Anomaly-Based Ship Detection Using SP Feature-Space Learning with False-Alarm Control in Sea-Surface SAR Images
Abstract
:1. Introduction
- To enhance the feature representation capability in the SP cell, we construct a three-dimensional (3D) feature space that contains the boundary feature described by Haar-like, texture feature described by non-uniform LBP, and intensity attention contrast feature.
- The clutter-only feature-learning (COFL) model with false-alarm control is developed in the anomaly-based detection decision based on the established feature space.
- We execute extensive experiments on SAR datasets collected from different satellites, and it is obvious that our proposed method has a state-of-the-art feature discriminative ability and good detection accuracy.
2. Detection Methodology
2.1. Preprocessing Operation
2.1.1. Sea–Land Segmentation
2.1.2. SP Segmentation
2.2. Feature Extraction Based on SP
2.2.1. Boundary Feature Extraction Based on Haar-like
- When , ;
- When , ;
- When , ;
- When , ;
- When , ;
- When , ;
- When , ;
- When , .
2.2.2. Saliency Texture Feature Extraction Based on Non-Uniform LBP
2.2.3. Attention Contrast Feature Extraction Based on Intensity Information
2.3. Detection Decision by COFL with False-Alarm Control
Algorithm 1. The proposed ship detector based on COFL with false-alarm control. |
|
3. Experimental Results and Analysis
3.1. Effectiveness Analyses of Multi-Feature Extraction
3.2. Performance Analyses of Target Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allard, Y.; Germain, M.; Bonneau, O. Ship Detection and Characterization Using Polarime SAR Data. In Harbour Protection Through Data Fusion Technologies; Springer: Berlin/Heidelberg, Germany, 2009; pp. 243–250. [Google Scholar]
- Xu, G.; Zhang, B.; Chen, J.; Xing, M.; Hong, W. Sparse synthetic aperture radar imaging from compressed sensing and machine learning: Theories, applications and trends. IEEE Geosci. Remote Sens. Mag. 2022, 10, 32–69. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, G.; Zhou, R.; Zhang, H.; Hong, W. Multi-channel back-projection algorithm for mmWave automotive MIMO SAR imaging with doppler-division multiplexing. IEEE J. Sel. Top. Signal Process. 2023, 17, 445–457. [Google Scholar] [CrossRef]
- Sor, R.; Sathone, J.S.; Deoghare, S.U.; Sutaone, M.S. OS-CFAR based on thresholding approaches for target detection. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–6. [Google Scholar]
- Tao, D.; Anfinsen, S.N.; Brekke, C. Robust CFAR detector based on truncated statistics in multiple-target situations. IEEE Trans. Geosci. Remote Sens. 2016, 54, 117–134. [Google Scholar] [CrossRef]
- Ai, J.; Luo, Q.; Yang, X.; Yin, Z.; Xu, H. Outliers-robust CFAR detector of gaussian cutter based on the truncated-maximum-likelihood-estimator in SAR imagery. IEEE Trans. Intell. Transp. Syst. 2020, 21, 2039–2049. [Google Scholar] [CrossRef]
- Almeida García, F.D.; Flores Rodriguez, A.C.; Fraidenraich, G.; Santos Filho, J.C.S. CA-CFAR detection performance in homogeneous Weibull clutter. IEEE Trans. Geosci. Remote Sens. Lett. 2019, 16, 887–891. [Google Scholar] [CrossRef]
- Liu, N.; Sun, Y.; Ding, H.; Song, J. Comparative analysis of classical statistical models based on real sea clutter. Comput. Simul. 2017, 34, 448–452. [Google Scholar]
- Li, W.; Zhang, Y.; Zhang, G. Sea clutter simulation research based on lognormal distribution. In Proceedings of the 2016 4th International Conference on Advanced Materials and Information Technology Processing (AMITP 2016), Guilin, China, 24–25 September 2016; pp. 545–548. [Google Scholar]
- Li, B.; Liu, X.; Du, S.; Li, W. CFAR detector based on the identification of sea clutter distribution characteristics. J. Phys. Conf. Ser. 2022, 2221, 1–10. [Google Scholar] [CrossRef]
