Understanding the Spatiotemporal Characteristics of Land Subsidence and Rebound in the Lianjiang Plain Using Time-Series InSAR with Dual-Track Sentinel-1 Data
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Data
3. Methodology
3.1. InSAR Time Series Processing
3.2. Estimated Vertical and Horizontal Deformation
4. Results
4.1. Spatial-Temporal Variation of Surface Deformation
4.2. Cross-Validation
5. Discussion
5.1. Comparison of Subsidence and Rebound between 2006–2021
5.2. InSAR-Derived Deformation Association with Groundwater Level Change
5.3. Geological Factor Control Deformation Pattern
5.4. The Effect of Urban Construction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Kamali, M.; Saibi, H.; Abuelgasim, A. Land surface deformation monitoring in the Al-Ain arid region (UAE) using microgravity and SAR interferometry surveys. Environ. Res. 2022, 212, 113505. [Google Scholar] [CrossRef]
- Carlson, G.; Shirzaei, M.; Ojha, C.; Werth, S. Subsidence-Derived Volumetric Strain Models for Mapping Extensional Fissures and Constraining Rock Mechanical Properties in the San Joaquin Valley, California. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019980. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Ge, L.; Li, X. Assessments of land subsidence in the Gippsland Basin of Australia using ALOS PALSAR data. Remote Sens. Environ. 2015, 159, 86–101. [Google Scholar] [CrossRef]
- Pu, C.; Xu, Q.; Zhao, K.; Chen, W.; Wang, X.; Li, H.; Liu, J.; Kou, P. Spatiotemporal evolution and surface response of land subsidence over a large-scale land creation area on the Chinese Loess Plateau. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102835. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhong, J. Report on the Development of the Cultural Industry in the Special Economic Zones of China. In Annual Report on the Development of China’s Special Economic Zones (2019); Tao, Y., Yuan, Y., Eds.; Springer Nature: Singapore, 2022; pp. 181–195. [Google Scholar]
- Cai, Y.; Chen, X.; Zhong, L.; Wang, L. Current situation of water pollution in Lianjiang River Basin and countermeasures of control and management. Pearl River 2003, 6, 47–50. [Google Scholar]
- Sina News. Cracking and Collapse of House in Some Towns of Guangdong Province Due to Groundwater Pumping. Available online: https://news.sina.com.cn/c/2015-04-28/100031770323.shtml (accessed on 1 March 2022).
- Tang, Y.; Wang, Y.; Zhao, E.; Yi, J.; Feng, K.; Wang, H.; Wang, W. Study on Hydrodynamic Characteristics and Environmental Response in Shantou Offshore Area. J. Mar. Sci. Eng. 2021, 9, 912. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, K.; Shi, X.; Yan, X. Risk assessment for typhoon storm surges using geospatial techniques for the coastal areas of Guangdong, China. Ocean Coast. Manag. 2021, 213, 105880. [Google Scholar] [CrossRef]
- Xiong, G.; Chen, G.; Wu, J.; Wang, Z.; Yu, H.; Fu, T.; Liu, W.; Xu, X.; Hou, G.; Yang, Y. Identifying the characteristics and potential risk of seawater intrusion for southern China by the SBM-DEA model. Sci. Total Environ. 2022, 844, 157205. [Google Scholar] [CrossRef]
- Yi Cai. Shantou Flood Hit Directly: Many Workers in Famous Underwear Towns Were Trapped in Factories. Available online: https://m.yicai.com/news/2954496.html (accessed on 1 March 2022).
- Jie Mian. Village Settlement: A Famous Underwear Town under the Flood in Chaoshan. Available online: https://www.jiemian.com/article/2459887.html (accessed on 1 March 2022).
