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Abstract: Mining-induced or enhanced geo-hazards (MGHs) pose significant risks in rural mountain-
ous regions with underground mining operations by harming groundwater layers, water circulation
systems, and mountain stability. MGHs occurring in naturally contaminated environments can
severely amplify socio-environmental risks. A high correlation was found among undermining
development, precipitation, and hazards; however, details of MGHs have yet to be adequately char-
acterized. This study investigated multiple mining-induced/enhanced geo-hazards in a naturally
contaminated mountain region in Bone Bolango Regency, Gorontalo Province, Indonesia, in 2020,
where a rapidly developing coexisting mining sector was present. We utilized PlanetScope’s CubeSat
constellations and Sentinel-1 dataset to assess the volume, distribution, pace, and pattern of MGHs.
The findings reveal that severe landslides and floods accelerated the mobilization of potentially toxic
elements (PTEs) via the river water system, thus considerably exacerbating socio-environmental risks.
These results indicate potential dangers of enhanced PTE contamination for marine ecosystems and
humans at a regional level. The study design and data used facilitated a comprehensive assessment of
the MGHs and associated risks, providing important information for decision-makers and stakehold-
ers. However, limitations in the methodology should be considered when interpreting the findings.
The societal benefits of this study include informing policies and practices that aim to mitigate the
negative impacts of mining activities on the environment and society at the local and regional levels.

Keywords: floods; high-spatiotemporal monitoring; landslides; mining-induced geo-hazards;
natural contamination; potentially toxic elements; rural mountainous regions; satellite imagery;
socio-environmental risks

1. Introduction

Geological, morphological, climate, human activities, or a combination of these factors
increase or enhance the vulnerability and frequency of geo-hazards [1–4] by altering the
capacity of ecosystems around the world [5,6]. These geo-hazards pose considerable
threats, leading to human casualties, displacement, loss of livelihoods, infrastructural
damage, and agricultural losses [7,8]. Geo-hazards can act as substantial mechanisms for
releasing and distributing potentially toxic elements (PTEs) [9]. In regions with severe and
harmful underground mining activities in naturally high-PTE environments, geo-hazards
would magnify socio-environmental risks by facilitating transport and transformation,
thereby enhancing the accumulation of PTEs [10]. Therefore, to better characterize the geo-
hazards details and impacts (e.g., locations, distribution, volumes, frequency, and tendency),
explore the relationship between geo-hazards and associated factors, and estimate socio-
environmental risks, it is vital to develop effective spatiotemporal monitoring methods to
support the development of sustainable strategies for ecological and human health.

Mining-induced or enhanced geo-hazards (MGHs) pose significant risks in rural moun-
tainous regions with underground mining operations. These hazards include subsidence,
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slope deformations, landslides, mud-rock flows, and floods. They harm groundwater
layers, water circulation systems, and mountain stability [1–4]. These MGHs contribute
to erosion, affecting downstream aquatic habitats [11]. However, due to the complex
geographic settings and strong concealment, these hazards often go unnoticed [2,5,12].
Simultaneously, activities alter the distribution of precipitation, leading to changes in
runoff, storage, and evaporation patterns [13]. This alteration increases the risk of floods.
Mountaintop mining areas have reported high-risk geo-hazards, including heavy runoff
and flash flooding [14–16]. Furthermore, global changes such as increases in precipita-
tion magnitude [4] and fluctuations in the international gold price [17] could exacerbate
these MGHs.

MGHs occurring in naturally contaminated environments can severely amplify socio-
environmental risks. In the mountainous region of Bone Bolango, Indonesia, natural
resources such as soil and water are contaminated with arsenic and lead due to the parent
rock weathering system of igneous rocks, including volcanic and metamorphic rocks [18].
The coexisting mining sector, comprising large-scale mining (LSM) and artisanal and
small-scale gold mining (ASGM), has rapidly expanded in rural mountain areas, driven by
increases in the local gold price [19,20]. The ASGM sector excavates underground deposits
and opens lands [10,21]. Notable PTEs such as mercury and cyanide are released from the
ASGM sector, exacerbating soil and water resource contamination [18,19]. Previous studies
have reported exceptionally high concentrations of arsenic, mercury, and lead in plants [22],
sediments [22,23], soil [18], and water [22], exceeding regulatory limits [10,24–30]. The
occurrence of MGHs in such geological environments is expected to significantly enhance
the flows and accumulation of PTE contamination in water and soil. Hence, there is an
urgent need for extensive spatiotemporal analyses to comprehensively understand the
impacts of these hazards and the associated risks.