- Saldanha, M.F.S.; Freitas, C.C.; Sant’Anna, S.J.S. Single channel SAR image segmentation using gamma distribution hipothesis test. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 4323–4326. [Google Scholar]
- Gao, G.; Ouyang, K.; Luo, Y.; Liang, S.; Zhou, S. Scheme of parameter estimation for generalized gamma distribution and its application to ship detection in SAR images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1812–1832. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Y.; Jiang, T. Sea clutter distribution modeling: A kernel density estimation approach. In Proceedings of the 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 18–20 October 2018; pp. 1–6. [Google Scholar]
- Xin, Z.; Liao, G.; Yang, Z.; Zhang, Y.; Dang, H. Analysis of distribution using graphical goodness of fit for airborne SAR sea-clutter data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5719–5728. [Google Scholar] [CrossRef]
- Qin, X.; Zhou, S.; Zou, H. A CFAR detection algorithm for generalized gamma distributed background in high-resolution SAR images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 806–810. [Google Scholar]
- Dai, H.; Du, L.; Wang, Y.; Wang, Z. A modified CFAR algorithm based on object proposals for ship target detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1925–1929. [Google Scholar] [CrossRef]
- Ai, J.; Yang, X.; Yan, H. A local CFAR detector based on gray intensity correlation in SAR imagery. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 697–700. [Google Scholar]
- Wang, C.; Wang, J.; Liu, X. A novel algorithm for ship detection in SAR images. In Proceedings of the 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 20–22 September 2019; pp. 1–5. [Google Scholar]
- Pappas, O.; Achim, A.; Bull, D. Superpixel-level CFAR detectors for ship detection in SAR imagery. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1397–1401. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Cui, X.; Chen, S. Adaptive superpixel-level CFAR detector for SAR inshore dense ship detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Li, T.; Peng, D.; Shi, S. Outlier-robust superpixel-level CFAR detector with truncated clutter for single look complex SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5261–5274. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Lu, S.; Xiang, D.; Su, Y. Fast Superpixel-Based Non-Window CFAR Ship Detector for SAR Imagery. Remote Sens. 2022, 14, 2092. [Google Scholar] [CrossRef]
- Li, T.; Peng, D.; Chen, Z.; Guo, B. Superpixel-level CFAR detector based on truncated gamma distribution for SAR images. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1421–1425. [Google Scholar] [CrossRef]
- Li, T.; Liu, Z.; Xie, R.; Ran, L. An improved superpixel-level CFAR detection method for ship targets in high-resolution SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 184–194. [Google Scholar] [CrossRef]
- Yang, M.; Guo, C.; Zhong, H.; Yin, H. A curvature-Based saliency method for ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1590–1594. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, R.; Fu, X.; Xia, K. Unsupervised ship detection for single-channel SAR images based on multiscale saliency and complex signal kurtosis. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Li, N.; Pan, X.; Yang, L.; Huang, Z.; Wu, Z.; Zheng, G. Adaptive CFAR method for SAR ship detection using intensity and texture feature fusion attention contrast mechanism. Sensors 2022, 22, 8116. [Google Scholar] [CrossRef]
- Cheng, J.; Xiang, D.; Tang, J.; Zheng, Y.; Guan, D.; Du, B. Inshore ship detection in large-scale SAR images based on saliency enhancement and bhattacharyya-like distance. Remote Sens. 2022, 14, 2832. [Google Scholar] [CrossRef]
