Exploring the Real-Time WRF Forecast Skill for Four Tropical Storms, Isaias, Henri, Elsa and Irene, as They Impacted the Northeast United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. WRF Model Configuration
2.2. Observed Data
3. Results
3.1. Tropical Storm Isaias
3.1.1. Sensitivity of Initial and Boundary Conditions
3.1.2. Sensitivity of Forecast Cycles and Spin-Up Time
3.1.3. Sensitivity of Physics Options
3.2. Tropical Storms Henri, Elsa and Irene
3.2.1. Storm Track Evaluation
3.2.2. Precipitation Evaluation
3.2.3. Wind Evaluation
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Wang, Z. Tropical Cyclones and Hurricanes, Tropical Cyclogenesis. In Encyclopedia of Atmospheric Sciences; Elsevier: Amsterdam, The Netherlands, 2015; pp. 57–64. [Google Scholar] [CrossRef]
- Sillmann, J.; Daloz, A.S.; Schaller, N.; Schwingshackl, C. Extreme Weather and Climate Change. In Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; pp. 359–372. [Google Scholar] [CrossRef]
- Houze, R.A. Clouds and Precipitation in Tropical Cyclones. In International Geophysics; Elsevier: Amsterdam, The Netherlands, 2014; Volume 104, pp. 287–327. [Google Scholar] [CrossRef]
- Bushra, N.; Rohli, R.V. Tracks of Severe Coastal and Marine Tropical Cyclones. In Annotated Atlas of Coastal and Marine Winds; Elsevier: Amsterdam, The Netherlands, 2021; pp. 127–153. [Google Scholar] [CrossRef]
- Navarro, A.; Merino, A. Precipitation in Earth System Models: Advances and Limitations. In Precipitation Science; Elsevier: Amsterdam, The Netherlands, 2022; pp. 637–659. [Google Scholar] [CrossRef]
- Tang, L.; Wang, Y.; Yu, Z.; Wang, L. The Asymmetric Precipitation Evolution in Weak Landfalling Tropical Cyclone Rumbia (2018) Over East China. Front. Earth Sci. 2021, 9, 747271. [Google Scholar] [CrossRef]
- Klug, J.L.; Richardson, D.C.; Ewing, H.A.; Hargreaves, B.R.; Samal, N.R.; Vachon, D.; Pierson, D.C.; Lindsey, A.M.; O’Donnell, D.M.; Effler, S.W.; et al. Ecosystem Effects of a Tropical Cyclone on a Network of Lakes in Northeastern North America. Environ. Sci. Technol. 2012, 46, 11693–11701. [Google Scholar] [CrossRef]
- Chavas, D.; Yonekura, E.; Karamperidou, C.; Cavanaugh, N.; Serafin, K.U.S. Hurricanes and Economic Damage: Extreme Value Perspective. Nat. Hazards Rev. 2013, 14, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Rappaport, E.N. Fatalities in the United States from Atlantic Tropical Cyclones: New Data and Interpretation. Bull. Am. Meteorol. Soc. 2014, 95, 341–346. [Google Scholar] [CrossRef]
- Morang, A. Hurricane Barriers in New England and New Jersey: History and Status after Five Decades. J. Coast. Res. 2016, 32, 181–205. [Google Scholar] [CrossRef] [Green Version]