Remote sensing technology has emerged as an essential tool for swiftly and efficiently
addressing MGH and disaster areas, including hazardous, inaccessible, and challenging
terrains. It achieves this by systematically, synoptically, and cost-effectively capturing the
Earth’s ground surface at various scales [4,10,19–21,31,32]. Multiple satellites with various
spatiotemporal resolutions were used for MGH research, comprising multispectral satellite
sensors, which include GeoEye1 (~1.84 m, ~8.3 days), Landsat (~30 m, 16 days), Quickbird
(~2.62 m, ~3.5 days), Worldview-2 (~1.84 m, ~3.7 days), Pleiades (~2 m, daily) [5,33–35],
synthetic aperture radar (SAR) satellite sensors [e.g., ALOS-2 (PALSAR, L-SAR, ~10 m
(excluding wide mode), 14 days), COSMO-SkyMed (X-SAR, ~15 m, 16 days), ENVISAT
(ASAR, C-SAR, ~30 m, 35 days), RadarSat-2 (C-SAR, ~40 m, 24 days), Sentinel-1 (S-1)
(C-SAR, ~20 m, 12 days), TerraSAR-X (X-SAR, ~40 m, 11 days)] [36–39], or a combination of
these [5,40,41]. The multispectral satellite platforms hosting passive sensor systems provide
unique data on the ground surface. They have exceptionally high spatial, spectral, and
temporal resolution [42], precise and quick retrieval capacity [43], and longer operative
ranges. Therefore, they have been primarily utilized for detecting landslides and subsi-
dence that have already occurred [33,34]. Furthermore, regions with heavy cloud coverage
or tropical climates may pose a challenge for this type of sensor [4,19–21,31,32,44]. Whereas
the SAR satellite platforms hosting active sensor systems with microwave domain bands
acquire the surface’s backscattered intensity using cloud-penetrating properties [45], thus
overcoming the passive sensors’ meteorological challenges. SAR is primarily used for de-
tecting and monitoring slow-moving landslides employing techniques like InSAR [5,38,40],
differential interferometric SAR (DInSAR) [36–38], and multitemporal interferometric
SAR (MTInSAR) [5,37,38,40,41]. Similarly, they are used for flood detection and monito-
ring [3,43,46–48]. Despite SAR techniques’ advances, InSAR-based technology is espe-
cially suitable for large-scale geo-hazard detection with high surface coherence and mod-
erate deformation rates [5]. Limited research has been conducted on multiple MGHs
in regions characterized by rapid and extensive underground mining in naturally high-
PTE environments.
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At our research sites in regions with high-PTE contamination, MGHs occurred at
high frequencies within and around mining areas, typically at small scales and with high
densities. The rapid development of mining activities is strongly linked to massive flash
floods [10]. A high correlation was found between undermining development, precipitation,
and hazards [10]. However, rural geographic settings pose challenges for conducting
sufficient impact assessments and monitoring. As previously discussed, the performance
of remote sensing technology depends on technical parameters such as sensor type and
spatiotemporal and radiometric resolutions. No single observation technique can be solely
relied upon for timely MGH investigation in all fields [4,48,49]. Hence, selecting the most
appropriate instrument depends on the targeted geo-hazard type, velocity, volume, and
size. In this regard, we propose the use of high-spatiotemporal multispectral observation,
such as PlanetScope’s (PS) CubeSat constellations (3 m, daily) comprising multiple satellite
groups [50], together with SAR-based information, to identify the detailed characteristics of
MGHs over time. Consequently, instead of monitoring a single MGH, our study primarily
investigates the multiple MGHs (landslides and floods) in a time-series in Bone Bolango
Regency, Gorontalo Province, Indonesia. Our specific objectives were to (1) characterize
detailed flood impacts using a combination of the S-1 and PS series and (2) characterize the
potential landslides using the PS and the World-Cover 2020 (WC2020) datasets.

