Multi-Scale Analysis of PM2.5 Concentrations in the Yangtze River Economic Belt: Investigating the Combined Impact of Natural and Human Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Variables and Data
2.2.1. PM2.5
2.2.2. Natural Factors
2.2.3. Human Factors
2.3. Method
2.3.1. Global Spatial Autocorrelation
2.3.2. Spatial Distribution of Cold-Hot Spots
2.3.3. Spatial Econometric Model
2.3.4. Model Selection Process
2.3.5. P.D.E. Decomposition for Local and Spatial Spillover Effects
3. Results
3.1. Spatial-Temporal Evolution Pattern
3.1.1. Time-Series Evolution
3.1.2. Spatial Evolution Pattern
3.2. Spatial Correlation and Agglomeration Analysis
3.2.1. Global Moran’s I
3.2.2. Distribution Pattern of Cold-Hot Spot
3.3. Analysis of Multi-Scale Driving Factors
3.3.1. Descriptive Statistics and Model Selection
3.3.2. Multi-Scale Impact Effect Analysis
3.3.3. Decomposition of Multi-Scale Effects Based on P.D.E.
4. Discussion
4.1. Effects of Natural Factors and Human Factors on PM2.5 Concentrations
4.2. Local Effects and Spillover Effects
4.3. Policy Suggestion
4.4. Limitations and Future Research Directions
5. Conclusions
- From 2000 to 2020, PM2.5 concentrations in the YREB exhibited an “M”-shaped trend.
- The spatial distribution of PM2.5 concentrations shows distinct characteristics, with higher concentrations observed in the eastern regions and lower concentrations in the western regions. Moreover, the northern areas of the Yangtze River tend to have higher PM2.5 concentrations compared to the southern areas. In terms of urban agglomerations, the central areas of the CCUA and the YRMUA are predominantly characterized by high-pollution concentrations, while the high-pollution agglomeration areas in the YRDUA are primarily located in the northern region.
- From a regional perspective, concentrations of PM2.5 in the YREB are significantly influenced by both natural and human factors. The key factors contributing to the local effect on PM2.5 concentrations in the YREB include the level of economic development, the proportion of urban built-up area, population density, annual average relative humidity, and NDVI. The main factors driving the spillover effect are the proportion of output value of the secondary industry, the proportion of urban built-up area, population density, and annual precipitation.
- In terms of urban agglomerations, changes in PM2.5 concentrations in the three major urban agglomerations, namely the CCUA, the YRMUA and the YRDUA, are influenced by NDVI, the proportion of secondary industries, and the proportion of urban built-up areas. Additionally, in the CCUA, population density also plays a significant role in driving changes in PM2.5 concentrations. Furthermore, the annual average relative humidity is a leading factor for changes in PM2.5 concentrations in both the YRMUA and the YRDUA, but its impact direction differs between the two regions.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sicard, P.; Agathokleous, E.; Anenberg, S.C.; De Marco, A.; Paoletti, E.; Calatayud, V. Trends in urban air pollution over the last two decades: A global perspective. Sci. Total Environ. 2023, 858, 13. [Google Scholar] [CrossRef] [PubMed]
