Intelligent Identification of Pine Wilt Disease Infected Individual Trees Using UAV-Based Hyperspectral Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Ground Survey
2.2. Drone Data Collection and Preprocessing
2.3. Division of PWD Infection Stage and Data Processing
2.3.1. Division of PWD Infection Stage
2.3.2. RGB Data Processing
2.3.3. Hyperspectral Feature Bands Filtering
2.3.4. PWD-Infected Individual Tree Species Sample Set Construction
2.4. Methods
2.4.1. Mask R-CNN
2.4.2. Improved Mask R-CNN Model
2.4.3. Integrated Framework Combing Prototypical Network Classification Model and Individual Tree Segmentation Method
2.4.4. Experimental Design
2.5. Evaluation Metrics
3. Results
3.1. Recognition Results of PWD-Infected Individual Trees Using Improved Mask R-CNN
3.2. Detection Results of PWD-Infected Individual Trees Based on Integrated Prototypical Network
3.3. Comparison of the PWD Detection Results Using Improved Mask R-CNN and Integrated Prototypical Network
4. Discussion
4.1. Detection Ability of Deep Learning Models Using RGB Image for PWD-Infected Trees
4.2. Comparison of Different Models for Identifying PWD-Infected Individual Trees
4.3. Existing Deficiencies and Future Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Futai, K. Pine Wood Nematode, Bursaphelenchus Xylophilus. Annu. Rev. Phytopathol. 2013, 51, 61–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escuer, M.; Arias, M.; Bello, A. Occurrence of the Genus Bursaphelenchus Fuchs, 1937 (Nematoda: Aphelenchida) in Spanish Conifer Forests. Nematology 2004, 6, 155–156. [Google Scholar] [CrossRef]
- Futai, K. Role of Asymptomatic Carrier Trees in Epidemic Spread of Pine Wilt Disease. J. For. Res. 2003, 8, 253–260. [Google Scholar] [CrossRef]
- Jones, J.T.; Moens, M.; Mota, M.; Li, H.; Kikuchi, T. Bursaphelenchus Xylophilus: Opportunities in Comparative Genomics and Molecular Host-Parasite Interactions. Mol. Plant Pathol. 2008, 9, 357–368. [Google Scholar] [CrossRef]
- Proença, D.N.; Francisco, R.; Santos, C.V.; Lopes, A.; Fonseca, L.; Abrantes, I.M.O.; Morais, P.V. Diversity of Bacteria Associated with Bursaphelenchus Xylophilus and Other Nematodes Isolated from Pinus Pinaster Trees with Pine Wilt Disease. PLoS ONE 2010, 5, e15191. [Google Scholar] [CrossRef] [Green Version]
- Mota, M.M.; Vieira, P. Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 9784431756545. [Google Scholar]
- Čerevková, A.; Mota, M.; Vieira, P. Bursaphelenchus Xylophilus (Steiner & Buhrer, 1934) Nickle 1970-Pinewood Nematode: A Threat to European Forests. For. J. 2014, 60, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Ye, J. Epidemic Status of Pine Wilt Disease in China and Its Prevention and Control Techniques and Counter Measures. Sci. Silvae Sin. 2019, 55, 1–10. [Google Scholar]
- Zhang, B.; Ye, H.; Lu, W.; Huang, W.; Wu, B.; Hao, Z.; Sun, H. A Spatiotemporal Change Detection Method for Monitoring Pine Wilt Disease in a Complex Landscape Using High-Resolution Remote Sensing Imagery. Remote Sens. 2021, 13, 2083. [Google Scholar] [CrossRef]
- Iordache, M.D.; Mantas, V.; Baltazar, E.; Pauly, K.; Lewyckyj, N. A Machine Learning Approach to Detecting Pine Wilt Disease Using Airborne Spectral Imagery. Remote Sens. 2020, 12, 2280. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, J.; Hanan, J.; Qin, L. A Hyperspectral GA-PLSR Model for Prediction of Pine Wilt Disease. Multimed. Tools Appl. 2020, 79, 16645–16661. [Google Scholar] [CrossRef]