- Liang, Y.; Sun, K.; Zeng, Y.; Li, G.; Xing, M. An adaptive hierarchical detection method for ship targets in high-resolution SAR images. Remote Sens. 2020, 12, 303. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, C.; Pan, Z. Superpixel-based LCM detector for faint ships hidden in strong noise background SAR imagery. IEEE Geosci. Remote Sens. Lett. 2019, 16, 417–421. [Google Scholar] [CrossRef]
- Lin, H.; Chen, H.; Jin, K.; Zeng, L.; Yang, J. Ship detection with superpixel-level fisher vector in high-resolution SAR images. IEEE Geosci. Remote Sens. Lett. 2020, 17, 247–251. [Google Scholar] [CrossRef]
- He, G.; Xia, Z.; Chen, H.; Li, K.; Zhao, Z.; Guo, Y.; Feng, P. An adaptive ship detection algorithm for HRWS SAR images under complex background: Application to sentinel1a data. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2018, 3, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Xu, Y.; Yao, L. A new ship target detection algorithm based on SVM in high resolution SAR image. Remote. Sens. Technol. Appl. 2018, 33, 119–127. [Google Scholar]
- Li, H.; Cui, X.; Chen, S. PolSAR ship detection with optimal polarimetric rotation domain features and SVM. Remote Sens. 2021, 13, 3932. [Google Scholar] [CrossRef]
- Yang, X.; Bi, F.; Yu, Y.; Chen, L. An effective false-alarm removal method based on OC-SVM for SAR ship detection. In Proceedings of the IET International Radar Conference 2015, Hangzhou, 14–16 October 2015; pp. 1–4. [Google Scholar]
- Zou, B.; Qiu, Y.; Zhang, L. Docked ships detection using PolSAR image based on GOPSO-SVM. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6. [Google Scholar]
- Zou, B.; Qiu, Y.; Zhang, L. Ship detection using PolSAR images based on simulated annealing by fuzzy matching. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Jiang, S.; Zhu, M.; He, Y.; Zheng, Z.; Zhou, F.; Zhou, G. Ship detection with SAR based on Yolo. In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1647–1650. [Google Scholar]
- Yu, H.; Li, Y.; Zhang, D. An improved YOLO v3 small-scale ship target detection algorithm. In Proceedings of the 2021 6th International Conference on Smart Grid and Electrical Automation (ICSGEA), Kunming, China, 29–30 May 2021; pp. 560–563. [Google Scholar]
- Xu, X.; Zhang, X.; Zhang, T. SAR ship detection using YOLOv5 algorithm with anchor boxes cluster. In Proceedings of the 2022 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 2139–2142. [Google Scholar]
- Sun, Z.; Leng, X.; Lei, Y.; Xiong, B.; Ji, K.; Kuang, G. BiFA-YOLO: A novel YOLO-based method for arbitrary-oriented ship detection in high-resolution SAR images. Remote Sens. 2021, 13, 4209. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, S.; Zhan, R.; Wang, W.; Zhang, J. LMSD-YOLO: A lightweight YOLO algorithm for multi-scale SAR ship detection. Remote Sens. 2022, 14, 4801. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Zhang, T. Lite-YOLOv5: A lightweight deep learning detector for on-board ship detection in large-scene sentinel-1 SAR images. Remote Sens. 2022, 14, 1018. [Google Scholar] [CrossRef]
- Tang, G.; Zhuge, Y.; Claramunt, C.; Men, S. N-YOLO: A SAR ship detection using noise-classifying and complete-target extraction. Remote Sens. 2021, 13, 871. [Google Scholar] [CrossRef]
- Chang, Y.L.; Anagaw, A.; Chang, L.; Wang, Y.; Hsiao, C.Y.; Lee, W.H. Ship detection based on YOLOv2 for SAR imagery. Remote Sens. 2019, 11, 786. [Google Scholar] [CrossRef] [Green Version]
- Ke, X.; Zhang, X.; Zhang, T.; Shi, J.; Wei, S. SAR ship detection based on an improved faster R-CNN using deformable convolution. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 3565–3568. [Google Scholar]