- Jbaily, A.; Zhou, X.D.; Liu, J.; Lee, T.H.; Kamareddine, L.; Verguet, S.; Dominici, F. Air pollution exposure disparities across US population and income groups. Nature 2022, 601, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, E535–E547. [Google Scholar] [CrossRef] [PubMed]
- Apte, J.S.; Marshall, J.D.; Cohen, A.J.; Brauer, M. Addressing Global Mortality from Ambient PM2.5. Environ. Sci. Technol. 2015, 49, 8057–8066. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, Y.Q.; Tang, X.; Zhu, J.; Zhu, T. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network. Sci. Total Environ. 2016, 568, 1253–1262. [Google Scholar] [CrossRef]
- Geng, G.N.; Zheng, Y.X.; Zhang, Q.; Xue, T.; Zhao, H.Y.; Tong, D.; Zheng, B.; Li, M.; Liu, F.; Hong, C.P.; et al. Drivers of PM2.5 air pollution deaths in China 2002–2017. Nat. Geosci. 2021, 14, 645–650. [Google Scholar] [CrossRef]
- Ji, X.; Yao, Y.X.; Long, X.L. What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective. Energy Policy 2018, 119, 458–472. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Elahi, E.; Meng, X.; Deng, W. A new type of urbanization policy and transition of low-carbon society: A “local- neighborhood” perspective. Land Use Policy 2023, 131, 106709. [Google Scholar] [CrossRef]
- Yang, T.; Zhou, K.L.; Ding, T. Air pollution impacts on public health: Evidence from 110 cities in Yangtze River Economic Belt of China. Sci. Total Environ. 2022, 851, 8. [Google Scholar] [CrossRef]
- Zhang, R.; Jing, J.; Tao, J.; Hsu, S.C.; Wang, G.; Cao, J.; Lee, C.S.L.; Zhu, L.; Chen, Z.; Zhao, Y.; et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.X.; Xing, J.; Zhang, F.F.; Wang, S.X.; Ding, D.; Wang, H.L.; Huang, C.; Zheng, H.T.; Jiang, Y.Q.; Hao, J.M. Synergetic PM2.5 and O-3 control strategy for the Yangtze River Delta, China. J. Environ. Sci. 2023, 123, 281–291. [Google Scholar] [CrossRef]
- Colmer, J.; Hardman, I.; Shimshack, J.; Voorheis, J. Disparities in PM2.5 air pollution in the United States. Science 2020, 369, 575–578. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhou, C.S.; Wang, Z.B.; Feng, K.S.; Hubacek, K. The characteristics and drivers of fine particulate matter (PM2.5) distribution in China. J. Clean Prod. 2017, 142, 1800–1809. [Google Scholar] [CrossRef]
- Ming, L.L.; Jin, L.; Li, J.; Fu, P.Q.; Yang, W.Y.; Liu, D.; Zhang, G.; Wang, Z.F.; Li, X.D. PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events. Environ. Pollut. 2017, 223, 200–212. [Google Scholar] [CrossRef]
- Zhou, C.S.; Chen, J.; Wang, S.J. Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China’s cities using spatial regression and the geographical detector technique. Sci. Total Environ. 2018, 619, 436–445. [Google Scholar] [CrossRef]
- Zhang, D.H.; Zhou, C.S.; He, B.J. Spatial and temporal heterogeneity of urban land area and PM2.5 concentration in China. Urban Clim. 2022, 45, 15. [Google Scholar] [CrossRef]