- Xu, X.; Tao, H.; Li, C.; Cheng, C.; Guo, H.; Zhou, J. Detection and Location of Pine Wilt Disease Induced Dead Pine Trees Based on Faster R-CNN. Trans. Chin. Soc. Agric. Mach. 2020, 51, 228–236. [Google Scholar]
- Pan, J.; Lin, J.; Xie, T. Exploring the Potential of UAV-Based Hyperspectral Imagery on Pine Wilt Disease Detection: Influence of Spatio-Temporal Scales. Remote Sens. 2023, 15, 2281. [Google Scholar] [CrossRef]
- Yu, R.; Luo, Y.; Li, H.; Yang, L.; Huang, H.; Yu, L.; Ren, L. Three-Dimensional Convolutional Neural Network Model for Early Detection of Pine Wilt Disease Using Uav-Based Hyperspectral Images. Remote Sens. 2021, 13, 4065. [Google Scholar] [CrossRef]
- Li, N.; Huo, L.; Zhang, X. Classification of Pine Wilt Disease at Different Infection Stages by Diagnostic Hyperspectral Bands. Ecol. Indic. 2022, 142, 109198. [Google Scholar] [CrossRef]
- You, J.; Zhang, R.; Lee, J. A Deep Learning-Based Generalized System for Detecting Pine Wilt Disease Using RGB-Based UAV Images. Remote Sens. 2022, 14, 150. [Google Scholar] [CrossRef]
- Ecke, S.; Dempewolf, J.; Frey, J.; Schwaller, A.; Endres, E.; Klemmt, H.J.; Tiede, D.; Seifert, T. UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sens. 2022, 14, 3205. [Google Scholar] [CrossRef]
- Tao, H.; Li, C.; Zhao, D.; Deng, S.; Hu, H.; Xu, X.; Jing, W. Deep Learning-Based Dead Pine Tree Detection from Unmanned Aerial Vehicle Images. Int. J. Remote Sens. 2020, 41, 8238–8255. [Google Scholar] [CrossRef]
- Deng, X.; Tong, Z.; Lan, Y.; Huang, Z. Detection and Location of Dead Trees with Pine Wilt Disease Based on Deep Learning and UAV Remote Sensing. AgriEngineering 2020, 2, 19. [Google Scholar] [CrossRef]
- Tang, L.; Shao, G. Drone Remote Sensing for Forestry Research and Practices. J. For. Res. 2015, 26, 791–797. [Google Scholar] [CrossRef]
- Torresan, C.; Berton, A.; Carotenuto, F.; Di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L. Forestry Applications of UAVs in Europe: A Review. Int. J. Remote Sens. 2017, 38, 2427–2447. [Google Scholar] [CrossRef]
- Einzmann, K.; Atzberger, C.; Pinnel, N.; Glas, C.; Böck, S.; Seitz, R.; Immitzer, M. Early Detection of Spruce Vitality Loss with Hyperspectral Data: Results of an Experimental Study in Bavaria, Germany. Remote Sens. Environ. 2021, 266, 112676. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). [Google Scholar]
- Wu, B.; Liang, A.; Zhang, H.; Zhu, T.; Zou, Z.; Yang, D.; Tang, W.; Li, J.; Su, J. Application of Conventional UAV-Based High-Throughput Object Detection to the Early Diagnosis of Pine Wilt Disease by Deep Learning. For. Ecol. Manag. 2021, 486, 118986. [Google Scholar] [CrossRef]
- Hu, G.; Yin, C.; Wan, M.; Zhang, Y.; Fang, Y. Recognition of Diseased Pinus Trees in UAV Images Using Deep Learning and AdaBoost Classifier. Biosyst. Eng. 2020, 194, 138–151. [Google Scholar] [CrossRef]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. Early Detection of Pine Wilt Disease Using Deep Learning Algorithms and UAV-Based Multispectral Imagery. For. Ecol. Manag. 2021, 497, 119493. [Google Scholar] [CrossRef]
- Iwahori, H.; Futai, K. Lipid Peroxidation and Ion Exudation of Pine Callus Tissues Inoculated with Pinewood Nematodes. Nematol. Res. (Jpn. J. Nematol.) 1993, 23, 79–89. [Google Scholar] [CrossRef]