Here, the novelty of our study includes the development of a novel spatiotemporal
MGHs monitoring system in rapid and extensive underground mining in naturally high-
PTE environments using a combination of multiple sensors and data sources.

2. Materials and Methods
2.1. Overall Methodological Workflow

Figure 1 shows the methodological workflow used in this study, organized into
three main steps to achieve its primary objective of investigating multiple hazards in a
naturally contaminated region. First, flood-induced impacts along the mid-lower Bone
River were analyzed using a combination of the S-1 and PS datasets. The unsupervised
image thresholding methodologies and supervised classification were applied to the S-1
and PS series. Second, the barren area was detected using the PS series with the supervised
classification method and the WC2020 dataset. Third, newly occurring potential landslide
areas were detected and characterized through time-series analysis by differentiating the
results from Step 2. The methods used in each step are described in the subsequent sections.

2.2. Study Area

The study area is located in the lower to middle part of the Bone River and its southern
mountainous regions within Bone Bolango Regency, Indonesia (Figure 2). This area is
particularly vulnerable to environmental degradation and threats to human health due
to natural and underground mining activities involving PTEs. The Gorontalo Minerals
project (a joint venture of LSM) and ASGM are also located in the southern part of the Bone
River. In ASGM deposits, including Mohutango, Motomboto West, Motomboto East, and
Tulabolo, mercury and cyanide are used in gold extraction [18,19] (Figure 3).
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Figure 1. Overall methodological workflow. Numbers correspond to specific objectives: (1) character-
ize detailed flood impacts using a combination of the Sentinel-1 and Planet series; (2) characterize the
potential landslides using the Planet and the World-Cover 2020 datasets.

Mining	deposite
GM	Consession	block
River
Study	area	(Flood)
Study	area	(Landslide)

Legend

East

West

(1)

(2)

Figure 2. Study area: (1) regional overview, (2) a median Sentinel-2 imagery from January to
December 2020 (cloud coverage < 30, RGB: 843). The study area in the top panel corresponds to the
flood assessment caused in August 2020. Study areas in the lower panels (East and West) correspond
to potential landslide assessment.
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Disasters, such as floods, riverbank erosion, river sedimentation, and landslides,
are typical in this area [51–53]. This study targets the Bone River flood, peaking on
1 August 2020, due to the high-intensity precipitation, which influenced several subdistricts,
affected approximately 2500 people, damaged a 1250 m embankment with a maximum
flood depth of 2 m, and caused landslides [54]. Other landslides were reported in the
river’s southern district on 7 September 2020 [55].

We refer to our direct field measurements previously conducted at the Motomboto
sites in 2020 [19,20,23].

Figure 3. AGSM activities in the Motomboto deposits in the concession Block I. (a) Small ball
mills [56]; (b) pool of water mixed with hydrogen peroxide; and (c) pool of mercury mixed with
cyanide for immersing materials [19].

2.3. Satellite Imagery and Data Processing
2.3.1. Sentinel-1 Series

The S-1 C-band SAR level-1 grand range detected datasets (interferometric wide-swath
mode, descending, vertical-horizontal polarization) acquired from August to October 2020
were used to extract water extents. By referring to the Climate Hazards Group InfraRed
Precipitation with Station (CHIRPS) data, the S-1 image acquired on 3 June 2020 was used
as a pre-flood stage. Speckle filtering, terrain correction, and the conversion of the intensity
value to σ0, were applied for image processing.

2.3.2. PlanetScope Series

PS’s Dove Classic (hereafter referred to as Planet) surface reflectance products (Ortho
Scene–Analytic Level 3B) [57] from June to October 2020 were used to investigate the
detailed flood impacts and potential landslide areas. The image acquisition time is based
on the image availability during the study period. Although PS’s Dove-R and SuperDove
have been operating since March 2019 and March 2020, respectively, only Planet imagery was
available based on PS’s operational priorities [58]. After applying a cloud-masking function,
the normalized difference vegetation index (NDVI) was generated using Equation (1). The
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NDVI index and the elevation and slope data from the Advanced Land Observing Satellite
World 3D-30 m were added to each composite to increase the image classification quality.
Subsequently, the data were normalized, ranging from 0 to 1.