- He, Q.Q.; Huang, B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote Sens. Environ. 2018, 206, 72–83. [Google Scholar] [CrossRef]
- Cheng, Z.; Luo, L.; Wang, S.X.; Wang, Y.G.; Sharma, S.; Shimadera, H.; Wang, X.L.; Bressi, M.; de Miranda, R.M.; Jiang, J.K.; et al. Status and characteristics of ambient PM2.5 pollution in global megacities. Environ. Int. 2016, 89–90, 212–221. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.X.; Tong, D.; Shao, M.; Wang, S.X.; Zhang, Y.H.; Xu, X.D.; Wang, J.N.; He, H.; Liu, W.Q.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.Y.; Chen, D.L.; Zhao, C.F.; Kwan, M.P.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.Y.; Chen, B.; Yang, J.; et al. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environ. Int. 2020, 139, 21. [Google Scholar] [CrossRef]
- Guan, D.B.; Su, X.; Zhang, Q.; Peters, G.P.; Liu, Z.; Lei, Y.; He, K.B. The socioeconomic drivers of China’s primary PM2.5 emissions. Environ. Res. Lett. 2014, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shuai, C.Y.; Bian, J.; Chen, X.; Wu, Y.; Shen, L.Y. Socioeconomic factors of PM2.5 concentrations in 152 Chinese cities: Decomposition analysis using LMDI. J. Clean Prod. 2019, 218, 96–107. [Google Scholar] [CrossRef]
- Chen, G.B.; Li, S.S.; Knibbs, L.D.; Hamm, N.A.S.; Cao, W.; Li, T.T.; Guo, J.P.; Ren, H.Y.; Abramson, M.J.; Guo, Y.M. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total Environ. 2018, 636, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.H.; Li, L.S.; Liu, J. Identifying the spatial effects and driving factors of urban PM2.5 pollution in China. Ecol. Indic. 2017, 82, 61–75. [Google Scholar] [CrossRef]
- Zhao, R.; Zhan, L.P.; Yao, M.X.; Yang, L.C. A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2.5. Sustain. Cities Soc. 2020, 56, 9. [Google Scholar] [CrossRef]
- Li, G.Q.; Li, L.Y.; Liu, D.; Qin, J.H.; Zhu, H.J. Effect of PM2.5 pollution on perinatal mortality in China. Sci. Rep. 2021, 11, 12. [Google Scholar] [CrossRef]
- Li, X.Y.; Xue, W.H.; Wang, K.; Che, Y.F.; Wei, J. Environmental regulation and synergistic effects of PM2.5 control in China. J. Clean Prod. 2022, 337, 11. [Google Scholar] [CrossRef]
- Yang, F.Y.; Xu, Q.S.; Li, K.M.; Yuen, K.F.; Shi, W.M. The inhibition effect of bank credits on PM2.5 concentrations: Spatial evidence from high-polluting firms in China. Environ. Pollut. 2022, 308, 10. [Google Scholar] [CrossRef]
- Wang, Y.C.; Liu, C.G.; Wang, Q.Y.; Qin, Q.D.; Ren, H.H.; Cao, J.J. Impacts of natural and socioeconomic factors on PM2.5 from 2014 to 2017. J. Environ. Manage. 2021, 284, 9. [Google Scholar] [CrossRef]
- Chen, H.S.; Lin, Y.C.; Chiueh, P.T. Nexus of ecosystem service-human health-natural resources: The nature-based solutions for urban PM2.5 pollution. Sustain. Cities Soc. 2023, 91, 11. [Google Scholar] [CrossRef]
- Jin, Y.H.; Zhang, H.; Shi, H.; Wang, H.L.; Wei, Z.F.; Han, Y.X.; Cong, P.T. Assessing Spatial Heterogeneity of Factor Interactions on PM2.5 Concentrations in Chinese Cities. Remote Sens. 2021, 13, 5079. [Google Scholar] [CrossRef]