- Chai, B.; Chen, L.; Shi, H.; He, C. Marine ship detection method for SAR image based on improved faster RCNN. In Proceedings of the 2021 SAR in Big Data Era (BIGSARDATA), Nanjing, China, 22–24 September 2021; pp. 1–4. [Google Scholar]
- Liu, D.; Gao, S. Ship targets detection in remote sensing images based on improved faster-RCNN. J. Phys. Conf. Ser. 2021, 2132, 1–6. [Google Scholar] [CrossRef]
- Xia, R.; Chen, J.; Huang, Z.; Wan, H.; Wu, B.; Sun, L.; Yao, B.; Xiang, H.; Xing, M. CRTransSar: A visual transformer based on contextual joint representation learning for SAR ship detection. Remote Sens. 2022, 14, 1488. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, K.; Han, B.; Yang, J.; Pan, Z.; Hu, Y.; Yin, D. D-MFPN: A doppler feature matrix fused with a multilayer feature pyramid network for SAR ship detection. Remote Sens. 2023, 15, 626. [Google Scholar] [CrossRef]
- Rostami, M.; Kolouri, S.; Eaton, E.; Kim, K. Deep transfer learning for few-shot SAR image classification. Remote Sens. 2019, 11, 1374. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhang, X. High-speed ship detection in SAR images based on a grid convolutional neural network. Remote Sens. 2019, 11, 1206. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Su, H.; Ming, J.; Wang, C.; Yan, M.; Kumar, D.; Shi, J.; Zhang, X. Precise and robust ship detection for high-resolution SAR imagery based on HR-SDNet. Remote Sens. 2020, 12, 167. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Cao, Z.; Cui, Z.; Pi, Y.; Dang, S. Multi-scale proposal generation for ship detection in SAR images. Remote Sens. 2019, 11, 526. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, Z.; Sun, X.; Fu, K. SPAN: Strong scattering point aware network for ship detection and classification in large-scale SAR imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1188–1204. [Google Scholar] [CrossRef]
- Gao, S.; Liu, H. Polarimetric SAR ship detection based on scattering characteristics. IEEE J. Miniat. Air Space Syst. 2022, 3, 197–203. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Z.; Xing, C.; Zeng, L.; Yin, J.; Yang, J. Ship detection from polsar imagery based on the scattering difference parameter. In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1255–1258. [Google Scholar]
- Wang, N.; Li, B.; Xu, Q.; Wang, Y. Automatic ship detection in optical remote sensing images based on anomaly detection and SPP-PCANet. Remote Sens. 2019, 11, 47. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.; Li, Y.; Su, Y. A novel ship detection algorithm based on anomaly detection theory for SAR images. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; pp. 2868–2872. [Google Scholar]
- Chen, X.; Sun, J.; Yin, K.; Yu, J. Sea-land segmentation algorithm of SAR image based on Otsu method and statistical characteristic of sea area. J. Data Acquis. Process. 2014, 29, 603–608. [Google Scholar]
- Abdullah, A.; Albashish, D. Empirical comparision on boosted cascade of Haar-like features to histogram of oriented gradients for person detection. In Proceedings of the 2021 International Conference on Electrical Engineering and Informatics (ICEEI), Kuala Terengganu, Malaysia, 12–13 October 2021; pp. 1–6. [Google Scholar]
- Karanwal, S. Improved LBP and discriminative LBP: Two novel local descriptors for face recognition. In Proceedings of the 2022 IEEE International Conference on Data Science and Information System (ICDSIS), Hassan, India, 29–30 July 2022; pp. 1–6. [Google Scholar]
- Ravi Kumar, Y.B.; Ravi Kumar, C.N. Local binary pattern: An improved LBP to extract nonuniform LBP patterns with Gabor filter to increase the rate of face similarity. In Proceedings of the International Conference on Cognitive Computing and Information Processing (CCIP), Mysuru, India, 12–13 August 2016; pp. 1–5. [Google Scholar]