NDVI = (NIR − Red)/(NIR + Red) (1)

2.3.3. World Landcover Dataset

The European Space Agency (ESA) provided a WC2020 map with a 10 m ground
resolution, which was generated by the S-1 and Sentinel-2 datasets [59]. The non-built-up
and -tree classes and the non-tree and -grassland classes were extracted from the WC2020
product, respectively, for masking results generated from Section 2.4.

2.3.4. Climate Hazards Group InfraRed Precipitation with Station Dataset

Using the CHIRPS data, the time-series precipitation of the study area was simultane-
ously assessed for vulnerability to flood and landslide hazards. The precipitation trends
were also statistically evaluated using the nonparametric Mann–Kendall test with a 95%
confidence level of significance, followed by Sen’s slope test if any trend existed.

The S-1, CHIRPS, Planet, and WC2020 datasets were processed through Google Earth
Engine; thereby, nine S-1 and five Planet images were generated. Table 1 summarizes the
main specifications of the imagery and sensors used in this study.

Table 1. Specifications of satellite imagery.

Instrument
(Sensor) Acquisition Date Spatial Res.

(m)
Temporal Res.

(Days)
Operational Mode and

Pass (Polarization)
Space

Agency

Sentinel-1 3 June 2020 10 12 Interferometric Wide ESA
(C-SAR) 2, 14, 26 August 2020 swath mode

7, 19 September 2020 Descending
1, 13, 25 October 2020 (vertical-horizontal)

Orbit Number (61)

Planet CubeSat 5, 17 June 2020 3 1 Planet
(Dove Classic) 21 August 2020 Scope

21 September 2020
9 October 2020

2.4. Water Area Detection, Landcover Classification, and Accuracy Assessment

Although various SAR-based techniques for flood detection were used, threshold-
based methods are commonly applied in unsupervised classification due to their sim-
plicity and flexibility [60]. For the S-1 datasets generated from Section 2.3.1, we applied
16 different automatic thresholding algorithms [61–75] to create water and non-water binary
images using an open-source Java image processing package, Fiji (version 2.1.0) software
(https://imagej.net/software/fiji/: accessed on 1 May 2023). After applying the best
separability thresholding values by image, post-classification was applied.

A supervised classification was applied to the Planet results generated from
Section 2.3.2 for the time-series landcover transformation analysis. Landcover classes were
categorized as agriculture/barren, built-up, vegetation, water, and river sand. The ground
control points were determined at the pixel level. A simple random forest classifier with
50 decision trees, a machine learning method, was used. Overall accuracy was employed
to evaluate the accuracy of the produced maps.

The resulting water from the S-1 and Planet series and barren areas from the Planet
series were then separately masked by the results generated from Section 2.3.3. Sub-
sequently, the 3 June 2020 (S-1) result was validated using the Planet imagery from
5 June 2020. One hundred points were randomly selected from the S-1 imagery and
overlayed with the Planet result. After that, this accuracy level was applied to all S-1
results due to the unavailability of data captured on the same date. For the Planet series,
the overall accuracy (OA) from confusion matrices was used to assess the accuracy of the

https://imagej.net/software/fiji/
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produced map by comparing the predicted and actual values. Based on the imagery, >85%
of OA was targeted both for the S-1 and Planet datasets.

The ground control point, classifier, post-classification, accuracy assessment, and
masking results were implemented in Google Earth Engine. The total water and landslide
extents were calculated and visualized.

2.5. Potential Landslide Detection Using Plant Datasets

Based on the result generated in Section 2.4, symmetrical differences in the barren
extent between a two time period, (1) 5 or 17 June to 21 August 2020, (2) 21 August to
21 September 2020, and (3) 21 September to 9 October 2020, were computed, and highlighted
areas were visualized. Moreover, remarkable areas were also visualized in 3D using the
Quantum Geographic Information System.