- Avila, L.A.; Cangialosi, J. Tropical Cyclone Report: Hurricane Irene, 21–28 August 2011; National Hurricane Center Rep.: Miami, FL, USA, 2011. [Google Scholar]
- Latto, A.; Hagen, A.; Berg, R. Tropical Cyclone Report: Hurricane Isaias, 30 July–4 August 2020; National Hurricane Center Rep.: Miami, FL, USA, 2020. [Google Scholar]
- Pasch, R.J.; Berg, R.; Hagen, A.B. Tropical Cyclone Report: Hurricane Henri, 15–23 August 2021; National Hurricane Center Rep.: Miami, FL, USA, 2021. [Google Scholar]
- Cangialosi, J.P.; Delgado, S.; Berg, R. Tropical Cyclone Report: Hurricane Elsa, 30 June–9 July 2021; National Hurricane Center Rep.: Miami, FL, USA, 2021. [Google Scholar]
- Rogers, R.F.; Black, M.L.; Chen, S.S.; Black, R.A. An Evaluation of Microphysics Fields from Mesoscale Model Simulations of Tropical Cyclones. Part I: Comparisons with Observations. J. Atmos. Sci. 2007, 64, 1811–1834. [Google Scholar] [CrossRef] [Green Version]
- Cangialosi, J.P.; Blake, E.; DeMaria, M.; Penny, A.; Latto, A.; Rappaport, E.; Tallapragada, V. Recent Progress in Tropical Cyclone Intensity Forecasting at the National Hurricane Center. Weather. Forecast. 2020, 35, 1913–1922. [Google Scholar] [CrossRef]
- Gall, R.; Franklin, J.; Marks, F.; Rappaport, E.N.; Toepfer, F. The Hurricane Forecast Improvement Project. Bull. Am. Meteorol. Soc. 2007, 94, 329–343. [Google Scholar] [CrossRef]
- Magnusson, L.; Bidlot, J.-R.; Bonavita, M.; Brown, A.R.; Browne, P.A.; Chiara, G.D.; Dahoui, M.; Lang, S.T.K.; McNally, T.; Mogensen, K.S.; et al. ECMWF Activities for Improved Hurricane Forecasts. Bull. Am. Meteorol. Soc. 2019, 100, 445–458. [Google Scholar] [CrossRef]
- Li, W.; Wang, Z.; Peng, M.S. Evaluating Tropical Cyclone Forecasts from the NCEP Global Ensemble Forecasting System (GEFS) Reforecast Version 2. Weather. Forecast. 2016, 31, 895–916. [Google Scholar] [CrossRef]
- Halperin, D.J.; Fuelberg, H.E.; Hart, R.E.; Cossuth, J.H. Verification of Tropical Cyclone Genesis Forecasts from Global Numerical Models: Comparisons between the North Atlantic and Eastern North Pacific Basins. Weather. Forecast. 2016, 31, 947–955. [Google Scholar] [CrossRef]
- Komaromi, W.A.; Majumdar, S.J. Ensemble-Based Error and Predictability Metrics Associated with Tropical Cyclogenesis. Part II: Wave-Relative Framework. Mon. Weather. Rev. 2015, 143, 1665–1686. [Google Scholar] [CrossRef]
- Magnusson, L.; Bidlot, J.-R.; Lang, S.T.K.; Thorpe, A.; Wedi, N.; Yamaguchi, M. Evaluation of Medium-Range Forecasts for Hurricane Sandy. Mon. Weather. Rev. 2014, 142, 1962–1981. [Google Scholar] [CrossRef]
- National Hurricane Center and Central Pacific Hurricane Center. NHC Track and Intensity. 2019. Available online: https://www.nhc.noaa.gov/modelsummary.shtml (accessed on 17 May 2022).