- Xia, S.Y.; Liu, X.J.; Liu, Q.; Zhou, Y.N.; Yang, Y. Heterogeneity and the determinants of PM2.5 in the Yangtze River Economic Belt. Sci. Rep. 2022, 12, 11. [Google Scholar] [CrossRef]
- Geng, G.N.; Xiao, Q.Y.; Liu, S.G.; Liu, X.D.; Cheng, J.; Zheng, Y.X.; Xue, T.; Tong, D.; Zheng, B.; Peng, Y.R.; et al. Tracking Air Pollution in China: Near Real-Time PM2.5 Retrievals from Multisource Data Fusion. Environ. Sci. Technol. 2021, 55, 12106–12115. [Google Scholar] [CrossRef]
- Yue, H.B.; He, C.Y.; Huang, Q.X.; Yin, D.; Bryan, B.A. Stronger policy required to substantially reduce deaths from PM2.5 pollution in China. Nat. Commun. 2020, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.Z.; Tao, S.; Chen, Y.L.; Ciais, P.; Guneralp, B.; Ru, M.Y.; Zhong, Q.R.; Yun, X.; Zhu, X.; Huang, T.B.; et al. Urbanization-induced population migration has reduced ambient PM2.5 concentrations in China. Sci. Adv. 2017, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Peng, H.; Temulun, T.; Liu, L.Q.; Mao, J.; Lu, Z.N.; Chen, H. How harmful is air pollution to economic development? New evidence from PM2.5 concentrations of Chinese cities. J. Clean Prod. 2018, 172, 743–757. [Google Scholar] [CrossRef]
- Lin, H.; Wang, X.Y.; Bao, G.; Xiao, H.J. Heterogeneous Spatial Effects of FDI on CO2 Emissions in China. Earth Future 2022, 10, 23. [Google Scholar] [CrossRef]
- Zhai, S.X.; Jacob, D.J.; Wang, X.; Shen, L.; Li, K.; Zhang, Y.Z.; Gui, K.; Zhao, T.L.; Liao, H. Fine particulate matter (PM2.5) trends in China, 2013-2018: Separating contributions from anthropogenic emissions and meteorology. Atmos. Chem. Phys. 2019, 19, 11031–11041. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Jiang, L.; Yang, D.Y.; Liu, Y.B. Quantifying the spatial heterogeneity influences of natural and socioeconomic factors and their interactions on air pollution using the geographical detector method: A case study of the Yangtze River Economic Belt, China. J. Clean Prod. 2019, 232, 692–704. [Google Scholar] [CrossRef]
- Zhu, W.W.; Wang, M.C.; Zhang, B.B. The effects of urbanization on PM2.5 concentrations in China’s Yangtze River Economic Belt: New evidence from spatial econometric analysis. J. Clean Prod. 2019, 239, 11. [Google Scholar] [CrossRef]
- Liu, P.X.; Zhong, F.L.; Yang, C.L.; Jiang, D.W.; Luo, X.J.; Song, X.Y.; Guo, J. Influence mechanism of urban polycentric spatial structure on PM2.5 emissions in the Yangtze River Economic Belt, China. J. Clean Prod. 2022, 365, 12. [Google Scholar] [CrossRef]
- Liu, X.J.; Xia, S.Y.; Yang, Y.; Wu, J.F.; Zhou, Y.N.; Ren, Y.W. Spatiotemporal dynamics and impacts of socioeconomic and natural conditions on PM2.5 in the Yangtze River Economic Belt. Environ. Pollut. 2020, 263, 9. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; He, W.J.; Yuan, L.; Zhang, Z.F.; Gao, X.; Zhao, Y.E.; Degefu, D.M. Decoupling economic growth from water consumption in the Yangtze River Economic Belt, China. Ecol. Indic. 2021, 123, 9. [Google Scholar] [CrossRef]
- Mao, X.L.; Wang, L.C.; Pan, X.; Zhang, M.; Wu, X.J.; Zhang, W. A study on the dynamic spatial spillover effect of urban form on PM2.5 concentration at county scale in China. Atmos. Res. 2022, 269, 15. [Google Scholar] [CrossRef]