3. Results
3.1. Time-Series Flood Inundation Areas Using Multiple Satellite Datasets

Based on the validation, the IJ_Isodata algorithm showed the best locally sensitive
algorithm (−15.29, 3 June 2020) in this study, achieving 86.0% accuracy. Subsequently,
image-specific thresholding values for water extraction using the S-1 datasets were −16.17
(2 August 2020), −17.10 (14 August 2020), −16.66 (26 August 2020), −16.38 (7 September
2020), −15.95 (19 September 2020), −15.81 (1 October 2020), −15.73 (13 October 2020), and
−15.88 (25 October 2020). Figure 4 demonstrates the time-series water extents resulting
from Section 2.4. The water extent observed on 3 June 2020 was 3.1 km2 (Figure 4a). As
described in Section 2.2, the overflow peaked on 1 August 2020 due to the high-intensity
precipitation [54]. A peak change was significantly observed on 2 and 14 August 2020
(4.1 km2, Figure 4b,c) by expanding river extents, followed by 26 August 2020 (3.7 km2,
Figure 4d), and 7 September 2020 (3.8 km2, Figure 4e). The increased water extent was
again observed on 19 September and 1 October 2020 (4.2 km2, Figure 4f,g), 13 October 2020
(4.3 km2, Figure 4h), and 25 October 2020 (4.7 km2, Figure 4i). Even though the flood peak
image was unavailable from S-1, the water expansion showed 131.8% between 3 June and
2 August 2020. High precipitation >15 mm was observed on 6 October (16.7 mm), 14 October
(27.7 mm), and 15 October (27.6 mm). Small pixels in the northern river corresponded to
the cropland (Figure 4a–i).

Landcover maps’ overall accuracies generated from the Planet datasets were 87.8%
(5 June 2020), 88.0% (17 June 2020), 86.7% (21 August 2020), 93.1% (23 August 2020),
86.4% (21 September 2020), 91.7% (9 October 2020), and 87.5% (22 October 2020). Figure 5
demonstrates the detailed flood-induced changes from 3 June to 23 August 2020, using
the S-1 and Planet datasets. The flood expanded the river’s extent, causing changes in the
river course and landcover. The Planet images demonstrated significant agricultural land
removals between 5 or 17 June and 23 August 2020 [Figure 5(Ae,f,Be,f,Ce,f)]. The river
course change was significant in the meandering area [Figure 5(Be,f)].

3.2. Time-Series Landslide Areas Detection Using Plant CubeSat Datasets

Figure 6 demonstrates the time-series landcover transformations of the east and west
areas from 5 June 2017 to 9 October 2020. In the west area, the barren extent observed on
17 June 2020 was 0.92 km2 (Figure 6a). It decreased to 0.56 km2 on 21 August 2020
(Figure 6b). A peak change was significantly observed on 21 September 2020 (1.83 km2)
(Figure 6c), followed by 0.95 km2 on 9 October 2020 (Figure 6d). Those in the east area were
2.86 km2 (5 June 2020, Figure 6a), 2.59 km2 (21 August 2020, Figure 6b), 3.09 km2 (21 August
2020, Figure 6c), and 2.02 km2 (9 October 2020, Figure 6d), respectively. A peak change in
the east area was also observed on 21 September 2020 (Figure 6f). During the peak period
from 21 August to 21 September 2020, landslides were reported on 7 September 2020 [55].
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(a)	3	June	2020

(b)	2	August	2020

(c)	14	August	2020

(d)	26	August	2020

(e)	7	September	2020

(f)	19	September	2020

(g)	1	October	2020

(h)	13	October	2020

(i)	25	October	2020

(j)

(k)	ESA

(A) (B)

(C)

ESA
Tree	cover
Shrubland
Grassland
Cropland

ESA
Built-up
Bare/sparse	vegetation
Permanent	water	bodies
Herbaceous	wetland

Water

Elevation	(m)

Sentinel-1

Study	area

0																																	1400

	ESA	Landcover	2020

Figure 4. Study area: (a–i) water extents extracted from the Sentinel-1 datasets using the IJ_Isodata
thresholding algorithm overlapped with the topographical setting; (j) topographical setting; and
(k) ESA WC2020 overlapped with the data from the Shuttle Radar Topography Mission. The areas
with white highlighted in (j,k) are the overview of (a–i), which also correspond to the water-assessing
extents. The areas (A–C) in (j,k) correspond to the highlighted areas in Figure 5.
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C(a)	3	June	2020 C(b)	2	August	2020 C(c)	14	August	2020

C(d)	26	August	2020 C(e)	5	June	2020	(Planet) C(f)	23	August	2020	(Planet)

