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Abstract: Synthetic aperture radar (SAR) imagery has been used as a promising data source for
monitoring maritime activities, and its application for oil and ship detection has been the focus of
many previous research studies. Many object detection methods ranging from traditional to deep
learning approaches have been proposed. However, majority of them are computationally intensive
and have accuracy problems. The huge volume of the remote sensing data also brings a challenge
for real time object detection. To mitigate this problem a high performance computing (HPC) method
has been proposed to accelerate SAR imagery analysis, utilizing the GPU based computing methods.
In this paper, we propose an enhanced GPU based deep learning method to detect ship from the
SAR images. The You Only Look Once version 2 (YOLOv2) deep learning framework is proposed
to model the architecture and training the model. YOLOv2 is a state-of-the-art real-time object
detection system, which outperforms Faster Region-Based Convolutional Network (Faster R-CNN) and
Single Shot Multibox Detector (SSD) methods. Additionally, in order to reduce computational time
with relatively competitive detection accuracy, we develop a new architecture with less number of
layers called YOLOv2-reduced. In the experiment, we use two types of datasets: A SAR ship detection
dataset (SSDD) dataset and a Diversified SAR Ship Detection Dataset (DSSDD). These two datasets were
used for training and testing purposes. YOLOv2 test results showed an increase in accuracy of ship
detection as well as a noticeable reduction in computational time compared to Faster R-CNN. From
the experimental results, the proposed YOLOv2 architecture achieves an accuracy of 90.05% and
89.13% on the SSDD and DSSDD datasets respectively. The proposed YOLOv2-reduced architecture
has a similarly competent detection performance as YOLOv2, but with less computational time on a
NVIDIA TITAN X GPU. The experimental results shows that the deep learning can make a big leap
forward in improving the performance of SAR image ship detection.

Keywords: synthetic aperture radar (SAR) images; ship detection; YOLOv2; faster R-CNN;
YOLOv2-reduced; high performance computing

1. Introduction

High resolution Synthetic Aperture Radar (SAR) is regarded as one of the most suitable sensors for
object detection and environment monitoring in the field of space technology. It offers wide coverage
and ability to scan regardless of weather or time of day. The SAR images are characterized as having
high resolution capability, not being dependent on the weather condition and independent of flight
altitude. SAR always provides quality images at any condition because of their self-illumination ability.
SAR images have a lot of applications in remote sensing and mapping of different surfaces of any
planets including the earth. Other important applications of SAR imagery include oceanography,
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topography, glaciology, geology, forestry, biomass, volcano and earthquake monitoring. It is also useful
in monitoring maritime activities like oil spills and ship detection.

Ship detection is an important topic in the field of remote sensing. At present, many object
detection methods have been developed in the pattern recognition community. However, many of the
proposed systems have computationally intensive problems for high accuracy performance. Before
deep learning appeared, the traditional methods of target detection were roughly divided into region
selections, e.g., scale-invariant feature transform (SIFT), and histogram of oriented gradients (HOG),
and classifiers, e.g., support vector machine (SVM), and Adaboost. After AlexNet won ImageNet’s image
Classification Challenge in 2012, with very high accuracy and performance in object detection using
deep learning, the application of neural networks for the latter has started booming [1].

Because of the limited object detection improvement from the perspective of image analysis,
the most straightforward idea for enhancing the computational time of the SAR image analysis is the
use of high performance computing (HPC) methods. Ref. [2–4] clam that the use of GPU is a significant
advance in recent years that makes the training phase of deep network approaches more practical.
Due to the richness of the SAR image and the variability of the data, building accurate ship detection
and classification model were almost impossible.

The deep learning models for object detection are of two types; the region proposal classification [5]
and the sliding window [6]. The sliding window has better speed because the approach generates the
bounding boxes in a single stage. Unlike sliding window approaches and the region proposal based
approaches; YOLO sees the entire image during the training and testing periods and thus encodes
contextual information about classes as well as their appearance. Faster region-based convolutional
network (Faster R-CNN), a top detection method [6], mistakes background patches in an image for
objects because it can not see the larger context. The YOLO architecture makes less than half the number
of background errors by Fast R-CNN.