- Wang, K.F.; Liu, Y.; Wang, S.C.; Li, C.P. The spatial spillover effect of higher SO2 emission tax rates on PM2.5 concentration in China. Sci. Rep. 2023, 13, 13. [Google Scholar] [CrossRef]
- Huang, Z.Y.; An, X.Y.; Cai, X.R.; Chen, Y.N.; Liang, Y.Q.; Hu, S.X.; Wang, H. The impact of new urbanization on PM2.5 concentration based on spatial spillover effects: Evidence from 283 cities in China. Sust. Cities Soc. 2023, 90, 12. [Google Scholar] [CrossRef]
- Wei, G.E.; Bi, M.; Liu, X.; Zhang, Z.K.; He, B.J. Investigating the impact of multi-dimensional urbanization and FDI on carbon emissions in the belt and road initiative region: Direct and spillover effects. J. Clean Prod. 2023, 384, 16. [Google Scholar] [CrossRef]
- Wei, G.; He, B.-J.; Sun, P.; Liu, Y.; Li, R.; Ouyang, X.; Luo, K.; Li, S. Evolutionary trends of urban expansion and its sustainable development: Evidence from 80 representative cities in the belt and road initiative region. Cities 2023, 138, 104353. [Google Scholar] [CrossRef]
- Elhorst, J.P. Matlab Software for Spatial Panels. Int. Reg. Sci. Rev. 2014, 37, 389–405. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.J.; Bao, S.; Ren, J.Z.; Xu, Z.C. Transboundary impacts on SDG progress across Chinese cities: A spatial econometric analysis. Sustain. Cities Soc. 2023, 92, 11. [Google Scholar] [CrossRef]
- Jiang, L.; He, S.X.; Zhou, H.F. Spatio-temporal characteristics and convergence trends of PM2.5 pollution: A case study of cities of air pollution transmission channel in Beijing-Tianjin-Hebei region, China. J. Clean Prod. 2020, 256, 13. [Google Scholar] [CrossRef]
- Apte, J.S.; Brauer, M.; Cohen, A.J.; Ezzati, M.; Pope, C.A. Ambient PM2.5 Reduces Global and Regional Life Expectancy. Environ. Sci. Technol. Lett. 2018, 5, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.M.; Cui, W.J.; Zhang, M. Exploring the causal relationship between urbanization and air pollution: Evidence from China. Sustain. Cities Soc. 2022, 80, 12. [Google Scholar] [CrossRef]
- Lei, Y.K.; Davies, G.M.; Jin, H.; Tian, G.H.; Kim, G. Scale-dependent effects of urban greenspace on particulate matter air pollution. Urban For. Urban Green. 2021, 61, 9. [Google Scholar] [CrossRef]
- Zhang, X.X.; Brandt, M.; Tong, X.W.; Ciais, P.; Yue, Y.M.; Xiao, X.M.; Zhang, W.M.; Wang, K.L.; Fensholt, R. A large but transient carbon sink from urbanization and rural depopulation in China. Nat. Sustain. 2022, 5, 321–328. [Google Scholar] [CrossRef]
Year | Moran’s I | Year | Moran’s I | Year | Moran’s I |
---|---|---|---|---|---|
2000 | 0.5922 *** | 2007 | 0.5625 *** | 2014 | 0.6165 *** |
2001 | 0.5803 *** | 2008 | 0.5510 *** | 2015 | 0.6196 *** |
2002 | 0.6138 *** | 2009 | 0.5868 *** | 2016 | 0.5660 *** |
2003 | 0.6198 *** | 2010 | 0.5767 *** | 2017 | 0.5949 *** |
2004 | 0.5752 *** | 2011 | 0.5713 *** | 2018 | 0.6605 *** |
2005 | 0.5643 *** | 2012 | 0.5385 *** | 2019 | 0.6442 *** |
2006 | 0.5223 *** | 2013 | 0.5949 *** | 2020 | 0.6259 *** |
Variable | N | Mean | SD | Min | Max |
---|---|---|---|---|---|