- Huang, W.; Lu, S.; Tang, X. A method using clustering and SVDD for quality detection. In Proceedings of the 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021; pp. 4069–4072. [Google Scholar]
- Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access 2020, 8, 120234–120254. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Ke, X.; Zhan, X.; Shi, J.; Wei, S.; Pan, D.; Li, J.; Su, H.; Zhou, Y.; et al. LS-SSDD-v1.0: A deep learning dataset dedicated to small ship detection from large-scale Sentinel-1 SAR Images. Remote Sens. 2020, 12, 2997. [Google Scholar] [CrossRef]
Dataset | Satellite | Imaging Mode | Incident Angle () | Resolution (m) | Polarization |
---|---|---|---|---|---|
HRSID | Sentinel-1, TerraSAR-X | SM, ST, HS | 27.6∼34.8, 20∼45 | 0.5, 1, 3 | HH, HV, VV |
LS-SSDD-v1.0 | Sentinel-1 | IW | 27.6∼34.8 | VV, VH |
Scenes | Methods | |||
---|---|---|---|---|
Scene 1 | CA-CFAR method | 9 | 10 | 0.4737 |
GD-CFAR method | 9 | 5 | 0.6429 | |
Improved SP-CFAR method | 9 | 2 | 0.8182 | |
SLCM method | 8 | 0 | 0.8889 | |
Adaptive SP-CFAR method | 8 | 0 | 0.8889 | |
O3DF-SVM-based method | 9 | 0 | 1 | |
P3DF-SVM-based method | 9 | 0 | 1 | |
Proposed method | 9 | 0 | 1 | |
Scene 2 | CA-CFAR method | 12 | 8 | 0.6000 |
GD-CFAR method | 12 | 6 | 0.6667 | |
Improved SP-CFAR method | 12 | 4 | 0.7500 | |
SLCM method | 9 | 0 | 0.7500 | |
Adaptive SP-CFAR method | 10 | 0 | 0.8333 | |
O3DF-SVM-based method | 12 | 2 | 0.8571 | |
P3DF-SVM-based method | 12 | 1 | 0.9231 | |
Proposed method | 12 | 0 | 1 | |
Scene 3 | CA-CFAR method | 12 | 11 | 0.5217 |
GD-CFAR method | 12 | 5 | 0.7059 | |
Improved SP-CFAR method | 12 | 4 | 0.7500 | |
SLCM method | 11 | 2 | 0.7857 | |
Adaptive SP-CFAR method | 11 | 1 | 0.8462 | |
O3DF-SVM-based method | 12 | 2 | 0.8571 | |
P3DF-SVM-based method | 12 | 2 | 0.8571 | |
Proposed method | 12 | 1 | 0.9231 | |
Scen 4 | CA-CFAR method | 52 | 13 | 0.8000 |
GD-CFAR method | 52 | 8 | 0.8667 | |
Improved SP-CFAR method | 52 | 6 | 0.8966 | |
SLCM method | 47 | 0 | 0.9038 | |
Adaptive SP-CFAR method | 49 | 0 | 0.9423 | |
O3DF-SVM-based method | 52 | 3 | 0.9455 | |
P3DF-SVM-based method | 52 | 2 | 0.9630 | |
Proposed method | 52 | 1 | 0.9811 |
CA-CFAR Mrthod | GD-CFAR Method | Improved SP-CFAR Method | SLCM Method | Adaptive SP-CFAR Method | O3DF-SVM-Based Method | P3DF-SVM-Based Method | Proposed Method | |
---|---|---|---|---|---|---|---|---|
Average values | 0.6157 | 0.7127 | 0.8081 | 0.8312 | 0.8570 | 0.9090 | 0.9450 | 0.9724 |
Standard deviation values | 0.1166 | 0.0949 | 0.0624 | 0.0548 | 0.0412 | 0.0387 | 0.0283 | 0.0200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Li, N.; Yang, L.; Huang, Z.; Chen, J.; Wu, Z.; Zheng, G. Anomaly-Based Ship Detection Using SP Feature-Space Learning with False-Alarm Control in Sea-Surface SAR Images. Remote Sens. 2023, 15, 3258. https://doi.org/10.3390/rs15133258
Pan X, Li N, Yang L, Huang Z, Chen J, Wu Z, Zheng G. Anomaly-Based Ship Detection Using SP Feature-Space Learning with False-Alarm Control in Sea-Surface SAR Images. Remote Sensing. 2023; 15(13):3258. https://doi.org/10.3390/rs15133258
Chicago/Turabian StylePan, Xueli, Nana Li, Lixia Yang, Zhixiang Huang, Jie Chen, Zhenhua Wu, and Guoqing Zheng. 2023. "Anomaly-Based Ship Detection Using SP Feature-Space Learning with False-Alarm Control in Sea-Surface SAR Images" Remote Sensing 15, no. 13: 3258. https://doi.org/10.3390/rs15133258
APA StylePan, X., Li, N., Yang, L., Huang, Z., Chen, J., Wu, Z., & Zheng, G. (2023). Anomaly-Based Ship Detection Using SP Feature-Space Learning with False-Alarm Control in Sea-Surface SAR Images. Remote Sensing, 15(13), 3258. https://doi.org/10.3390/rs15133258