The object detections using the convolutional neural network (CNN) began to develop rapidly.
Girshick et al. proposed region-based convolutional network (R-CNN) [7], fast R-CNN [8] and faster
R-CNN [6] to prove their remarkable results. R-CNN uses selective search [9] to extract region
proposals and then uses CNN and other recognition techniques to classify it. However, R-CNN
training stages are divided into multiple steps, tedious processes, time-consuming and slow training.
Then, fast-R-CNN was proposed.

Fast-R-CNN reduces the computational complexity and improves the performance of
R-CNNs [7,10,11] by directly using the softmax function instead of SVMs. Region of interest (ROI)
polling reduces the computational complexity and further improves the performance of R-CNNs.
Although Fast-R-CNNs has excellent performance results, it has limited speed performance due to
bottlenecks in the proposed areas [8]. Faster R-CNN [10] unifies the candidate area generation, feature
extraction, classification and location refinement into a deep network framework and implements
a complete end-to-end CNN target detection model. Region proposal network (RPN) model can not
only quickly extract high-quality proposals and speed up target detection, but also improve the target
detection performance [12].

Although the faster-R-CNN achieves good detection results, its accuracy is not high enough.
To meet high detection accuracy and high-speed performance requirements of real-time operation,
Redmon et al. [6] proposed another CNN-based unified target detection method. The proposed method,
YOLO, predicts the bounding box and object class probability directly from the complete image in a
single estimate. Since the entire detection pipeline is a single network, end-to-end optimization of the
detection performance is straightforward. The YOLO [13] model on the NVIDIA Titan X GPU runs in
real time at 45 fps, with a mean average precision (mAP) of 63.4% on the PASCAL VOC 2007 dataset [12].

In addition to the region proposal and the sliding window method of ship detection, many
methods have been proposed. The most common approach is called constant false alarm rate (CFAR)
which set a threshold that is supposed to keep the false alarm constant [14,15]. In CFAR, the sea
clutter background is modeled according to a suitable distribution and a threshold is set to achieve
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an assigned probability of false alarm (PFA) [15]. The performance of CFAR method is poor when
the sea condition is rough. Therefore, a bilateral CFAR algorithm for ship detection in SAR images is
proposed. This method can reduce the influence of SAR ambiguities and sea clutter, by means of a
combination of the intensity distribution and the spatial distribution of SAR images [16]. H. Greidanus
et al. proposed SUMO which is a pixel-based CFAR detector for multi-look radar images [17].

P.Iervolino et al. proposed a novel ship detection technique for sentinel-1 SAR data, the techniques
is composed of three individual main steps: land masks rejection, detection and discrimination [18].
In 2017, P.Iervolino, and R.Guida, proposed the generalized-likelihood ratio test (GLRT) method to
detect ship in real time or near real-time fashion [15]. However, the identification of small vessels
is still challenging especially when the sea conditions are rough. To solve this problem, incoherent
dual-polarization method was proposed [19,20]. The algorithm considers the limited extension of
small icebergs, which are supposed to have a stronger cross-polarization and higher cross- over
co-polarization ratio compared to the surrounding sea or sea ice background [20].

In this paper, we use the most advanced, you only look once version 2 (YOLOv2) deep
learning framework [13], which is a well-known sliding window based deep learning model in
the field of computer vision, as a base to implement vessel detection and adjust the parameters
to achieve high accuracy performance in near real-time. In addition, we introduced a new
architecture, YOLOv2-reduced, having fewer layers due to elimination of some of the unrequired
layers. The proposed architecture has less computational time compared with YOLOv2 on NVIDIA
TITAN X GPU. YOLOv2-reduced is best for real time object detection problem. The performance of
the YOLOv2 approach is evaluated on two different datasets and its performance is compared with
region proposed approach Faster R-CNN. The performance of YOLOv2-reduced is evaluated on SSSD
dataset and it reduces the computational time significantly.

