Identification and Analysis of Heatwave Events Considering Temporal Continuity and Spatial Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methodology
2.3.1. Heatwave Index and Levels
2.3.2. Intensity–Area–Duration (IAD) Analysis
- (1)
- Finding the strongest center. On the basis of the heatwave index dataset, the grid point with the highest heatwave index in the study region on the present day is identified as the onset of an event (Figure 2a), and the intensity and area are recorded.
- (2)
- Obtaining the event influence range. Next, the second strongest grid point among the eight neighborhood grid points around the current grid point is identified and merged into the event range (Figure 2b). The range of the current two grid points is used as the next starting point, and the intensity and area are recorded. The intensity is the average of the existing grid points that have been merged into the event range, and the area is the sum of the areas of the established grid points. This method is continued until there are no more grid points in the continuous space that surpass the threshold value, and the set of all grid points identified in this process is classified as a full heatwave event (Figure 2c,d).
- (3)
- Identification of all regional heatwave events on the current day. Steps 1 and 2 are repeated until there are no points exceeding the threshold in the area on the present day.
- (4)
- Identification of all regional heatwave events on a daily basis. Steps 1, 2, and 3 are repeated to identify all regional heatwave events in the HWI dataset on a daily basis from 1979 to 2018. Each heatwave event is marked with a different number for each year.
- (5)
- Event continuity determination. The area threshold is used to determine the time continuity between events. Only events whose areas are larger than the area threshold are considered. If the overlapping region of two events at contiguous times exceeds the area threshold, they are considered to be part of the same heatwave event (Figure 2e). Notably, the threshold will be determined experimentally later in this investigation. In accordance with this rule, events at contiguous moments are compared, and eventually, all events are linked in space–time and assigned a unique number.
- (6)
- Extraction of the events’ key parameters according to the marked number. This study characterizes heatwave episodes using four variables: event frequency, severity, duration, and impact area. Frequency is the number of events, intensity is the mean value of the heatwave index at all grid points within an event, duration is the number of days from incidence to termination, and impact area is the maximum impact area of an event.
2.3.3. Mann–Kendall Trend Test
3. Results
3.1. Analysis of Variations in the Frequency of Heatwave Events
3.2. Intensity–Area–Duration Analysis of Heatwave Events
3.2.1. Variation in the Intensity of Heatwave Events
3.2.2. Variation in the Influence Area of Heatwave Events
3.2.3. Variation in the Duration of Heatwave Events
3.3. Analysis of Spatiotemporal Evolution of Heatwave Events
4. Discussion
4.1. Uncertainty in the Definition of Heatwave Index
4.2. Determination of the Minimum Overlapping Heatwave Area Threshold
4.3. Perspectives on Comprehensive Indicator of Heatwave Event Severity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Classification | Acronym | Full Name |
---|---|---|
Subregions | XJ | Xinjiang |
QTP | Qinghai–Tibetan Plateau | |
NW | Northwest | |
NE | Northeast | |
NC | Northern China | |
SW | Southwest | |
SC | Southern China | |
Climate variables | MAXT | Maximum temperature |
SH | Specific Humidity | |
Heatwave parameters | HWI | Heatwave index |
Program/Mission | TRMM | Tropical Rainfall Monitoring Mission |
GLDAS | Global Land Data Assimilation System | |
Method | IAD | Intensity–Area–Duration |
TPS | Thin Plate Spline | |
MK | Mann–Kendall | |
Organization | CMA | China Meteorological Administration |
TPDC | National Tibetan Plateau/Third Pole Environment Data Center | |
NMIC | National Meteorological Information Center | |
WMO | World Meteorological Organization | |
IPCC | Intergovernmental Panel on Climate Change |
References
- Sutton, R.T.; Hawkins, E. ESD Ideas: Global climate response scenarios for IPCC AR6. Earth Syst. Dyn. Discuss 2020, 2020, 1–4. [Google Scholar]
- Allen, M.; Antwi-Agyei, P.; Aragon-Durand, F.; Babiker, M.; Bertoldi, P.; Bind, M.; Brown, S.; Buckeridge, M.; Camilloni, I.; Cartwright, A. Technical Summary: Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Wen, S.; Wang, Y.; Su, B.; Gao, C.; Chen, X.; Jiang, T.; Tao, H.; Fischer, T.; Wang, G.; Zhai, J. Estimation of economic losses from tropical cyclones in China at 1.5 °C and 2.0 °C warming using the regional climate model COSMO-CLM. Int. J. Climatol. 2019, 39, 724–737. [Google Scholar] [CrossRef]
- Nicholls, Z.; Meinshausen, M.; Lewis, J.; Smith, C.J.; Forster, P.; Fuglestvedt, J.S.; Rogelj, J.; Kikstra, J.; Riahi, K.; Byers, E. Changes in IPCC scenario assessment emulators between SR1.5 and AR6 unraveled. Geophys. Res. Lett. 2022, 49, e2022GL099788. [Google Scholar] [CrossRef] [PubMed]