- Watson, P.L.; Cerrai, D.; Koukoula, M.; Wanik, D.W.; Anagnostou, E. Weather-related power outage model with a growing domain: Structure, performance, and generalisability. J. Eng. 2020, 2020, 817–826. [Google Scholar] [CrossRef]
- Cerrai, D.; Koukoula, M.; Watson, P.; Anagnostou, E.N. Outage prediction models for snow and ice storms. Sustain. Energy Grids Netw. 2020, 21, 100294. [Google Scholar] [CrossRef]
- Yang, J.; Astitha, M.; Anagnostou, E.N.; Hartman, B.M. Using a Bayesian Regression Approach on Dual-Model Windstorm Simulations to Improve Wind Speed Prediction. J. Appl. Meteorol. Climatol. 2017, 56, 1155–1174. [Google Scholar] [CrossRef]
- Wang, W.; Bruyère, C.; Duda, M.G.; Dudhia, J.; Gill, D.O.; Kavulich, M.; Werner, K.; Chen, M.; Lin, H.; Michalakes, J.; et al. The Advanced Research WRF Model Version 4 Modeling System User’s Manual; UCAR/NCAR: Boulder, CO, USA, 2019. [Google Scholar]
- Cavallo, S.M.; Torn, R.D.; Snyder, C.; Davis, C.; Wang, W.; Done, J. Evaluation of the Advanced Hurricane WRF Data Assimilation System for the 2009 Atlantic Hurricane Season. Mon. Weather. Rev. 2013, 141, 523–541. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.A.; Ahijevych, D.A.; Wang, W.; Skamarock, W.C. Evaluating Medium-Range Tropical Cyclone Forecasts in Uniform- and Variable-Resolution Global Models. Mon. Weather Rev. 2016, 144, 4141–4160. [Google Scholar] [CrossRef]
- Duda, M.; Fowler, L.; Skamarock, B.; Roesch, C.; Jacobsen, D.; Ringler, T. MPAS-Atmosphere Model User’s Guide. 2014. Available online: https://www2.mmm.ucar.edu/projects/mpas/mpas_atmosphere_users_guide_3.0.pdf (accessed on 25 May 2023).
- Zhang, C.; Wang, Y. Why is the simulated climatology of tropical cyclones so sensitive to the choice of cumulus parameterization scheme in the WRF model? Clim. Dyn. 2018, 51, 3613–3633. [Google Scholar] [CrossRef]
- Bassill, N.P. Accuracy of Early GFS and ECMWF Sandy (2012) Track Forecasts: Evidence for a Dependence on Cumulus Parameterization. Geophys. Res. Lett. 2014, 41, 3274–3281. [Google Scholar] [CrossRef]
- Hong, S.; Lim, J.J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather. Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y. Projected Future Changes of Tropical Cyclone Activity over the Western North and South Pacific in a 20-km-Mesh Regional Climate Model. J. Clim. 2017, 30, 5923–5941. [Google Scholar] [CrossRef]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques: Parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38–1–38–4. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.-D.; Suarez, M.J. An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models. NASA Technical Memorandum No. 104606. 1997. Available online: https://archive.org/details/nasa_techdoc_19950009331 (accessed on 30 May 2022).
- Chou, M.D.; Suarez, M.J. A Solar Radiation Parameterization (CLIRAD-SW) for Atmospheric Studies. NASA Tech., Memo NASA/TM-1999-104606. 1999. Available online: https://ntrs.nasa.gov/api/citations/19990060930/downloads/19990060930.pdf (accessed on 30 May 2022).
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 14 January 2004. [Google Scholar]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical Note: Inherent Benchmark or Not? Comparing Nash-Sutcliffe and Kling-Gupta Efficiency Scores. Catchment Hydrol./Model. Approaches 2019. preprint. [Google Scholar] [CrossRef]
- Smith, A.; Lott, N.; Vose, R. The Integrated Surface Database: Recent Developments and Partnerships. Bull. Am. Meteorol. Soc. 2011, 92, 704–708. [Google Scholar] [CrossRef] [Green Version]
- Nelson, B.R.; Prat, O.P.; Seo, D.-J.; Habib, E. Assessment and Implications of NCEP Stage IV Quantitative Precipitation Estimates for Product Intercomparisons. Weather. Forecast. 2016, 31, 371–394. [Google Scholar] [CrossRef]
- Registry on Open Data AWS. NOAA Global Historical Climatology Network Daily (GHCN-D). Available online: https://registry.opendata.aws/noaa-ghcn (accessed on 7 May 2022).
