- World Gold Council. Gold Prices. 2021. Available online: https://www.gold.org/goldhub (accessed on 1 June 2023).
- Gafur, N.A.; Sakakibara, M.; Komatsu, S.; Sano, S.; Sera, K. Environmental Survey of the Distribution and Metal Contents of Pteris vittata in Arsenic–Lead–Mercury-Contaminated Gold Mining Areas along the Bone River in Gorontalo Province, Indonesia. Int. J. Environ. Res. Public Health 2022, 19, 530. [Google Scholar] [CrossRef]
- Kimijima, S.; Sakakibara, M.; Nagai, M.; Gafur, N.A. Time-Series Assessment of Camp-Type Artisanal and Small-Scale Gold Mining Sectors with Large Influxes of Miners Using LANDSAT Imagery. Int. J. Environ. Res. Public Health 2021, 18, 9441. [Google Scholar] [CrossRef]
- Kimijima, S.; Sakakibara, M.; Nagai, M. Detection of Artisanal and Small-Scale Gold Mining Activities and Their Transformation Using Earth Observation, Nighttime Light, and Precipitation Data. Int. J. Environ. Res. Public Health 2021, 18, 10954. [Google Scholar] [CrossRef]
- Kimijima, S.; Nagai, M.; Sakakibara, M. Monitoring Coexisting Rapid Small-Scale and Large-Scale Gold Mining Developments Using Planet Smallsats Constellations. Mining 2022, 2, 566–577. [Google Scholar] [CrossRef]
- Gafur, N.A.; Sakakibara, M.; Sano, S.; Sera, K. A case study of heavy metal pollution in water of Bone river by ASGM activities in Eastern part of Gorontalo, Indonesia. Water 2018, 10, 1507. [Google Scholar] [CrossRef] [Green Version]
- Basir; Kimijima, S.; Sakakibara, M.; Pateda, S.M.; Sera, K. Contamination Level in Geo-Accumulation Index of River Sediments at Artisanal and Small-Scale Gold Mining Area in Gorontalo Province, Indonesia. Int. J. Environ. Res. Public Health 2022, 19, 6094. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality. 2022. Available online: https://apps.who.int/iris/bitstream/handle/10665/352532/9789240045064-eng.pdf?sequence=1&isAllowed=y#page=29 (accessed on 1 June 2023).
- U.S. Environmental Protection Agency. Clean Water Act: Section 503; U.S. Environmental Protection Agency: Washington, DC, USA, 1993.
- Palapa, T.M.; Maramis, A.A. Heavy Metals in Water of Stream Near an Amalgamation Tailing Ponds in Talawaan—Tatelu Gold Mining, North Sulawesi, Indonesia. Procedia Chem. 2015, 14, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Persaud, D.; Jaagumagi, R.; Hayton, A. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario; Ministry of Environment and Energy: Toronto, ON, Canada, 1993. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. The Incidence and Severity of Sediment Contamination in Surface Waters of the United States, Volume 1—National Sediment Quality Survey; U.S. Environmental Protection Agency: Washington, DC, USA, 1997.
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Ontario Ministry of Environment Conservation and Parks. Rules for Soil Management and Excess Soil Quality Standards; Ontario Ministry of Environment Conservation and Parks: Toronto, ON, Canada, 2020. [Google Scholar]
- Kimijima, S.; Sakakibara, M.; Nagai, M. Characterizing Time-Series Roving Artisanal and Small-Scale Gold Mining Activities in Indonesia Using Sentinel-1 Data. Int. J. Environ. Res. Public Health 2022, 19, 6266. [Google Scholar] [CrossRef] [PubMed]
- Kimijima, S.; Sakakibara, M.; Nagai, M. Investigation of Long-Term Roving Artisanal and Small-Scale Gold Mining Activities Using Time-Series Sentinel-1 and Global Surface Water Datasets. Int. J. Environ. Res. Public Health 2022, 19, 5530. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Guo, H.; Chen, Y.; Lin, Q.; Li, H. Application of remote sensing for investigating mining geological hazards. Int. J. Digit. Earth 2013, 6, 449–468. [Google Scholar] [CrossRef]
- Yi, Z.; Liu, M.; Liu, X.; Wang, Y.; Wu, L.; Wang, Z.; Zhu, L. Long-term Landsat monitoring of mining subsidence based on spatiotemporal variations in soil moisture: A case study of Shanxi Province, China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102447. [Google Scholar] [CrossRef]
- Satellite Imaging Corporation. Satellite Sensors. 2023. Available online: https://www.satimagingcorp.com/satellite-sensors/ (accessed on 1 June 2023).