PM2.5 | 1620 | 45.083 | 12.64 | 13.922 | 81.545 |
TEM | 1620 | 16.808 | 1.503 | 9.777 | 21.273 |
HUM | 1620 | 75.176 | 4.08 | 53.573 | 84.139 |
PRE | 1620 | 12,295.08 | 2923.2 | 6374.29 | 22,825.801 |
WIN | 1620 | 4.37 | 1.019 | 2.149 | 7.635 |
NDVI | 1620 | 0.757 | 0.055 | 0.493 | 0.865 |
PGDP | 1620 | 43,683.9 | 32,339.31 | 99 | 199,000 |
SEC | 1620 | 0.475 | 0.09 | 0.147 | 0.759 |
LAN | 1620 | 0.079 | 0.072 | 0.004 | 0.602 |
POPD | 1620 | 487.756 | 297.909 | 53 | 2276 |
ELE | 1620 | 1.338 | 2.189 | 0.01 | 15.958 |
CAR | 1620 | 1.442 | 2.541 | 0.036 | 19.779 |
ENE | 1620 | 168.02 | 355.683 | 1.232 | 3391.13 |
Statistics | LMLAG | R-LMLAG | LMERR | R-LMERR | LRLAG | W-LAG | LRERR | W-ERR |
---|---|---|---|---|---|---|---|---|
Value (p-value) | 601.829 (0.000) | 26.291 (0.000) | 1186.375 (0.000) | 610.837 (0.000) | 398.286 (0.000) | 461.557 (0.000) | 422.779 (0.000) | 540.397 (0.000) |
Variable | SPDM | SPLM | SPEM | |||
---|---|---|---|---|---|---|
Coefficient | T | Coefficient | T | Coefficient | T | |
TEM | −0.0107 *** | −2.8951 | −0.0159 *** | −5.5582 | −0.0274 *** | −8.4825 |
HUM | 0.8944 *** | 8.5407 | 0.7607 *** | 8.6771 | 0.9746 *** | 9.6628 |
PRE | −0.0661 * | −1.8350 | −0.1217 *** | −5.1800 | −0.1731 *** | −6.0522 |
WIN | −0.0201 *** | −3.5382 | −0.0321 *** | −6.8007 | −0.0456 *** | −8.4942 |
NVDI | −0.4586 *** | −4.0134 | −0.0907 | −0.8230 | −0.2413 ** | −1.9820 |
PGDP | 0.4339 *** | 3.7940 | −0.1084 | −0.9646 | −0.0982 | −0.8130 |
SEC | 0.1727 *** | 3.1001 | 0.1355 ** | 2.4588 | 0.2081 *** | 3.4965 |
LAN | −0.1171 ** | −2.0396 | −0.0178 | −0.3012 | −0.1460 ** | −2.4262 |
POPD | 0.1461 *** | 13.9597 | 0.2171 *** | 24.3335 | 0.2294 *** | 22.5759 |
ELE | −0.0569 *** | −4.1621 | −0.0456 *** | −3.1144 | −0.0716 *** | −4.6837 |
CAR | −0.0200 *** | −9.0503 | −0.0170 *** | −7.4533 | −0.0160 *** | −6.8351 |
ENE | 0.0185 *** | 3.1908 | 0.0231 *** | 3.6722 | 0.0293 *** | 4.5104 |
W*TEM | 0.0483 ** | 2.1221 | ||||
W*HUM | 0.2394 | 0.3505 | ||||
W*PRE | −0.6290 *** | −3.8647 | ||||
W*WIN | −0.0650 | −1.4467 | ||||
W*NDVI | −0.0582 | −0.0083 | ||||
W*PGDP | 0.6182 | 0.6129 | ||||
W*SEC | −2.5996 *** | −6.3598 | ||||
W*LAN | 2.9882 *** | 4.0753 | ||||
W*POPD | 0.7738 *** | 10.8257 | ||||
W*ELE | 0.4636 *** | 3.8150 | ||||
W*CAR | −0.2100 *** | −7.7333 | ||||
W*ENE | −0.3327 *** | −5.4987 | ||||
ρ or λ | 0.9240 *** | 106.008 | 0.9480 *** | 129.0219 | 0.9480 *** | 100.8210 |
Adjust-R2 | 0.838 | 0.7934 | 0.6939 | |||
Log-L | 1055.350 | 856.207 | 843.961 |
Variable | CCUA | YRMUA | YRDUA | |||
---|---|---|---|---|---|---|
Coefficient | T | Coefficient | T | Coefficient | T | |
TEM | 0.0009 | 0.1553 | 0.0138 ** | 2.0977 | −0.0296 ** | −2.1121 |
HUM | 0.0500 | 0.2337 | 0.6073 *** | 3.3566 | −0.9084 *** | −4.0687 |
PRE | −0.0500 | −0.8634 | −0.0468 | −0.9355 | 0.1405 *** | 2.6538 |
WIN | −0.0434 ** | −2.2919 | 0.0478 *** | 5.8894 | −0.0166 * | −1.7524 |
NVDI | 0.8862 *** | 3.4994 | −0.6204 *** | −3.8377 | −0.3415 ** | −2.5478 |
PGDP | −0.1443 | −0.3561 | −0.0138 | −0.0559 | −0.0930 | −0.5044 |
SEC | 0.6488 *** | 5.8286 | −0.1635 * | −1.9205 | 0.6983 *** | 7.0214 |