The rest of this paper is organized as follows. In Section 2, the general overview of YOLOv2 is
introduced. The experimental results are presented in Section 3. The newly proposed YOLOv2-reduced
architecture is introduced in Section 4. Finally, conclusions are remarked in Section 5.

2. Methodology

In this paper, we construct a YOLOv2-based [6] end-to-end training convolutional neural network
to detect ships. First, YOLO [13] uses a single neural network to directly predict the bounding box and
class probability. The SAR image is divided into an S × S grid of cells. Each grid cell predicts only one
object. If the center of an object falls into a grid cell, that grid cell is responsible for detecting that object.
Every grid cells predicts the B bounding boxes and the confidence score of that bounding boxes, and
class probabilities. The bounding box prediction has 5 components: (x, y, w, h, confidence). The (x, y)
coordinates represent the center of the box relative to the grid cell location. These coordinates are
normalized to fall between 0 and 1. The (w, h) box dimensions are the width and the height of the
bounding box also normalized to 0 and 1 relative to the image size.

The predicted confidence scores indicate how confident the model is that the box contains an object
and also how accurate it thinks the box is that it predicts. If no object exists in that cell, the confidence
scores should be zero. Otherwise, we want the confidence score to be equal to the intersection over
union (IOU) between the ground truth and the predicted box [6]. Each grid cell makes B of those
predictions, so there are in total S x S x B * 5 outputs related to bounding box predictions. In some cases,
multiple objects can exit in a single grid cell. To solve the problem, we used the concept of anchor
box. Anchor box makes it possible for the YOLOv2 algorithm to detect multiple objects centered in
one grid cell. The idea of anchor box adds one more dimension to the output labels by pre-defining
a number of anchor boxes. Then, we will be able to assign one object to each anchor box. Figure 1
depicted how the grids and bounding boxes are computed and looks. Figure 2 is a detection flowchart
of the YOLOv2 algorithm.

Table 1 shows that there are 30 layers of YOLOv2 [6] network architecture, of which 22 layers
are convolutional layers and 5 layers are the max pooling layers. The rest three layers are two route
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layers and one reorg layer. The route layers are performed at the 25th and 27th layers. The role of the
route layer is to merge layers. For example, the 27th route is composed of layer 26 and layer 24, that
is, the 26th and 24th layers are merged into the next layer. The final detection layer reorganizes the
features extracted from the convolution layer to predict the probability and the bounding box of the
ship. Assuming the input image size is 416×416. Table 1 depicts the size of the image after each layer
operation performed. After the successive operation on each layer, the output of the 30th layer size is
13 × 13 × 30. Finally, it is reduced to a 13 × 13 size grid. The output of each grid cell is 30, i.e., (5 × 6),
where 5 values refers to the 5 predictive borders for each 13 × 13 grid cell, and the 25 values (30 minus
5) refers to that each border outputs 25 values. One of the six numbers is the probability of a ship.
The other five numbers are the position and size of the bounding boxes tx, ty, tw, th and the confidence
of the bounding boxes.

Table 1. You Only Look Once version 2 (YOLOv2) Network Architecture.

No. Type Input Filters Size/Stride Output

0 conv 416 × 416 × _3 _32 3 × 3/1 416 × 416 × __32
1 max 416 × 416 × _32 2 × 2/2 208 × 208 × _32
2 conv 208 × 208 × _32 _64 3 × 3/1 208 × 208 × _64
3 max 208 × 208 × _64 2 × 2/2 104 × 104 × _64
4 conv 104 × 104 × _64 _128 3 × 3/1 104 × 104 × _128
5 conv 104 × 104 × _128 _64 1 × 1/1 104 × 104 × _64
6 conv 104 × 104 × _64 _128 3 × 3/1 104 × 104 × _128
7 max 104 × 104 × _128 2 × 2/2 _52 × _52 × _128
8 conv _52 × _52 × _128 _256 3 × 3/1 _52 × _52 × _256
9 conv _52 × _52 × _256 _128 1 × 1/1 _52 × _52 × _128