- Xu, X.; Ma, C.; Lian, D.; Zhao, D. Inversion and Analysis of Mining Subsidence by Integrating DInSAR, Offset Tracking, and PIM Technology. J. Sens. 2020, 2020, 4136837. [Google Scholar] [CrossRef]
- Ma, C.; Cheng, X.; Yang, Y.; Zhang, X.; Guo, Z.; Zou, Y. Investigation on Mining Subsidence Based on Multi-Temporal InSAR and Time-Series Analysis of the Small Baseline Subset—Case Study of Working Faces 22201-1/2 in Bu’ertai Mine, Shendong Coalfield, China. Remote Sens. 2016, 8, 951. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Shao, Y.; Liu, Z.; Riedel, B.; Sowter, A.; Niemeier, W.; Bian, Z. Evaluation of InSAR and TomoSAR for Monitoring Deformations Caused by Mining in a Mountainous Area with High Resolution Satellite-Based SAR. Remote Sens. 2014, 6, 1476–1495. [Google Scholar] [CrossRef] [Green Version]
- Remote Sensing Technology Center of Japan. Satellite Information Database. 2023. Available online: https://www.restec.or.jp/en/index.html (accessed on 1 June 2023).
- Sousa, J.J.; Liu, G.; Fan, J.; Perski, Z.; Steger, S.; Bai, S.; Wei, L.; Salvi, S.; Wang, Q.; Tu, J.; et al. Geohazards Monitoring and Assessment Using Multi-Source Earth Observation Techniques. Remote Sens. 2021, 13, 4269. [Google Scholar] [CrossRef]
- Ma, D.; Zhao, S. Quantitative Analysis of Land Subsidence and Its Effect on Vegetation in Xishan Coalfield of Shanxi Province. ISPRS Int. J. Geo-Inf. 2022, 11, 154. [Google Scholar] [CrossRef]
- Psomiadis, E.; Diakakis, M.; Soulis, K.X. Combining SAR and Optical Earth Observation with Hydraulic Simulation for Flood Mapping and Impact Assessment. Remote Sens. 2020, 12, 3980. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, S. Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 103010. [Google Scholar] [CrossRef]
- Kimijima, S.; Nagai, M.; Sakakibara, M.; Jahja, M. Investigation of Cultural–Environmental Relationships for an Alternative Environmental Management Approach Using Planet Smallsat Constellations and Questionnaire Datasets. Remote Sens. 2022, 14, 4249. [Google Scholar] [CrossRef]
- The National Aeronautics and Space Administration. What Is Synthetic Aperture Radar? The National Aeronautics and Space Administration: Washington, DC, USA, 2022. [Google Scholar]
- Ireland, G.; Volpi, M.; Petropoulos, G.P. Examining the Capability of Supervised Machine Learning Classifiers in Extracting Flooded Areas from Landsat TM Imagery: A Case Study from a Mediterranean Flood. Remote Sens. 2015, 7, 3372–3399. [Google Scholar] [CrossRef] [Green Version]
- Long, S.; Fatoyinbo, T.; Policelli, F. Flood extent mapping for Namibia using change detection and thresholding with SAR. Environ. Res. Lett. 2014, 9, 035002. [Google Scholar] [CrossRef]
- Lei, T.; Wang, J.; Li, X.; Wang, W.; Shao, C.; Liu, B. Flood Disaster Monitoring and Emergency Assessment Based on Multi-Source Remote Sensing Observations. Water 2022, 14, 2207. [Google Scholar] [CrossRef]
- Ahamed, A.; Bolten, J.; Doyle, C.; Fayne, J. Near Real-Time Flood Monitoring and Impact Assessment Systems; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Planet Labs. PlanetScope. 2022. Available online: https://developers.planet.com/docs/data/planetscope/#:~:text=lastupdated%3AJune01%2C2022,200millionkm2%2Fday (accessed on 1 June 2023).