B(a)	3	June	2020 B(b)	2	August	2020 B(c)	14	August	2020

B(d)	26	August	2020 B(e)	5	June	2020	(Planet) B(f)	23	August	2020	(Planet)

A(a)	3	June	2020 A(b)	2	August	2020

A(c)	14	August	2020

A(e)	17	June	2020	(Planet) A(f)	23	August	2020	(Planet)

Water

A(d)	26	August	2020

Area	C

Area	B

Area	A

Figure 5. Water in the area (A–C) generated from Sentinel-1 and Planet series: (Aa–d,Ba–d,Ca–d) water
extents extracted from the Sentinel-1 datasets using the IJ_Isodata thresholding algorithm overlapped
with Sentinel-2′s color infrared band combination (RGB:843) [3 June (A–Ca), 2 August (A–Cb),
14 August (A–Cc), and 26 August 2020 (A–Cd)]. Here, while areas are either unavailable for imaging
(Aa,A–Cb) or covered by cloud (Ca), (Ae,f,Be,f,Ce,f) water is classified by Planet datasets over-
layed on the Planet’s color infrared band combination (RGB:432) [17 June (Ae), 5 June (Be,Ce), and
23 August 2020 (A–Cf)]. The area (A–C) corresponds to Figure 4j,k.
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(a)	5	and	17	June	2020 (b)	21	August	2020 (c)	21	September	2020

(d)	9	Octber	2020 (e) (f)

(g) (h)

West

East

Elevation	(m)

0																												1400

Study	area
River

Landcover	class
Built-up
Agriculture/barren
Water	
Vegetation
River	sand

Figure 6. Study area: (a–d) landcover classification using Planet datasets (June–October 2020) over-
lapped with the data from the Shuttle Radar Topography; (e) overview of the study area overlapped
with the topographical setting. The area highlighted in red in (e) is the overview of (a–d). The
areas (east and west) in (e) correspond to the assessing bare extents. The areas (A–E) in (e) corre-
spond to the highlighted areas in Figure 7 and (f) the barren extent of the areas in time-series; and
(g,h) provides an overview of the areas (A–E) and village boundary.

Figure 7 demonstrates the potential landslide extents based on three time periods:
(1) 5 or 17 June to 21 August 2020; (2) 21 August to 21 September 2020; and (3) 21 September
to 9 October 2020. Subsequently, newly occurring extents were graphed (Figure 8). Poten-
tial landslides were widespread from the top of mountains and toward the coastal areas;
however, notable events were observed at the valley riversides, where built-up areas are
concentrated. Notable peaks were found in period (2): 14.4 ha (area A), 19.8 ha (B), and
28.3 ha (E) (Figure 7b,e,n). Area A experienced the highest increase (4.9-fold), followed
by areas B and E (2.9-fold). Although these newly occurring barren extents in period
(2) were turned into vegetation extents in period (3) [94%, 100%, and 99% in areas A, B,
and E, respectively], additional landslides continuously occurred along riverside areas
(Figure 7c,f,o). Built-up areas situated in these critical sites are Molotabu (area A) and
Oluhata villages (area B) in Kabila Bone District and Lembah Hijau (area E) in Bonepantai
District. Whereas significant increases in mountain areas C crossing Molintogupo, Bandra
Raya, Bonedaa, and Bondawuna villages in South Suwawa District and area D crossing
Pelita Hijau and Kamiri villages in South Suwawa District found in period (1) were demon-
strated as 34.8 ha (area C, Figure 7g) and 45.2 ha (area D, Figure 7j). Fewer landslides
in area C were observed in periods (2) (9.3 ha) and (3) (2.1 ha), turning large parts back
into vegetation extents (Figure 7h,i). Notably, vulnerable areas were also visualized in 3D
images (Figure 9).
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(a)	A	(1) (b)	A	(2) (c)	A	(3)

(d)	B	(1) (e)	B	(2) (f)	B	(3)

(g)	C	(1) (h)	C	(2) (i)	C	(3)

(j)	D	(1) (k)	D	(2) (l)	D	(3)

(m)	E	(1) (n)	E	(2) (o)	E	(3)

Barren	area
(1)						5	or	17	June	2020						21	August	2020 (2)						21	August	2020								21	September	2020 (3)					21	September		2020						9	October	2020