10 conv _52 × _52 × _128 _256 3 × 3/1 _52 × _52 × _256
11 max _52 × _52 × _256 2 × 2/2 _26 × _26 × _256
12 conv _26 × _26 × _256 _512 3 × 3/1 _26 × _26 × _512
13 conv _26 × _26 × _512 _256 1 × 1/1 _26 × _26 × _256
14 conv _26 × _26 × _256 _512 3 × 3/1 _26 × _26 × _512
15 conv _26 × _26 × _512 _256 1 × 1/1 _26 × _26 × _256
16 conv _26 × _26 × _256 _512 3 × 3/1 _26 × _26 × _512
17 max _26 × _26 × _512 2 × 2/2 _13 × _13 × _512
18 conv _13 × _13 × _512 1024 3 × 3/1 _13 × _13 × 1024
19 conv _13 × _13 × 1024 _512 1 × 1/1 _13 × _13 × _512
20 conv _13 × _13 × _512 1024 3 × 3/1 _13 × _13 × 1024
21 conv _13 × _13 × 1024 _512 1 × 1/1 _13 × _13 × _512
22 conv _13 × _13 × _512 1024 3 × 3/1 _13 × _13 × 1024
23 conv _13 × _13 × 1024 1024 3 × 3/1 _13 × _13 × 1024
24 conv _13 × _13 × 1024 1024 3 × 3/1 _13 × _13 × 1024
25 route 16th _26 × _26 × _512
26 reorg _26 × _26 × _512 _ × _/1 _13 × _13 × 2048
27 route 26th and 24th _13 × _13 × 3072
28 conv _13 × _13 × 3072 1024 3 × 3/1 _13 × _13 × 1024
29 conv _13 × _13 × 1024 30 1 × 1/1 _13 × _13 × _30

In the object detection deep neural network, we used a pre-training model to enhance the detection
performance. Visual Geometry Group-16 (VGG -16) [21] usually used as a pre-training model in many
CNN versions. In YOLOv2, another pre-training model called darknet-19 is used to improve the
accuracy and speed. YOLOv2 maintains almost the same accuracy as VGG-16.

YOLOv2 detection speed was at least 4 times faster than the VGG-16. Ref. [22] compared the
detection performance of VGG-16 and YOLOv2 with an input image of 224×224 size. VGG-16
requires 30.69 billion floating-point operations, and GoogLeNet-based [23] YOLOv2 requires
8.52 billion floating-point operations [6]. Darknet-19 is smaller and requires only 5.58 billion
floating-point operations.
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3. Datasets and Experimental Results

In this section the datasets used for the purpose of the experiment, the evaluation methods used
and the result discussion will be explained.

3.1. The Datasets

In this work, we use two types of datasets. The first dataset is SAR ship detection dataset (SSDD) [5].
SSDD dataset contains ships in different environments. This dataset is a benchmark for researchers to
evaluate their approaches. In SSDD, there are a totally of 1160 images and 2456 ships. The average
number of ships per image is 2.12. This vessel dataset is provided by Li et al. [5]. In the object
detection task, you must manually mark the border and label of each image object’s ground truth.
While PASCAL VOC already provides standardized methods of image object’s ground truth labeling.
The dataset we used also follows this method to construct bounding boxes and label annotations.
We divide the dataset into three parts, i.e., the training set, validation set and the testing set with the
proportion of 7:2:1. The SAR images in the dataset include a variety of ships with adjacent docks and
land, isolated oceans, and side by side, as shown in Figure 3.
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Figure 3. Sample images from the SAR ship detection dataset (SSDD) dataset [7].