- Liu, Y.; Ma, P.; Lin, H.; Wang, W.; Shi, G. Distributed Scatterer InSAR Reveals Surface Motion of the Ancient Chaoshan Residence Cluster in the Lianjiang Plain, China. Remote Sens. 2019, 11, 166. [Google Scholar] [CrossRef]
- Kumar, V.; Venkataramana, G.; Høgda, K.A. Glacier surface velocity estimation using SAR interferometry technique applying ascending and descending passes in Himalayas. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 545–551. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Wang, H.; Wright, T.J.; Liu-Zeng, J.; Peng, L. Strain rate distribution in south-central Tibet from two decades of InSAR and GPS. Geophys. Res. Lett. 2019, 46, 5170–5179. [Google Scholar] [CrossRef]
- Lanari, R.; Lundgren, P.; Sansosti, E. Dynamic deformation of Etna volcano observed by satellite radar interferometry. Geophys. Res. Lett. 1998, 25, 1541–1544. [Google Scholar] [CrossRef]
- Teatini, P.; Castelletto, N.; Ferronato, M.; Gambolati, G.; Janna, C.; Cairo, E.; Marzorati, D.; Colombo, D.; Ferretti, A.; Bagliani, A. Geomechanical response to seasonal gas storage in depleted reservoirs: A case study in the Po River basin, Italy. J. Geophys. Res. Solid Earth 2011, 116, B08407. [Google Scholar] [CrossRef]
- Vasco, D.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.; Ringrose, P.; Mathieson, A.; Wright, I. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide. Geophys. Res. Lett. 2010, 37, L03303. [Google Scholar] [CrossRef]
- Kuang, J.; Ng, A.H.-M.; Ge, L. Displacement Characterization and Spatial-Temporal Evolution of the 2020 Aniangzhai Landslide in Danba County Using Time-Series InSAR and Multi-Temporal Optical Dataset. Remote Sens. 2022, 14, 68. [Google Scholar] [CrossRef]
- Yang, Z.F.; Li, Z.W.; Zhu, J.J.; Hu, J.; Wang, Y.J.; Chen, G.L. InSAR-based model parameter estimation of probability integral method and its application for predicting mining-induced horizontal and vertical displacements. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4818–4832. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, T. Time-Series InSAR Applications Over Urban Areas in China. IEEE J.-STARS 2011, 4, 92–100. [Google Scholar] [CrossRef]
- Tomás, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorquí, J.J.; López-Sánchez, J.M.; Herrera, G.; Gutiérrez, F.; González, P.J.; Fernández, J. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain. Environ. Earth Sci. 2014, 71, 163–181. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Yu, H.; Gong, H.; Chen, B.; Liu, K.; Gao, M. Analysis of the influence of groundwater on land subsidence in Beijing based on the geographical weighted regression (GWR) model. Sci. Total Environ. 2020, 738, 139405. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Ng, A.H.-M.; Li, X.; Abidin, H.Z.; Gumilar, I. Land subsidence characteristics of Bandung Basin as revealed by ENVISAT ASAR and ALOS PALSAR interferometry. Remote Sens. Environ. 2014, 154, 46–60. [Google Scholar] [CrossRef]
- Kampes Bert, M. Radar Interferometry: Persistent Scatterers Technique; Springer: Berlin/Heidelberg, Germany, 2006; p. 211. [Google Scholar]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE J.-STARS 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Cavalié, O.; Doin, M.P.; Lasserre, C.; Briole, P. Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure. J. Geophys. Res. Solid Earth 2007, 112, B03403. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Ge, L.; Li, X.; Abidin, H.Z.; Andreas, H.; Zhang, K. Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 232–242. [Google Scholar] [CrossRef]
- Liao, M.; Zhang, R.; Lv, J.; Yu, B.; Pang, J.; Li, R.; Xiang, W.; Tao, W. Subsidence Monitoring of Fill Area in Yan’an New District Based on Sentinel-1A Time Series Imagery. Remote Sens. 2021, 13, 3044. [Google Scholar] [CrossRef]
- Tang, W.; Zhao, X.; Motagh, M.; Bi, G.; Li, J.; Chen, M.; Chen, H.; Liao, M. Land subsidence and rebound in the Taiyuan basin, northern China, in the context of inter-basin water transfer and groundwater management. Remote Sens. Environ. 2022, 269, 112792. [Google Scholar] [CrossRef]
- Bui, L.K.; Le, P.V.V.; Dao, P.D.; Long, N.Q.; Pham, H.V.; Tran, H.H.; Xie, L. Recent land deformation detected by Sentinel-1A InSAR data (2016–2020) over Hanoi, Vietnam, and the relationship with groundwater level change. GISci. Remote Sens. 2021, 58, 161–179. [Google Scholar] [CrossRef]