- NOAA, National Weather Service Storm Prediction Center. Storm Prediction Center Upper Air Maps at 300mbar on 20200804/12UTC. 2023. Available online: https://www.spc.noaa.gov/obswx/maps/300_200804_12.gif (accessed on 25 May 2023).
- NOAA, National Weather Service Storm Prediction Center. Storm Prediction Center Upper Air Maps at 300mbar on 20200805/00UTC. 2023. Available online: https://www.spc.noaa.gov/obswx/maps/300_200805_00.gif (accessed on 25 May 2023).
- Benjamin, S.G.; James, E.P.; Brown, J.M.; Szoke, E.J.; Kenyon, J.S.; Ahmadov, R.; Turner, D.D. Diagnostic Fields Developed for Hourly Updated NOAA Weather Models. 2020. Available online: https://rapidrefresh.noaa.gov/Diag-vars-NOAA-TechMemo.pdf (accessed on 25 May 2023).
- Nasrollahi, N.; AghaKouchak, A.; Li, J.; Gao, X.; Hsu, K.; Sorooshian, S. Assessing the Impacts of Different WRF Precipitation Physics in Hurricane Simulations. Weather Forecast. 2012, 27, 1003–1016. [Google Scholar] [CrossRef] [Green Version]
- Prater, B.E.; Evans, J.L. Sensitivity of Modeled Tropical Cyclone Track and Structure of Hurricane Irene (1999) to the Convective Parameterization Scheme. Meteorol. Atmos. Phys. 2002, 80, 103–115. [Google Scholar] [CrossRef]
- de Szoeke, S.P.; Wang, Y.; Xie, S.-P.; Miyama, T. Effect of Shallow Cumulus Convection on the Eastern Pacific Climate in a Coupled Model. Geophys. Res. Lett. 2006, 33, L17713. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, T.J.; Walsh, K.J. Sensitivity of Hurricane Track to Cumulus Parameterization Schemes in the WRF Model for Three Intense Tropical Cyclones: Impact of Convective Asymmetry. Meteorol. Atmos. Phys. 2017, 129, 345–374. [Google Scholar] [CrossRef]
- Fovell, R.G.; Bu, Y.P.; Corbosiero, K.L.; Tung, W.; Cao, Y.; Kuo, H.-C.; Hsu, L.; Su, H. Influence of Cloud Microphysics and Radiation on Tropical Cyclone Structure and Motion. Meteorol. Monogr. 2016, 56, 11.1–11.27. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, F.; Chen, X.; Ryzhkov, A.; Zhao, K.; Kumjian, M.R.; Chen, X.; Chan, P.-W. Evaluation of Microphysics Schemes in Tropical Cyclones Using Polarimetric Radar Observations: Convective Precipitation in an Outer Rainband. Mon. Weather. Rev. 2021, 149, 1055–1068. [Google Scholar] [CrossRef]
- Huang, W.; Bao, J.-W.; Chen, B. Parameterization of Subgrid Deep Convective Cloud at Gray-Zone Resolutions: Preliminary Results. Trop. Cyclone Res. Rev. 2014, 3, 218–228. [Google Scholar] [CrossRef]
- NCEP. GFS/GDAS Changes Since 1991. Available online: https://www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html (accessed on 5 February 2023).
- Yang, F. GDAS/GFS V15.0.0 Upgrades for Q2FY2019. 2018. Available online: https://www.emc.ncep.noaa.gov/gmb/wx24fy/doc/CCB_FV3GFS_24sept2018_v4.pdf (accessed on 5 February 2023).