The Second dataset, Diversified SAR Ship Detection Dataset (DSSDD), is directly collected from
different sources, e.g., RadarSat-2, TerraSAR-X and Sentinel-1, with more diversity in the ships and
having various SAR image resolutions. We collected 50 SAR images from those different SAR image
providers. The resolution of the SAR images ranges from 1m to 5m. The SAR image sizes ranged
from 1,000 × 1,000 to 15,000 × 15,000. The collected images were too large to be used by the proposed
deep neural architecture, which only accepts an image with size of 416 × 416 as an input. Therefore,
we segment the images into smaller sub images each with a size of 416× 416. From the 50 large images,
1,174 sub images having a size of 416×416 were prepared. Unlike SSDD dataset where the images
are rescaled to make all the ships have relatively similar sizes, we used SAR images with different
resolutions and sizes to build a model directly. This gives a chance to the model be robust to any type
of dataset. The dataset distribution is shown in the below Table 2.

Table 2. Diversified SAR Ship Detection Dataset (DSSDD) dataset distribution.

Data Sets Number of Samples

Training Set 822

Validation Set 235

Testing set 117

Total 1174

In this paper, to annotate the SAR image, we used the LabelImg open source project on GitHub
(tzutalin.github) [22], which is currently the most widely used annotation tool. LabelImg directly
converts the annotation message into PASCAL VOC and ImageNet specification XML format. For all
1,174 SAR images, the image annotation was done manually. The schematic diagram of the annotated
vessel is shown in Figure 4. The annotated image is used as an input to train the YOLOv2 architecture.
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3.2. Evaluation Methods

To evaluate the YOLOv2 model, the following techniques were used: IoU, accuracy and mAP.
IoU is the overlap rate of the predict bounding box and ground truth generated by the model. When
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IoU exceeds the threshold the bounding box is considered to be correct, as shown in Equation (1).
This standard is used to measure the correlation between ground truth and prediction; the higher
the correlation, the higher the value. Follow-up will use IoU to calculate the average precision of our
detection model. By dropping the input image into the model for prediction, the predicted bounding
box of ship Bpred is obtained. However, if IoU of Bpred and Btruth is larger than the threshold value a0,
and the following Equation (1) is satisfied at this time, it is regarded as a correct prediction. An example
of detecting a ship in an image is shown in Figure 5. The predicted bounding box is drawn in red or
blue while the ground truth bounding box is drawn in green. Our goal is to compute the IoU between
predicted bounding boxes and ground truth. When IoU is greater than the 50% threshold, the test
result is a true positive (TP), and the value less than threshold, it is called a false positive (FP). The false
negative (FN) indicates that the model predicts that there is no ship in the image, but actually the
image does contain a ship. So, we can combine these into two metrics, which are precision and recall.

a =
Bpred ∩ Btruth

Bpred ∪ Btruth
≥ a0 (1)

IoU is frequently used as an evaluation metric to measure the accuracy of an object detector.
The importance of IoU is not only limited to assigning anchor boxes during preparation of the training
dataset, but is also very useful when non-max suppression algorithm is used for cleaning up whenever
multiple boxes are predicted for the same object. The value of a0 is assigned to 0.5, which mean at least
half of the ground truth and the predicted box cover the same region. When IoU is greater than 50%
threshold, the test case is predicted as a ship.

Precision is the ratio of true positives to the identified image:

precision =
TP

TP + FP
=

TP
n

(2)

where n represents (true positives + false positives), which is the total number of photos recognized by
the system.

recall =
TP

TP + FN
(3)

Accuracy is the most intuitive performance measure and it is simply a ratio of correctly predicted
observation to the total observations.

accuracy =
TP + FN

FN + TP + FP + FP
(4)
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Recall’s denominator is true positives + false negatives. The sum of these two values can be
understood as the total number (ground truth) of ships. The last evaluation method, mAP, is the area
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under the Recall and Precision curves. This value is between 0 and 1. Larger values of mAP represents
better detection accuracy.

3.3. The Experimential Results

We trained the YOLOv2 ship detection model on two datasets. The first dataset is SSDD dataset
which contains preprocessed SAR images and the ships in the images had a similar size.