- Gu, J.; Wang, J.; Braasch, H.; Burgermeister, W.; Schröder, T. Morphological and Molecular Characterisation of Mucronate Isolates (“M” Form) of Bursaphelenchus Xylophilus (Nematoda: Aphelenchoididae). Russ. J. Nematol. 2011, 19, 103–120. [Google Scholar]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS+C: A Modified Sun-Canopy-Sensor Topographic Correction in Forested Terrain. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2148–2159. [Google Scholar] [CrossRef]
- Xu, H.C.; Luo, Y.Q.; Zhang, T.T.; Shi, Y.J. Changes of Reflectance Spectra of Pine Needles in Different Stage after Being Infected by Pine Wood Nematode. Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc. Spectr. Anal. 2011, 31, 1352–1356. [Google Scholar]
- dos Santos, C.S.S.; de Vasconcelos, M.W. Identification of Genes Differentially Expressed in Pinus Pinaster and Pinus Pinea after Infection with the Pine Wood Nematode. Eur. J. Plant Pathol. 2012, 132, 407–418. [Google Scholar] [CrossRef]
- Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear Discriminant Analysis: A Detailed Tutorial. AI Commun. 2017, 30, 169–190. [Google Scholar] [CrossRef] [Green Version]
- Li, N. Research on Early Diagnostic Spectral Features of Pine Wilt Disease Based on Satellite-Airborne-Ground Remote Sensing Data. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2023. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Li, Y.; Chai, G.; Wang, Y.; Lei, L.; Zhang, X. ACE R-CNN: An Attention Complementary and Edge Detection-Based Instance Segmentation Algorithm for Individual Tree Species Identification Using UAV RGB Images and LiDAR Data. Remote Sens. 2022, 14, 3035. [Google Scholar] [CrossRef]
- Tian, X.; Chen, L.; Zhang, X.; Chen, E. Improved Prototypical Network Model for Forest Species Classification in Complex Stand. Remote Sens. 2020, 12, 3839. [Google Scholar] [CrossRef]
- Chen, L.; Tian, X.; Chai, G.; Zhang, X.; Chen, E. A New CBAM-P-Net Model for Few-Shot Forest Species Classification Using Airborne Hyperspectral Images. Remote Sens. 2021, 13, 1269. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Maximum take-off weight | 15.5 kg |
Flight load | 6000 g |
Hovering accuracy (P-GPS) | Vertical: ±0.5 m, Horizontal: ±1.5 m |
Rotational angular velocity | Tilt axis: 300°/s, Directional axis: 150°/s |
Maximum ascent speed | 5 m/s |
Maximum descent speed | 3 m/s |
Maximum flight speed | 18 m/s |
Maximum flight height | Altitude 4500 m |
Wheelbase | 1133 mm |
Parameters | Values |
---|---|
Wavelength range | 400–1000 nm |
Spectral channels | 270 |
Spectral resolution (FWHM) | 6 nm |
Weight | 0.5 kg |
Field of view | 19° |
Focal length | 17 mm |
Sampling interval | 1.74 nm |
PWD Infection Stage | Characterization |
---|---|
Early infected trees (E) | Needles begin to turn yellow |
Middle infected trees (M) | Needles are yellow |
Late infected trees (L) | Needles are all red; but do not fall off |
Dead trees (D) | All leaves fall off |
Spectral Range | Central Wavelength (nm) | Band |
---|---|---|
R | 640 | 109 |
G | 551 | 69 |
B | 471 | 33 |
Spectral Range | Central Wavelength (nm) | Band |
---|---|---|
Blue | 486 | 40 |
Green | 546 | 67 |
Red | 642 | 110 |
Red-edge1 | 722 | 146 |
Red-edge2 | 758 | 162 |
Red-edge3 | 780 | 172 |
NIR1 | 840 | 199 |
NIR2 | 864 | 210 |
PWD Infection Stage | Training Set | Validation Set |
---|---|---|
Early infected trees (E) | 263 | 66 |
Middle infected trees (M) | 227 | 57 |
Late infected trees (L) | 159 | 40 |
Dead trees (D) | 53 | 13 |