LAN | −0.9636 *** | −4.5085 | −0.1652 *** | −3.1678 | 0.2297 ** | 2.4307 |
POPD | 0.2850 *** | 10.0710 | 0.0609 *** | 3.6141 | 0.0331 * | 1.6847 |
ELE | 0.0880 *** | 3.9426 | −0.0026 | −0.1924 | −0.0881 *** | −4.2468 |
CAR | −0.0040 ** | −1.9833 | 0.0050 | 1.0021 | −0.0050 | −1.2933 |
ENE | 0.0168 ** | 2.1431 | 0.0386 *** | 4.9157 | 0.0432 *** | 3.4829 |
W*TEM | 0.1231 ** | 2.1017 | −0.4023 *** | −6.7438 | −0.4497 *** | −6.1214 |
W*HUM | 7.6564 *** | 5.0628 | −2.6127 *** | −2.6866 | 1.7251 | 1.1578 |
W*PRE | 0.2717 | 0.7718 | −0.3406 | −1.4368 | −1.1428 *** | −4.2973 |
W*WIN | 0.2582 * | 1.7931 | −0.4172 *** | −8.3579 | −0.3014 *** | −4.4880 |
W*NDVI | −5.9837 *** | −3.5591 | 2.1857 * | 1.8800 | −0.9281 | −0.6811 |
W*PGDP | 4.4981 | 1.4307 | 2.6321 | 1.3795 | 3.6363 ** | 2.3478 |
W*SEC | 3.3649 *** | 4.1508 | −1.0990* | −1.8415 | −1.7715 *** | −2.7623 |
W*LAN | 0.7608 | 0.4319 | −2.2817 *** | −6.1054 | −0.0155 | −0.0150 |
W*POPD | −1.2599 *** | −5.1513 | −0.4879 *** | −3.1058 | −0.3376 * | −1.9046 |
W*ELE | 0.7834 *** | 4.8393 | 0.1658 * | 1.8789 | 0.4762 *** | 3.6713 |
W*CAR | −0.0060 | −0.4102 | 0.1850 *** | 5.1738 | 0.0220 | 0.5083 |
W*ENE | −0.1347 ** | −2.3166 | 0.1399 ** | 2.4257 | 0.1186 | 0.9245 |
ρ | 0.1990 ** | 2.2915 | 0.6020 *** | 9.0049 | 0.3520 *** | 4.2811 |
Adjust-R2 | 0.9710 | 0.9549 | 0.9208 | |||
Log-L | 400.6713 | 636.2251 | 497.475 |
Variable | Local | t-Stat | Spillover | t-Stat | Total | t-Stat |
---|---|---|---|---|---|---|
TEM | −0.0049 | −1.3201 | 0.4905 * | 1.7496 | 0.4856 * | 1.7217 |
HUM | 1.0598 *** | 9.6773 | 13.8491 | 1.6352 | 14.9088 * | 1.7507 |
PRE | −0.1709 *** | −5.1022 | −9.0718 *** | −4.2481 | −9.2427 *** | −4.3103 |
WIN | −0.0329 *** | −4.6000 | −1.1205 | −1.8607 | −1.1534 * | −1.8997 |
NVDI | −0.5597 *** | −4.3117 | −6.1047 | −0.7148 | −6.6643 | −0.7750 |
PGDP | 0.5944 *** | 3.1543 | 13.7577 | 1.0646 | 14.3520 | 1.0980 |
SEC | −0.2008 ** | −2.3705 | −32.3936 *** | −5.3108 | −32.5944 *** | −5.2874 |
LAN | 0.3239 ** | 2.1069 | 38.2016 *** | 3.5300 | 38.5254 *** | 3.5133 |
POPD | 0.2838 *** | 14.1752 | 11.9851 *** | 7.3591 | 12.2689 *** | 7.4547 |
ELE | 0.0057 | 0.2331 | 5.3914 *** | 3.1412 | 5.3971 *** | 3.1079 |
CAR | −0.0560 *** | −8.4034 | −3.0720 *** | −6.2462 | −3.1280 *** | −6.2792 |
ENE | −0.0300 *** | −2.2728 | −4.1947 *** | −4.5240 | −4.2247 *** | −4.4990 |
Variable | Local | Spillover | Total | ||||
---|---|---|---|---|---|---|---|
Coefficient | t | Coefficient | t | Coefficient | t | ||
CCUA | TEM | 0.0032 | 0.5024 | 0.1528 * | 2.0707 | 0.1560 * | 2.0253 |
HUM | 0.1890 | 0.8329 | 9.4466 *** | 4.5435 | 9.6356 *** | 4.4648 | |
PRE | −0.0444 | −0.8003 | 0.3223 | 0.6938 | 0.2779 | 0.6184 | |
WIN | −0.0394 * | −1.9497 | 0.3096 | 1.6640 | 0.2701 | 1.4016 | |
NVDI | 0.7746 *** | 2.9579 | −7.3007 *** | −3.3003 | −6.5261 *** | −2.9563 | |
PGDP | −0.0719 | −0.1561 | 5.3544 | 1.3309 | 5.2825 | 1.2012 | |
SEC | 0.0072 *** | 5.9925 | 0.0442 *** | 3.9315 | 0.0514 *** | 4.2939 | |
LAN | −0.9506 *** | −3.9448 | 0.7649 | 0.3489 | −0.1856 | −0.0781 | |