The DSSDD dataset is directly collected from different SAR image venders which have different
sizes and resolutions. The dataset is a real dataset which makes the model robust to different scenarios.
Figure 6 depicts some ship detection results on DSSDD dataset. The newly proposed YOLO-reduced
architecture was trained on the SSDD dataset only. For the sake of fair comparison, all the experiments
were performed using a PC with Intel(R) Xeon(R) E3-1226 v3 @ 3.40GHz × 24 and 64 GB of memory,
NVIDIA TITAN X GPU with 12G memory and using CUDA8.0 cuDNN6.0. The operating system
was 64-bit Ubuntu 16.04. We adopted a well-known open source framework, namely the Darknet
framework [10], to train our deep learning models. Darknet-19 which had been pre trained on VOC
2007+2012 was selected to be the backbone of our CNN network. The results of this study verify the
correctness and effectiveness of the method in both accuracy and computational cost.
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From the experiment, we observed that the proposed method greatly improved the accuracy to
90.03% on the first SSDD dataset. The results are shown in Table 3.

Table 3. Ship Detection Accuracy and Speed Comparison on SSDD.

Networks Accuracy Time Per Image (ms)

Faster-R-CNN 70.63% 206

YOLOv2 90.05% 25

The YOLOv2 training model had a learning rate of 0.0001 and batch size of 128. As Figure 7 clearly
depicts, the total training had 30,000 iterations. The average accuracy is not stable until approximately
3000 iterations. We use convolutional weights that are pre-trained on the ImageNet. Overall, this
pre-trained weight is also suitable for SAR image of ships, which is helpful for the training performance
of the network.

We again tested the performance of the YOLOv2 training model on another dataset, collected
from the different SAR image providers with a different resolution. Unlike the SSDD dataset, the image
was not rescaled to make the different resolution image have a relatively similar size, in order to make
the detection much better. The results are depicted in Table 4.

As shown in Figure 8a, YOLOv2 method had an average precision (AP) value of 90.05% on the
testing set, which was higher than the 70.63% from the Faster R-CNN method on the SSDD dataset.
The single-stage neural network YOLOv2 guarantees the detection speed, and has good detection
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performance. As shown in Figure 8b, the YOLOv2 method had an AP value of 89.13% on the testing
set, which is higher than the 68.43% from the Faster R-CNN method on the DSSDD dataset.

1 
 

 
Figure 7. Training average precision for each iteration in class of ship on SSDD.

Table 4. Ship Detection Accuracy and Speed Comparison on the DSSDD Dataset.

Networks Accuracy Time Per Image (ms)

Faster-R-CNN 68.43% 221

YOLOv2 89.13% 27

1 
 

 
  Figure 8. (a) Precision recall curve performance of ship detection on SSDD (b) Precision recall curve

performance of ship detection on the DSSDD dataset.
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In most cases, deep learning methods yield more promising results when a larger percent of
the dataset is used as training data. We evaluated the robustness of the YOLOv2 architecture with
a small number of datasets as a training dataset. For this purpose, unlike the above experiment
that used 70 percent of the data to train the model, we used only 20 percent of the total data for
training the architecture, and used 70 percent and 10 percent of the data for testing and validation
respectively. Table 5 clearly shows the model has a good performance score even with smaller amounts
of training data.

Table 5. The performance of YOLOv2 architecture with various training and testing data compositions.

Networks Dataset Accuracy Time Per Image (ms)

70% training;
20% testing

SSDD 90.05% 25

DSSDD 89.13% 27

20% training;
70% testing

SSDD 80.74% 25

DSSDD 68.5% 27

3.4. Comparing Different Image Sizes and Resolutions

In this paper, we also tried to evaluate the performance of the YOLOv2 architecture with different
image sizes and to assess the impact of image size on the detection performance of the model. For
this purpose, we selected the SSDD dataset with three different image sizes 416 × 416, 480 × 480
and 544 × 544. The YOLOv2 network architecture detection performance was 89.56, 89.75 and 90.5
percent, respectively.