- Kumar, H.; Syed, T.H.; Amelung, F.; Agrawal, R.; Venkatesh, A.S. Space-time evolution of land subsidence in the National Capital Region of India using ALOS-1 and Sentinel-1 SAR data: Evidence for groundwater overexploitation. J. Hydrol. 2022, 605, 127329. [Google Scholar] [CrossRef]
- Du, Y.; Feng, G.; Liu, L.; Fu, H.; Peng, X.; Wen, D. Understanding Land Subsidence Along the Coastal Areas of Guangdong, China, by Analyzing Multi-Track MTInSAR Data. Remote Sens. 2020, 12, 299. [Google Scholar] [CrossRef]
- Zhang, L.; Ge, D.; Li, M.; Liu, B.; Guo, X.; Wu, Q. Land Subsidence and Uplift Surveying by Synthetic Aperture Radar Interferometry in Lianjiang Plain. Sens. Mater. 2020, 32, 4449–4461. [Google Scholar] [CrossRef]
- Huang, Z.; Yu, F. InSAR-derived surface deformation of Chaoshan Plain, China: Exploring the role of human activities in the evolution of coastal landscapes. Geomorphology 2023, 426, 108606. [Google Scholar] [CrossRef]
- Liang, J. Environmental and geological problems caused by over-exploitation of groundwater and its prevention of Guangdong Province. Chin. J. Geol. Hazard Control 2007, 18, 64–67. [Google Scholar]
- Guo, J.; Zhou, H.; Xia, H.; Yuan, D.; Zhang, J.; Zhou, Z. History and effect of water pollution control in Lianjiang River Basin. Water Supply Drain. 2021, 57, 57–61. [Google Scholar]
- Song, Y.S.; Chen, W.B.; Pan, H.; Zhang, Z.Z. Geological Age of Quaternary Series in Lianjiang Plain. J. Jilin Univ. Earth Sci. Ed. 2012, 42, 154–161. [Google Scholar] [CrossRef]
- China Geological Environment Monitoring Institute. China Geological and Environmental Monitoring Groundwater Level Yearbook; China Geological Environment Monitoring Institute: Beijing, China, 2021. [Google Scholar]
- Ng, A.H.-M.; Wang, H.; Dai, Y.; Pagli, C.; Chen, W.; Ge, L.; Du, Z.; Zhang, K. InSAR Reveals Land Deformation at Guangzhou and Foshan, China between 2011 and 2017 with COSMO-SkyMed Data. Remote Sens. 2018, 10, 813. [Google Scholar] [CrossRef]
- Rosen, P.A.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR scientific computing environment. In Proceedings of the EUSAR 2012—9th European Conference on Synthetic Aperture Radar, Nuernberg, Germany, 23–26 April 2012; pp. 730–733. [Google Scholar]
- Rodriguez, E.; Morris, C.; Belz, J.; Chapin, E.; Martin, J.; Daffer, W.; Hensley, S. An Assessment of the SRTM Topographic Products; Report No. JPL D-31639; Jet Propulsion Laboratory: Pasadena, CA, USA, 2005. [Google Scholar]
- Kampes, B.M.; Hanssen, R.F. Ambiguity resolution for permanent scatterer interferometry. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2446–2453. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Ge, L.; Li, X.; Zhang, K. Monitoring ground deformation in Beijing, China with persistent scatterer SAR interferometry. J. Geodesy. 2012, 86, 375–392. [Google Scholar] [CrossRef]
- Costantini, M.; Rosen, P.A. A generalized phase unwrapping approach for sparse data. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No. 99CH36293), Hamburg, Germany, 28 June–2 July 1999; pp. 267–269. [Google Scholar]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31, L01607. [Google Scholar] [CrossRef]
- Samsonov, S.; d’Oreye, N. Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province. Geophys. J. Int. 2012, 191, 1095–1108. [Google Scholar] [CrossRef]
- Water Affairs Bureau of Shantou. Shantou Water Resources Bulletin. Available online: https://www.shantou.gov.cn/stsswj/gkmlpt/index (accessed on 1 March 2022).
- Li, B.; Yang, Y.; Wang, D.; Wu, Y.; Zhang, Z. Joint InSAR technology and geological data to inverse the surface subsidence characteristics of Puning city. Bull. Surv. Mapp. 2021, 83–88. [Google Scholar] [CrossRef]
- Poland, J.; Ireland, R. Mechanics of Aquifer Systems. U. S. Geol. Surv. Prof. Pap. 1988, 497. [Google Scholar]
- Parker, A.L.; Pigois, J.P.; Filmer, M.S.; Featherstone, W.E.; Timms, N.E.; Penna, N.T. Land uplift linked to managed aquifer recharge in the Perth Basin, Australia. Int. J. Appl. Earth. Obs. Geoinf. 2021, 105, 102637. [Google Scholar] [CrossRef]
- Shi, F.; Tang, Z.; Chen, Y.; Zhu, F.; Ye, S. Spatio-temporal evolution of land subsidence and its cause analysis in typical areas of eastern Guangdong. Environ. Secur. 2019, 26, 8–16. [Google Scholar]