- Japan International Cooperation Agency. Summary: The Study on Flood Control and Water Management in Limboto-Bolango-Bone Basin; Final Report Volume-II Main Report; Japan International Cooperation Agency: Tokyo, Japan, 2002. [Google Scholar]
- ASEAN Disaster Information Network. SEARCH. 2022. Available online: https://adinet.ahacentre.org/ (accessed on 1 June 2023).
- Kimijima, S.; Sakakibara, M.; Amin, A.K.M.A.; Nagai, M.; Arifin, Y.I. Mechanism of the rapid shrinkage of limboto lake in Gorontalo, Indonesia. Sustainability 2020, 12, 9598. [Google Scholar] [CrossRef]
- ASEAN Disaster Information Network. Indonesia, Flooding and Landslide in Bone Bolango Regency, Gorontalo Province. 2020. Available online: https://adinet.ahacentre.org/report/indonesia-flooding-and-landslide-in-bone-bolango-regency-gorontalo-province-20200804 (accessed on 1 June 2023).
- ZONAUTARA.com. Floods and Landslides Ravaged Bone Bolango Regency. 2020. Available online: https://zonautara.com/2020/09/10/banjir-dan-tanah-longsor-porak-porandakan-kabupaten-bone-bolango/ (accessed on 1 June 2023).
- Research Institute for Humanity and Nature. Let’s Explore RIHN: Gorontalo, Indonesia. 2020. Available online: https://www.chikyu.ac.jp/minna/nozoite/2020/bouken_no6.html (accessed on 1 June 2023).
- Planet Labs. Planet Explore. 2022. Available online: https://www.planet.com/expl (accessed on 1 June 2023).
- Planet Labs. Daily Earth Data to See Change and Make Better Decisions. Available online: https://www.planet.com/ (accessed on 1 June 2023).
- European Space Agency. Worldwide Land Cover Mapping. 2022. Available online: https://esa-worldcover.org/en (accessed on 1 June 2023).
- Zeng, Z.; Gan, Y.; Kettner, A.J.; Yang, Q.; Zeng, C.; Brakenridge, G.R.; Hong, Y. Towards high resolution flood monitoring: An integrated methodology using passive microwave brightness temperatures and Sentinel synthetic aperture radar imagery. J. Hydrol. 2020, 582, 124377. [Google Scholar] [CrossRef]
- Huang, L.-K.; Wang, M.-J.J. Image thresholding by minimizing the measures of fuzziness. Pattern Recognit. 1995, 28, 41–51. [Google Scholar] [CrossRef]
- Prewitt, J.M.S.; Mendelsohn, M.L. The Analysis of Cell Images. Ann. New York Acad. Sci. 2006, 128, 1035–1053. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Doyle, W. Operations Useful for Similarity-Invariant Pattern Recognition. J. ACM 1962, 9, 259–267. [Google Scholar] [CrossRef]
- Shanbhag, A. Utilization of Information Measure as a Means of Image Thresholding. CVGIP Graph. Model. Image Process. 1994, 56, 414–419. [Google Scholar] [CrossRef]
- Zack, G.W.; Rogers, W.E.; Latt, S.A. Automatic measurement of sister chromatid exchange frequency. J. Histochem. Cytochem. 1977, 25, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Yen, J.-C.; Chang, F.-J.; Chang, S. A new criterion for automatic multilevel thresholding. IEEE Trans. Image Process. 1995, 4, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Ridler, T.W.; Calvard, S. Picture Thresholding Using an Iterative Selection Method. IEEE Trans. Syst. Man Cybern. 1978, 8, 630–632. [Google Scholar] [CrossRef]