- Sippel, J.A.; Wu, X.; Ditchek, S.D.; Tallapragada, V.; Kleist, D.T. Impacts of Assimilating Additional Reconnaissance Data on Operational GFS Tropical Cyclone Forecasts. Weather. Forecast. 2022, 37, 1615–1639. [Google Scholar] [CrossRef]
- Chen, J.-H.; Lin, S.-J.; Zhou, L.; Chen, X.; Rees, S.; Bender, M.; Morin, M. Evaluation of Tropical Cyclone Forecasts in the Next Generation Global Prediction System. Mon. Weather. Rev. 2019, 147, 3409–3428. [Google Scholar] [CrossRef]
- Gao, K.; Harris, L.; Zhou, L.; Bender, M.; Morin, M. On the Sensitivity of Hurricane Intensity and Structure to Horizontal Tracer Advection Schemes in FV3. J. Atmos. Sci. 2021, 78, 3007–3021. [Google Scholar] [CrossRef]
- Zhang, C.; Xue, M.; Supinie, T.A.; Kong, F.; Snook, N.; Thomas, K.W.; Brewster, K.; Jung, Y.; Harris, L.M.; Lin, S. How Well Does an FV3-Based Model Predict Precipitation at a Convection-Allowing Resolution? Results From CAPS Forecasts for the 2018 NOAA Hazardous Weather Test Bed With Different Physics Combinations. Geophys. Res. Lett. 2019, 46, 3523–3531. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.; Carley, J.; Ferrier, B.; Aligo, E.; Gayno, G.; Janjic, Z.; Lin, Y.; Liu, S.; Lou, G.P.; Pyle, M.; et al. NAM Version 4 Science Briefing : Expanded Version. 2017. Available online: https://www.emc.ncep.noaa.gov/users/mesoimpldocs/namv4docs/NAMv4_ScienceIT_brief_10Mar2017.final_expanded.pdf (accessed on 25 May 2023).
Physics Options | Tropical Suite | Customized |
---|---|---|
Microphysics | WSM 6-class graupel [33] | Thompson et al. 2008 [34] |
Cumulus | New Tiedtke scheme (TD) [35] | New Grell scheme (G3) [36] |
Longwave Radiation | Rapid Radiative Transfer Model [37] | Rapid Radiative Transfer Model |
Shortwave Radiation | Rapid Radiative Transfer Model [38] | Goddard Shortwave Model [39] |
Boundary layer | YSU scheme [40] | YSU scheme |
Land Surface | Unified Noah land-surface [41] | Unified Noah land-surface |
Surface Layer Scheme | MM5 [42] | MM5 |
Test Name | Initialization and Physics | Isaias (4 August 2020) Forecast Cycle and WRF Start Time |
---|---|---|
WRF/NAM/cus Default | NAM initialization customized physics | NAM_00 UTC/WRF_00 UTC (12 h spin up) |
WRF/GFS/cus | GFS initialization customized physics | a. GFS_00 UTC/WRF_00 UTC (12 h spin up) b. GFS_00 UTC/WRF_06 UTC (6 h spin up) c. GFS_06 UTC/WRF_06 UTC (6 h spin up) |
WRF/GFS/trop | GFS initialization tropical suite | GFS_00 UTC/WRF_00 UTC (12 h spin up) |
Henri | Elsa | Irene | |
---|---|---|---|
Forecast cycle (NAM or GFS) | 21 August 2021 (00 UTC) | 8 July 2021 (00 UTC) | 27 August 2011 (12 UTC) |
WRF start time | 21 August 2021 (18 UTC) | 8 July 2021 (00 UTC) | 27 August 2011 (12 UTC) |
WRF end time | 24 August 2021 (00 UTC) | 10 July 2021 (12 UTC) | 30 August 2011 (00 UTC) |