- Lu, Z.; Danskin, W.R. InSAR analysis of natural recharge to define structure of a ground-water basin, San Bernardino, California. Geophys. Res. Lett. 2001, 28, 2661–2664. [Google Scholar] [CrossRef]
- Colombo, L.; Gattinoni, P.; Scesi, L. Influence of underground structures and infrastructures on the groundwater level in the urban area of Milan, Italy. Int. J. Sustain. Dev. Plann. 2017, 12, 176–184. [Google Scholar] [CrossRef]
- Waltham, T. Sinking cities. Geol. Today 2002, 18, 95–100. [Google Scholar] [CrossRef]
- Chaussard, E.; Milillo, P.; Bürgmann, R.; Perissin, D.; Fielding, E.J.; Baker, B. Remote sensing of ground deformation for monitoring groundwater management practices: Application to the Santa Clara Valley during the 2012–2015 California drought. J. Geophys. Res. Solid Earth 2017, 122, 8566–8582. [Google Scholar] [CrossRef]
- Terzaghi, K. Principles of soil mechanics. IV. Settlement and consolidation of clay. ENR 1925, 95, 874. [Google Scholar]
- Hu, X.; Lu, Z.; Wang, T. Characterization of hydrogeological properties in salt lake valley, Utah, using InSAR. J. Geophys. Res. Earth Surf. 2018, 123, 1257–1271. [Google Scholar] [CrossRef]
- Carlson, G.; Shirzaei, M.; Werth, S.; Zhai, G.; Ojha, C. Seasonal and Long-Term Groundwater Unloading in the Central Valley Modifies Crustal Stress. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018490. [Google Scholar] [CrossRef] [PubMed]
- Biot, M.A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 2004, 12, 155–164. [Google Scholar] [CrossRef]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Li, X.; Lei, K.; Zhu, L.; Gao, M.; Zhou, C. Characterization and causes of land subsidence in Beijing, China. Int. J. Remote Sens. 2017, 38, 808–826. [Google Scholar] [CrossRef]
- van Beers, W.C.M.; Kleijnen, J.P.C. Kriging interpolation in simlation: A survey. In Proceedings of the Winter Simulation Conference 2004, Washington, DC, USA, 5–8 December 2004; pp. 113–121. [Google Scholar]
- Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Moretti, S. PSInSAR analysis in the Pisa urban area (Italy): A case study of subsidence related to stratigraphical factors and urbanization. Remote Sens. 2016, 8, 120. [Google Scholar] [CrossRef]
Datasets | Dataset Ⅰ | Dataset Ⅱ | Dataset Ⅲ |
---|---|---|---|
Incidence angle | 34.14° | 37.06° | 39.48° |
Track | 40 | 40 | 113 |
Orbit direction | Ascending | Ascending | Ascending |
Polarization | VV | VV | VV |
Number of Scenes | 33 | 48 | 48 |
Time range | 2015–2017 | 2018–2021 | 2018–2021 |
Reference | SAR Data | Location | Processing Method | Time Span |
---|---|---|---|---|
Du et al. [38] | ALOS | Guangdong Province | MT-InSAR | December 2006–October 2011 |
Li et al. [54] | ALOS | Puning | SBAS-InSAR | December 2007–July 2010 |
Liu et al. [14] | Sentinel-1 | Lianjiang Plain | DS-InSAR | November 2015– December 2017 |
Zhang et al. [39] | RADASAT-2 Sentinel-1 | Lianjiang Plain | IPTA-InSAR | November 2018–December 2019 June 2015–December 2019 |
Huang et al. [40] | Sentinel-1 | Chaoshan Plain | MT-InSAR | June 2015–October 2020 |
This study | Sentinel-1 | Lianjiang Plain | GEOS-PSI | June 2015–December 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Ng, A.H.-M.; Wang, H.; Kuang, J. Understanding the Spatiotemporal Characteristics of Land Subsidence and Rebound in the Lianjiang Plain Using Time-Series InSAR with Dual-Track Sentinel-1 Data. Remote Sens. 2023, 15, 3236. https://doi.org/10.3390/rs15133236
He Y, Ng AH-M, Wang H, Kuang J. Understanding the Spatiotemporal Characteristics of Land Subsidence and Rebound in the Lianjiang Plain Using Time-Series InSAR with Dual-Track Sentinel-1 Data. Remote Sensing. 2023; 15(13):3236. https://doi.org/10.3390/rs15133236
Chicago/Turabian StyleHe, Yangfan, Alex Hay-Man Ng, Hua Wang, and Jianming Kuang. 2023. "Understanding the Spatiotemporal Characteristics of Land Subsidence and Rebound in the Lianjiang Plain Using Time-Series InSAR with Dual-Track Sentinel-1 Data" Remote Sensing 15, no. 13: 3236. https://doi.org/10.3390/rs15133236
APA StyleHe, Y., Ng, A. H. -M., Wang, H., & Kuang, J. (2023). Understanding the Spatiotemporal Characteristics of Land Subsidence and Rebound in the Lianjiang Plain Using Time-Series InSAR with Dual-Track Sentinel-1 Data. Remote Sensing, 15(13), 3236. https://doi.org/10.3390/rs15133236