- Li, C.H.; Lee, C.K. Minimum cross entropy thresholding. Pattern Recognit. 1993, 26, 617–625. [Google Scholar] [CrossRef]
- Li, C.; Tam, P. An iterative algorithm for minimum cross entropy thresholding. Pattern Recognit. Lett. 1998, 19, 771–776. [Google Scholar] [CrossRef]
- Sankur, B.; Sezgin, M. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146–168. [Google Scholar] [CrossRef]
- Kapur, J.N.; Sahoo, P.K.; Wong, A.K.C. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 1985, 29, 273–285. [Google Scholar] [CrossRef]
- Glasbey, C. An Analysis of Histogram-Based Thresholding Algorithms. Graph. Model. Image Process. 1993, 55, 532–537. [Google Scholar] [CrossRef]
- Kittler, J.; Illingworth, J. Minimum error thresholding. Pattern Recognit. 1986, 19, 41–47. [Google Scholar] [CrossRef]
- Tsai, W.-H. Moment-preserving thresolding: A new approach. Comput. Vis. Graph. Image Process. 1985, 29, 377–393. [Google Scholar] [CrossRef]
- KONTAN. Gorontalo Minerals Immediately Implements Gold Mine Development. 2022. Available online: https://industri.kontan.co.id/news/gorontalo-minerals-segera-melaksanakan-pengembangan-tambang-emas (accessed on 7 July 2022).
- Edelstein, M.; Ben-Hur, M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 2018, 234, 431–444. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Adamo, P.; Arienzo, M.; Imperato, M.; Naimo, D.; Nardi, G.; Stanzione, D. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere 2005, 61, 800–809. [Google Scholar] [CrossRef] [PubMed]
Instrument (Sensor) | Acquisition Date | Spatial Res. (m) | Temporal Res. (Days) | Operational Mode and Pass (Polarization) | Space Agency |
---|---|---|---|---|---|
Sentinel-1 | 3 June 2020 | 10 | 12 | Interferometric Wide | ESA |
(C-SAR) | 2, 14, 26 August 2020 | swath mode | |||
7, 19 September 2020 | Descending | ||||
1, 13, 25 October 2020 | (vertical-horizontal) | ||||
Orbit Number (61) | |||||
Planet CubeSat | 5, 17 June 2020 | 3 | 1 | Planet | |
(Dove Classic) | 21 August 2020 | Scope | |||
21 September 2020 | |||||
9 October 2020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimijima, S.; Nagai, M. Monitoring Mining-Induced Geo-Hazards in a Contaminated Mountainous Region of Indonesia Using Satellite Imagery. Remote Sens. 2023, 15, 3436. https://doi.org/10.3390/rs15133436
Kimijima S, Nagai M. Monitoring Mining-Induced Geo-Hazards in a Contaminated Mountainous Region of Indonesia Using Satellite Imagery. Remote Sensing. 2023; 15(13):3436. https://doi.org/10.3390/rs15133436
Chicago/Turabian StyleKimijima, Satomi, and Masahiko Nagai. 2023. "Monitoring Mining-Induced Geo-Hazards in a Contaminated Mountainous Region of Indonesia Using Satellite Imagery" Remote Sensing 15, no. 13: 3436. https://doi.org/10.3390/rs15133436
APA StyleKimijima, S., & Nagai, M. (2023). Monitoring Mining-Induced Geo-Hazards in a Contaminated Mountainous Region of Indonesia Using Satellite Imagery. Remote Sensing, 15(13), 3436. https://doi.org/10.3390/rs15133436