(i) WRF/NAM/cus default | (ii) WRF/GFS/cus (a) | (iii) 100(ii-i)/i (%) | (iv) WRF/GFS/cus (b) | (v) 100(iv-i)/i (%) | (vi) WRF/GFS/cus (c) | (vii) 100(vi-i)/i (%) | (viii) WRF/GFS/trop | (ix) 100(viii-i)/i (%) | ||
---|---|---|---|---|---|---|---|---|---|---|
Storm track (km) | Distance | 125.00 | 100.00 | −20.00 | 138.00 | 10.40 | 50.00 | −60.00 | 70.00 | −44.00 |
Wind speed (m/s) | CC | 0.70 | 0.72 | 2.86 | 0.74 | 5.71 | 0.75 | 7.14 | 0.74 | 5.71 |
BIAS | 1.03 | 0.39 | −62.14 | 0.46 | −55.34 | 0.73 | −29.13 | 0.05 | −95.15 | |
RMSE | 2.49 | 2.17 | −12.85 | 2.17 | −12.85 | 2.21 | −11.24 | 2.10 | −15.66 | |
CRMSE | 2.27 | 2.14 | −5.73 | 2.12 | −6.61 | 2.08 | −8.37 | 2.10 | −7.49 | |
Wind gust (m/s) | CC | 0.58 | 0.65 | 12.07 | 0.64 | 10.34 | 0.69 | 18.97 | 0.66 | 13.79 |
BIAS | 2.17 | 0.67 | −69.12 | 1.22 | −43.78 | 2.15 | −0.92 | 0.97 | −55.30 | |
RMSE | 5.45 | 4.48 | −17.80 | 4.97 | −8.81 | 4.87 | −10.64 | 4.54 | −16.70 | |
CRMSE | 5.00 | 4.43 | −11.40 | 4.82 | −3.60 | 4.38 | −12.40 | 4.44 | −11.20 | |
Precipitation( mm) | CC | 0.73 | 0.80 | 9.59 | 0.83 | 13.70 | 0.70 | −4.11 | 0.83 | 13.70 |
BIAS | −4.72 | −5.50 | 16.53 | −7.53 | 59.53 | −11.80 | 150.00 | −6.40 | 35.59 | |
RMSE | 29.25 | 25.91 | −11.42 | 25.34 | −13.37 | 31.47 | 7.59 | 24.83 | −15.11 | |
CRMSE | 28.86 | 25.31 | −12.30 | 24.19 | −16.18 | 29.17 | 1.07 | 24.00 | −16.84 | |
Minimum MSLP (mb) | BIAS | −0.9 | 0 | −100 | 1.4 | −255.56 | −0.5 | −44.44 | 0.4 | −144.44 |
MAE | 1.6 | 0.8 | −50 | 2.6 | 62.50 | 2.2 | 37.50 | 0.9 | −43.75 | |
AverageΔ(errors); no CC | −29.69 | −23.64 | 1.58 | −35.84 | ||||||
AverageΔ(CC) | 8.17 | 9.92 | 7.33 | 11.07 | ||||||
Change due to initial conditions | Change due to start time and initialization | Change due to forecast cycle and initialization | Change due to physics and initialization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaira, U.; Astitha, M. Exploring the Real-Time WRF Forecast Skill for Four Tropical Storms, Isaias, Henri, Elsa and Irene, as They Impacted the Northeast United States. Remote Sens. 2023, 15, 3219. https://doi.org/10.3390/rs15133219
Khaira U, Astitha M. Exploring the Real-Time WRF Forecast Skill for Four Tropical Storms, Isaias, Henri, Elsa and Irene, as They Impacted the Northeast United States. Remote Sensing. 2023; 15(13):3219. https://doi.org/10.3390/rs15133219
Chicago/Turabian StyleKhaira, Ummul, and Marina Astitha. 2023. "Exploring the Real-Time WRF Forecast Skill for Four Tropical Storms, Isaias, Henri, Elsa and Irene, as They Impacted the Northeast United States" Remote Sensing 15, no. 13: 3219. https://doi.org/10.3390/rs15133219
APA StyleKhaira, U., & Astitha, M. (2023). Exploring the Real-Time WRF Forecast Skill for Four Tropical Storms, Isaias, Henri, Elsa and Irene, as They Impacted the Northeast United States. Remote Sensing, 15(13), 3219. https://doi.org/10.3390/rs15133219