Figure 7. New potential landslides in areas (A–E) generated from Planet series overlayed on its
true color band combination (RGB:321): (1–3) time periods: (1) 5 or 17 June to 21 August 2020;
(2) 21 August to 21 September 2020; and (3) 21 September to 9 October 2020. The latter images were
set as background images: (a–c) symmetrical differences of barren area (SDoB) in area (A) in period
(1–3); (d–f) SDoB in area (B) in period (1–3); (g–i) SDoB in the area (C) in period (1–3); (j–l) SDoB
in area (D) in period (1–3); and (m–o) SDoB in area (E) in period (1–3). The areas correspond to the
areas (A–E) in Figure 6e,g,h.
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Figure 8. Potential landslide extents by area (A–E).

(a) (b) (c)

(d) (e)

	Image	(IMG):	
	21	September	2020	 IMG:	21	August	2020	

IMG:	21	August	2020	

IMG:	21	September	2020	

IMG:	21	September	2020	

Figure 9. A 3D map of notable areas generated from Planet series (RGB:321): (a) symmetrical
differences of barren area (SDoB) in period (2) in Area A; (b) SDoB in period (2) in Area B; (c) SDoB
in period (1) in Area C; (d) SDoB in period (1) in Area D; and (e) SDoB in period (2) in Area E.

3.3. Time-Series Precipitation Trend

The monthly precipitation from January 1981 to March 2023 was computed using
the CHIRPS Pentad dataset. The maximum and minimum monthly precipitation were
362.8 mm (June 2006) and 3.8 mm (August 2002), respectively, whereas the average monthly
precipitation value was 101.5 mm. The statistical test described in Section 2.3.4 showed a
positive increasing trend with a 0.05 slope (p = 0.0037).

4. Discussion
4.1. Time-Series Analysis of Multiple Mining-Enhanced Geo-hazards Combining Multiple Data

PTE contamination from the rapid development of coexisting mining sectors, particu-
larly mercury release, can exacerbate contamination in regions already contaminated with
high levels of arsenic and lead via natural processes. These PTEs are quickly mobilized
and transformed on a large-scale in surface and groundwater systems and are further
accelerated by the powerful and prominent distribution mechanisms of geo-hazards [9].
The systematic analysis of MGHs requires the combination of multiple data sources and
methodologies to overcome limitations imposed by meteorological and geometric factors.
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This study demonstrates the detailed impacts of multiple MGHs, such as floods and land-
slides, over time using a combination of the high-spatiotemporal resolution multispectral
and SAR datasets.

To date, few studies have examined multiple MGHs in naturally contaminated re-
gions. Previous research on MGHs, particularly on landslides in mountainous areas, has
primarily involved the exploration of surface subsidence using InSAR-based approaches
(e.g., DInSAR and MTInSAR) for detection and monitoring. These studies were limited to
large areas with well-known mining histories, where slow-moving surface subsidence is
primarily caused by prolonged and intensive mining. Even when optical images were used
for landslide detection, they were demonstrated at longer intervals [5,34,40]. In comparison,
our study quantified multiple MGHs (floods and fast-moving landslides) in short intervals,
addressing the rapidly developing coexisting mining sector using the high-spatiotemporal
PS series and associated with possible PTE contamination. Although we demonstrated
landslide change detection within 18–31 days due to area coverage, observation within a
much shorter period could be available by targeting a particular site.

Other recent investigations have focused on similar study areas, with annual ASGM
developments and their activity volume mainly demonstrated using Landsat with ground
resolutions of 30 m [19,20]. The mining sites in the northern part of Block I were expanded
18.6-fold from 1995 to 2020 with large influxes of miners, which correlated with increases
in local gold prices [19]. The high-spatiotemporal PS series was used to reveal detailed
transformations of the ASGM and LSM sites [21], and the potential distribution of en-
hanced PTE contaminations from coexisting mining and natural activities was further
visualized [10]. Currently, a 30 km mining road is under construction with an investment
of 24 million USD (MUSD), which connects the mining sites to the southern port in con-
cession Block I [10,21]. Additionally, mining-related infrastructure constructions [e.g., a
gold ore processing plant (29 MUSD), drilling two gold prospects (24 MUSD), mining
support facilities (21 MUSD), and a waste treatment facility (10 MUSD)] [76] would rapidly
follow after the development of the mining road. Although a strong correlation among
river hazards, mining development, and precipitation was statistically found from 2019
to 2021 with yearly datasets in a previous study [10], considerable MGH chains were not
addressed. In contrast, our study quantified multiple MGHs (floods and landslides) in short
intervals to better estimate socio-environmental risks from enhanced PTE contamination
(Figures 5, 7 and 9). Therefore, our work expanded upon the study [10], allowing us to assess
the MGH volume, distribution, pace, and pattern associated with mining development.