Total | 702 | 176 |
Categories | Sample Size (Pixels) | ||
---|---|---|---|
Training Set | Validation Set | Test Set | |
Early infected trees (E) | 6924 | 6924 | 263,100 |
Middle infected trees (M) | 17,117 | 17,117 | 650,450 |
Late infected trees (L) | 13,134 | 13,134 | 499,077 |
Dead trees (D) | 4365 | 4365 | 165,865 |
Healthy pine trees | 429 | 429 | 16,286 |
Other woodlands | 136 | 136 | 5166 |
Water bodies | 101 | 101 | 3837 |
Roads | 70 | 70 | 2653 |
Total | 42,276 | 42,276 | 1,606,434 |
Layer Name | Output Size | Parameters |
---|---|---|
Conv2d-1 | [−1,64,51,51] | 4672 |
BatchNorm2d-2 | [−1,64,51,51] | 128 |
ReLU-3 | [−1,64,51,51] | 0 |
MaxPool2d-4 | [−1,64,25,25] | 0 |
Conv2d-5 | [−1,64,25,25] | 36,928 |
BatchNorm2d-6 | [−1,64,25,25] | 128 |
ReLU-7 | [−1,64,25,25] | 0 |
MaxPool2d-8 | [−1,64,12,12] | 0 |
Conv2d-9 | [−1,64,12,12] | 36,928 |
BatchNorm2d-10 | [−1,64,12,12] | 128 |
ReLU-11 | [−1,64,12,12] | 0 |
MaxPool2d-12 | [−1,64,6,6] | 0 |
Conv2d-13 | [−1,64,6,6] | 36,928 |
BatchNorm2d-14 | [−1,64,6,6] | 128 |
ReLU-15 | [−1,64,6,6] | 0 |
No. | East-West Canopy Width REW (m) | North-South Canopy Width RSN (m) | Measured Area (m2) | Object-Oriented Multi-Scale Segmentation of the Canopy Area (m2) | Relative Error |
---|---|---|---|---|---|
1 | 2.6 | 2.4 | 4.91 | 4.56 | 0.07 |
2 | 2.2 | 2.1 | 3.63 | 3.77 | 0.04 |
3 | 1.6 | 1.8 | 2.27 | 2.18 | 0.04 |
4 | 1.5 | 1.4 | 1.65 | 1.54 | 0.07 |
5 | 1.7 | 1.4 | 1.89 | 1.67 | 0.01 |
6 | 1.6 | 1.8 | 2.27 | 2.13 | 0.06 |
7 | 2.6 | 2.4 | 4.91 | 4.64 | 0.05 |
8 | 2.5 | 2.3 | 4.52 | 4.33 | 0.04 |
9 | 2.8 | 2.6 | 5.72 | 5.65 | 0.01 |
10 | 2.7 | 2.9 | 6.15 | 5.89 | 0.04 |
… | … | … | … | … | … |
Categories | Mask R-CNN | Prototypical Network | Prototypical Network + Segmentation | ||||
---|---|---|---|---|---|---|---|
RGB | Hyperspectral Full Bands | Feature Preferred Bands | Hyperspectral Full Bands | Feature Preferred Bands | Hyperspectral Full Bands | Feature Preferred Bands | |
OA (%) | 64.60 | 68 | 71 | 92.17 | 92.79 | 82.95 | 83.51 |
AA (%) | 64.58 | 68 | 70.98 | 91.33 | 93.46 | 82.20 | 84.11 |
Kappa | 0.574 | 0.582 | 0.596 | 0.889 | 0.898 | 0.800 | 0.808 |
E | 54.30 | 62.90 | 63.50 | 82.17 | 83.21 | 73.95 | 74.89 |
M | 73.10 | 72.70 | 77.50 | 93.87 | 92.54 | 84.48 | 83.29 |
L | 62 | 64.50 | 68.40 | 95.82 | 97.61 | 86.24 | 87.85 |
D | 68.90 | 71.90 | 74.50 | 93.71 | 97.6 | 84.34 | 87.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Chen, L.; Yao, Z.; Li, N.; Long, L.; Zhang, X. Intelligent Identification of Pine Wilt Disease Infected Individual Trees Using UAV-Based Hyperspectral Imagery. Remote Sens. 2023, 15, 3295. https://doi.org/10.3390/rs15133295
Li H, Chen L, Yao Z, Li N, Long L, Zhang X. Intelligent Identification of Pine Wilt Disease Infected Individual Trees Using UAV-Based Hyperspectral Imagery. Remote Sensing. 2023; 15(13):3295. https://doi.org/10.3390/rs15133295
Chicago/Turabian StyleLi, Haocheng, Long Chen, Zongqi Yao, Niwen Li, Lin Long, and Xiaoli Zhang. 2023. "Intelligent Identification of Pine Wilt Disease Infected Individual Trees Using UAV-Based Hyperspectral Imagery" Remote Sensing 15, no. 13: 3295. https://doi.org/10.3390/rs15133295
APA StyleLi, H., Chen, L., Yao, Z., Li, N., Long, L., & Zhang, X. (2023). Intelligent Identification of Pine Wilt Disease Infected Individual Trees Using UAV-Based Hyperspectral Imagery. Remote Sensing, 15(13), 3295. https://doi.org/10.3390/rs15133295