From the experimental results, we can see that the size of the input image to the network had
a huge impact on the complexity of the convolutional neural network. Even though the detection
performance was higher when the image size was increased, the average time complexity was inversely
proportional to the detection performance. Table 6 depicts a detailed comparison of those different
image sizes, where BFLOPS stands for billion floating point operations per second.

Table 6. Evaluate the Performance of YOLOv2 with Different Image size.

Method Image Size Avg. IOU AP Avg. Time (ms) BFLOPS

YOLOv2

416 × 416 75.24 89.56 15.718 29.338

480 × 480 76.99 89.79 17.545 39.060

544 × 544 78.2 90.05 25.767 50.170

If the detection execution time is taken into consideration, 416×416 was the best choice.
In conclusion, the greater the size of the image, the higher the average accuracy of the ship detection,
but at a cost of about 1.6 times the execution time. In this study, the average accuracy was taken as
the first consideration, and an image with a size of 544 × 544 was our best choice. Figure 9 shows
the precision recall curves for the different image sizes. The three resolution curves are essentially
overlapping because the APs of the three were very close.

Interestingly, we evaluated the YOLOv2 architecture performance with different spatial resolution
images. The resolution had a direct impact on the quality of the image. If the image quality is poor,
the docks, shores or canals have a tendency to appear as a ship, and that will reduce the detection rate.
To make our model more robust, we collected different SAR images with various resolutions ranging
from 1 m to 5 m. In reality, the SAR images provided had different resolutions. To make our model
suitable for all different SAR images in real time, we used SAR images with different resolutions as the
training data for our model. We conducted the experiments with 10 SAR images from each sensor type
as the testing datasets. The first 10 images were tested from a sentinel-1 sensor, with a resolution of 5 m.
The second 10 SAR images that were tested were from a TerraSAR-X sensor, which has a resolution of
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1 m. The experimental results in Table 7 show that the resolution of SAR images and their detection
performance are inversely proportional.
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Table 7. YOLOv2 performance with different resolutions.

Sensors Types Resolution Accuracy %

Sentinel-1 5 m 89.29%
TerraSAR-X 1 m 90.47%

From the experimental results, we can see that the YOLOv2 model required less computational
time than the faster RCNN. The model’s computational time was not similar on both datasets.
The YOLOv2 computational time on the DSSDD dataset was bigger than the SSDD dataset. In this
paper, we applied a preprocessing stage that divided the large image into smaller sizes to make the
detection more convenient for the model. It is possible to estimate the execution time for more realistic
SAR dataset dimensions. The larger the SAR image, the greater the execution time.

3.5. Network Optimization

In this research, besides evaluating the performance of the state of the art detection method on
SAR imagery, we developed our own new architecture that has less layers. In YOLOv2, the route layer
is a feature map that combines the features of the underlying convolutional layer (with large features)
and the previous layer of convolutional layers. The Reorg (reorganization) layer is used to reorganize
the feature map size so that the route layer is the same size as the convolution layer to be added.

In order to effectively improve the performance of the ship detection problem, we examined the
nature of ships with respect to the background. The size of the ship is much smaller than the size of
the whole picture. The size of a ship is 52 × 5 pixels, which only accounts for 0.09% of the picture in a
picture of 544 × 544 pixels. Thus, compared to the size of the whole image, the ship size is too small.
So, suitable network architectures must be designed to find more effective features.

According to the CNN architecture proposed in the related literature [2,5,6], we improved the
original YOLOv2 network architecture. The newly proposed architecture, the YOLOv2-reduced model,
has a lower number of layers.
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4. YOLOv2-Reduced Architecture

YOLOv2-reduced architecture reduces some of the top layers of the YOLOv2 architecture.
The repetitive convolution layer was not very effective for ship detection (i.e., convolutional layers 23,
24, 25). Since the ship is relatively insignificant to the ocean, applying this consecutive convolution is
not required. Therefore, we reduced these three convolutional layers to one layer.