4.2. Potential Impacts of Multiple Mining-Enhanced Geo-Hazards in Contaminated Regions

The increasing trend of precipitation is anticipated to raise socio-environmental risks.
Therefore, high-spatiotemporal observations of multiple MGHs can help to characterize
and quantify the relative impacts of MGHs and predict socio-environmental risks. Our
results showed that floods had critical impacts on river course changes, causing the removal
of agricultural lands [Figure 5(Ae,f,Be,f,Ce,f)]. As described in the Introduction section,
riverbank sediments were naturally contaminated with arsenic and lead [22,23]. The
erosion of agricultural soil with fertilizer, which is a critical anthropogenic factor for PTE
soil contamination [77,78], can easily spread to rivers and residential areas, posing a threat
to human health and the environment [79].

We also found severe landslides were widely observed in the coastal valley riverside
areas, where built-up areas are concentrated (Figures 7 and 9). While notable peaks
of landslide occurrence varied, additional landslides continuously occurred along the
riverside areas in the valley (Figures 7 and 9). This remarkable tendency can lead to
the loss of human lives and accelerate PTE mobilization through the river water system,
increasing PTE contamination risks for marine ecosystems and bay-side localities that
depend mainly on marine products. In the related mining area, previous field-based
approaches were conducted to assess contamination (i.e., arsenic, mercury, and lead)
in plants [22], sediments [22,23], soil [18], and water [22] to alert socio-environmental
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risks. Furthermore, the potential enhanced distribution of multiple PTE contaminations
from various sources was addressed [10]. In comparison, our study comprehensively
assessed multiple MGHs at a hazardous, inaccessible, and broader scale to evaluate socio-
environmental risks.

4.3. Limitations

This study had certain meteorological, geometric, and operational limitations. First,
although the PS series is available daily, the region’s high cloud coverage limits cloud-
free data. Second, although the SAR is a weather-independent active sensor, geometric
errors caused by the SAR’s side-looking operation can result in notable misclassification,
particularly in mountain regions. Third, due to the PS series’ operation period, the applied
methodologies were limited only to the period after 2016. Furthermore, we assessed the
SDoB extents between the two time periods to assess potential landslides; however, barren
temporal areas on the image acquisition time could be included.

5. Conclusions

In this study, we utilized a combination of the PS and S-1 datasets to quantify the mul-
tiple MGHs (floods and landslides) in Bone Bolango, Indonesia, where PTE contamination
from natural and underground mining activities is enhanced by the powerful and promi-
nent distribution mechanisms of geo-hazards. Our geo-hazards-specific spatiotemporal
observation methodology allowed us to characterize spatiotemporal impacts, including
MGHs’ volume, distribution, pace, pattern, and notably prone areas over a shorter time
period. In a region where enhanced PTE contamination is aggravated by, regardless of the
occurrence of disasters, MGHs’ continuous high-spatiotemporal monitoring can help iden-
tify the factors accelerating PTE contamination on a broader scale. Recognizing this level of
detail grants a better understanding of the relationship associated with coexisting mining
development’s massive and rapid pace. Understanding the association between MGHs and
mining activities can also help estimate and alert to enhanced PTE contamination risks for
marine ecosystems and humans locally. While this study focused on quantifying multiple
MGHs based on the flood hazard that peaked on 1 August 2020, future work in this area
could aim to assess the relationship between multiple detailed disasters and the massive
mining development for a longer time. Furthermore, we could estimate contamination lev-
els at river mouths or estuaries in time-series, where contamination would be accumulated
through natural activities and the ongoing massive mining development.
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