POPD | 0.2623 *** | 8.0230 | −1.4951 *** | −4.5091 | −1.2328 *** | −3.4826 | |
ELE | 0.1044 *** | 4.3098 | 1.0109 *** | 4.5842 | 1.1152 *** | 4.7534 | |
CAR | −0.0040 * | −1.9660 | −0.0080 | −0.4931 | −0.0130 | −0.6960 | |
ENE | 0.0141 | 1.6386 | −0.1635 ** | −2.1947 | −0.1494 * | −1.8564 | |
YRMUA | TEM | −0.0108 | −1.2114 | −1.0043 *** | −4.3305 | −1.0151 *** | −4.2720 |
HUM | 0.4655 ** | 2.7203 | −5.6119** | −2.0924 | −5.1464 * | −1.9122 | |
PRE | −0.0703 | −1.6159 | −0.9384 | −1.6092 | −1.0087 * | −1.7705 | |
WIN | 0.0235 ** | 2.2616 | −0.9899 *** | −4.3373 | −0.9664 *** | −4.1219 | |
NVDI | −0.5070 ** | −2.7291 | 4.6866 | 1.4699 | 4.1795 | 1.2718 | |
PGDP | 0.1656 | 0.4597 | 6.8951 | 1.2216 | 7.0607 | 1.1817 | |
SEC | −0.0024 ** | −2.2853 | −0.0301 * | −1.8132 | −0.0325 * | −1.8781 | |
LAN | −0.3134 ** | −4.1360 | −6.0626 *** | −4.1356 | −6.3760 *** | −4.1789 | |
POPD | 0.0330 | 1.4109 | −1.1424 ** | −2.5052 | −1.1095 ** | −2.3399 | |
ELE | 0.0079 | 0.4994 | 0.4107 * | 1.7144 | 0.4185 | 1.6962 | |
CAR | 0.0160 ** | 2.2840 | 0.4780 *** | 3.4938 | 0.4940 *** | 3.4573 | |
ENE | 0.0482 *** | 4.3331 | 0.4083 ** | 2.2899 | 0.4565 ** | 2.4367 | |
YRDUA | TEM | −0.0402 *** | −2.8295 | −0.7120 *** | −5.3372 | −0.7522 *** | −5.7866 |
HUM | −0.8688 *** | −3.9310 | 2.0907 | 0.8881 | 1.2220 | 0.5180 | |
PRE | 0.1124 ** | 2.1779 | −1.6753 *** | −3.9560 | −1.5629 *** | −3.8784 | |
WIN | −0.0234 ** | −2.2585 | −0.4723 *** | −4.1267 | −0.4957 *** | −4.2081 | |
NVDI | −0.3675 ** | −2.6813 | −1.6410 | −0.7607 | −2.0084 | −0.9095 | |
PGDP | 0.0010 | 0.0051 | 5.5196 ** | 2.2084 | 5.5206 ** | 2.1396 | |
SEC | 0.0066 *** | 6.4818 | −0.0236 ** | −2.2635 | −0.0170 | −1.5931 | |
LAN | 0.2291 * | 1.9902 | 0.0753 | 0.0451 | 0.3044 | 0.1725 | |
POPD | 0.0243 | 1.1414 | −0.5136 * | −1.7949 | −0.4892 | −1.6422 | |
ELE | −0.0780 *** | −3.5418 | 0.6925 *** | 3.1817 | 0.6145 ** | 2.7313 | |
CAR | −0.0040 | −0.9990 | 0.0280 | 0.4214 | 0.0240 | 0.3432 | |
ENE | 0.0466 *** | 3.0699 | 0.2146 | 1.0156 | 0.2612 | 1.1640 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Wei, G.; Liu, Y.; Bai, L. Multi-Scale Analysis of PM2.5 Concentrations in the Yangtze River Economic Belt: Investigating the Combined Impact of Natural and Human Factors. Remote Sens. 2023, 15, 3356. https://doi.org/10.3390/rs15133356
Li S, Wei G, Liu Y, Bai L. Multi-Scale Analysis of PM2.5 Concentrations in the Yangtze River Economic Belt: Investigating the Combined Impact of Natural and Human Factors. Remote Sensing. 2023; 15(13):3356. https://doi.org/10.3390/rs15133356
Chicago/Turabian StyleLi, Shuoshuo, Guoen Wei, Yaobin Liu, and Ling Bai. 2023. "Multi-Scale Analysis of PM2.5 Concentrations in the Yangtze River Economic Belt: Investigating the Combined Impact of Natural and Human Factors" Remote Sensing 15, no. 13: 3356. https://doi.org/10.3390/rs15133356
APA StyleLi, S., Wei, G., Liu, Y., & Bai, L. (2023). Multi-Scale Analysis of PM2.5 Concentrations in the Yangtze River Economic Belt: Investigating the Combined Impact of Natural and Human Factors. Remote Sensing, 15(13), 3356. https://doi.org/10.3390/rs15133356