This approach reduces the time complexity of YOLOv2 architecture with almost competitive
detection performance. Table 8 depicts the numbers and types of layers in the YOLOv1, YOLOv2
and YOLOv2-reduced network architectures. The experimental results show that YOLOv2-reduced
network architecture was better than the YOLOv2 in terms of computational time. Table 9 shows the
average accuracy and speed of the two architectures on the SSDD dataset.

Table 8. The Network Architectures of YOLOv2 and YOLOv2-reduced.

YOLOv1 YOLOv2 YOLOv2-Reduced

Conv7/2-64 Conv3-32 Conv3-32
Maxpool/2 Maxpool/2 Maxpool/2
Conv3-192 Conv3-64 Conv3-64
Maxpool/2 Maxpool/2 Maxpool/2
Conv1-128 Conv3-128 Conv3-128
Conv3-256 Conv1-64 Conv1-64
Conv1-256 Conv3-128 Conv3-128
Conv3-512 Maxpool/2 Maxpool/2
Maxpool/2 Conv3-256 Conv3-256
Conv1-256 Conv1-128 Conv1-128
Conv3-512 Conv3-256 Conv3-256
Conv1-256 Maxpool/2 Maxpool/2
Conv3-512 Conv3-512 Conv3-512
Conv1-256 Conv1-256 Conv1-256
Conv3-512 Conv3-512 Conv3-512
Conv1-256 Conv1-256 Conv1-256
Conv3-512 Conv3-512 Conv3-512
Conv1-512 Maxpool/2 Maxpool/2
Conv3-1024 Conv3-1024 Conv3-1024
Maxpool/2 Conv1-512 Conv1-512
Conv1-512 Conv3-1024 Conv3-1024
Conv3-1024 Conv1-512 Conv1-512
Conv1-512 Conv3-1024 Conv3-1024
Conv3-1024 Conv3-1024 Route
Conv3-1024 Conv3-1024 Conv1(64)

Conv3/2-1024 Route Reorg/Route
Conv3-1024 Conv1(64) Conv3-1024
Conv3-1024 Reorg/Route Conv1

Local Conv3-1024 Detection
Dropout Conv1

Conn Detection
Detection

Table 9. Average Accuracy and Speed Comparison between YOLOv2 and YOLOv2-reduced
Architectures.

Method AP Avg. Time (ms) BFLOPS

YOLOv2 90.05 25.767 50.17

YOLOv2-reduced 89.76 10.937 44.72

The experimental results show that reducing the repeated convolutional layer, YOLOv2-reduced,
did not improve the average accuracy as shown in Figure 10. In the precision recall curve the
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YOLOv2-reduced architecture covered almost the same area as the YOLOv2 graph. However, it greatly
reduced the overall detection time.
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5. Conclusions

In this paper, we evaluated the performance of the YOLOv2 deep network architecture to detect
a vessel in various scenarios. The experimental results on a basic SAR image dataset show that the
YOLOv2 method outperforms current technologies in terms of accuracy and performance in near
real-time, especially in complex situations. In the faster-R-CNN identification experience, we found
that errors often occurred in the same phase as the terrestrial phase in neighboring images, such
as docks, shores or canals. They are the main areas of lowered accuracy. According to this study,
YOLOv2 is very suitable for SAR image ship detection and its detection speed is 5.8 times faster than
faster-R-CNN. From the experimental results, we can clearly show that the YOLOv2 architecture
has better detection accuracy and speed than the other recent detection methods on both datasets.
Although YOLOv2 architecture has a better detection performance and speed, we thought this speed
is not enough for real time detection systems. Therefore, in this paper, we introduced a new network
architecture, YOLOv2-reduced, which has a better detection time than the YOLOv2 network on a
NVIDIA TITAN X GPU. The performance of the proposed method was evaluated on the SSDD dataset.
It showed a 2.5 times better detection time than YOVOv2, with a competent detection accuracy.
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