- Rahmstorf, S.; Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA 2011, 108, 17905–17909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Liao, Z.; Shi, Y.; Tian, Y.; Zhai, P. Detectable increases in sequential flood-heatwave events across China during 1961–2018. Geophys. Res. Lett. 2021, 48, e2021GL092549. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Sterl, A. Humid heat waves at different warming levels. Sci. Rep. 2017, 7, 7477. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.S.G.; Dewan, A.; Botje, D.; Shahid, S.; Hassan, Q.K. Vulnerability of Australia to heatwaves: A systematic review on influencing factors, impacts, and mitigation options. Environ. Res. 2022, 213, 113703. [Google Scholar] [CrossRef]
- Smoyer-Tomic, K.E.; Kuhn, R.; Hudson, A. Heat Wave Hazards: An Overview of Heat Wave Impacts in Canada. Nat. Hazards 2003, 28, 465–486. [Google Scholar] [CrossRef]
- Zhan, Q.; Teurlincx, S.; van Herpen, F.; Raman, N.V.; Lürling, M.; Waajen, G.; de Senerpont Domis, L.N. Towards climate-robust water quality management: Testing the efficacy of different eutrophication control measures during a heatwave in an urban canal. Sci. Total Environ. 2022, 828, 154421. [Google Scholar] [CrossRef]
- García-Herrera, R.; Díaz, J.; Trigo, R.M.; Luterbacher, J.; Fischer, E.M. A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Ye, L.; Shi, K.; Xin, Z.; Wang, C.; Zhang, C. Compound droughts and heat waves in China. Sustainability 2019, 11, 3270. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, R.R.; Taschetto, A.S.; Sen Gupta, A.; Foltz, G.R. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci. 2019, 12, 620–626. [Google Scholar] [CrossRef]
- Kovats, S.; Akhtar, R. Climate, climate change and human health in Asian cities. Environ. Urban. 2008, 20, 165–175. [Google Scholar] [CrossRef]
- Robine, J.-M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.-P.; Herrmann, F.R. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef]
- Guha-Sapir, D.; Hoyois, P.; Below, R. Annual Disaster Statistical Review 2011: The Numbers and Trends; Centre for REsearch on the Epidemiology of Disasters (CRED), Institute of Health and Society (IRSS) and Université catholique de Louvain: Louvain-la-neuve, Belgium, 2012. [Google Scholar]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V. Global risk of deadly heat. Nat. Clim. Change 2017, 7, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Conti, A.; Valente, M.; Paganini, M.; Farsoni, M.; Ragazzoni, L.; Barone-Adesi, F. Knowledge gaps and research priorities on the health effects of heatwaves: A systematic review of reviews. Int. J. Environ. Res. Public Health 2022, 19, 5887. [Google Scholar] [CrossRef]
- Dwyer, I.J.; Barry, S.J.; Megiddo, I.; White, C.J. Evaluations of heat action plans for reducing the health impacts of extreme heat: Methodological developments (2012–2021) and remaining challenges. Int. J. Biometeorol. 2022, 66, 1915–1927. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Vautard, R.; Gobiet, A.; Jacob, D.; Belda, M.; Colette, A.; Déqué, M.; Fernández, J.; García-Díez, M.; Goergen, K.; Güttler, I.; et al. The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim. Dyn. 2013, 41, 2555–2575. [Google Scholar] [CrossRef]
- Schoetter, R.; Cattiaux, J.; Douville, H. Changes of western European heat wave characteristics projected by the CMIP5 ensemble. Clim. Dyn. 2015, 45, 1601–1616. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef] [Green Version]
- Stefanon, M.; D’Andrea, F.; Drobinski, P. Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett. 2012, 7, 014023. [Google Scholar] [CrossRef]
- Hoerling, M.; Kumar, A.; Dole, R.; Nielsen-Gammon, J.W.; Eischeid, J.; Perlwitz, J.; Quan, X.-W.; Zhang, T.; Pegion, P.; Chen, M. Anatomy of an Extreme Event. J. Clim. 2013, 26, 2811–2832. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S. Sensitivity of extreme climate events to CO2-induced biophysical atmosphere-vegetation feedbacks in the western United States. Geophys. Res. Lett. 2005, 320, 99–119. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Pal, J.S.; Trapp, R.J.; Giorgi, F. Fine-scale processes regulate the response of extreme events to global climate change. Proc. Natl. Acad. Sci. USA 2005, 102, 15774–15778. [Google Scholar] [CrossRef] [Green Version]
- Della-Marta, P.M.; Haylock, M.R.; Luterbacher, J.; Wanner, H. Doubled length of western European summer heat waves since 1880. J. Geophys. Res. Atmos. 2007, 112, D15103. [Google Scholar] [CrossRef] [Green Version]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, H.; Tian, H. Research on the Heat Wave Index. Meteorol. Mon. 2011, 37, 345–351. [Google Scholar]
- Liu, J.; Ren, Y.; Tao, H.; Shalamzari, M.J. Spatial and Temporal Variation Characteristics of Heatwaves in Recent Decades over China. Remote Sens. 2021, 13, 3824. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, Y.; Zhai, J.; Cao, L.; Su, B.; Wang, G.; Zeng, G.; Gao, C.; Xiong, M.; Li, X.; et al. Study on the Risk of Socio-economic Impacts of Extreme Climate Events: Theory, Methodology and Practice. Yuejiang Acad. J. 2018, 10, 90–105,147. [Google Scholar] [CrossRef]
- Ren, F.; Gao, H.; Liu, L.; Song, Y.; Gao, R.; Wang, Z.; Gong, Z.; Wang, Y.; Chen, L.; Li, Q.; et al. Research Progresses on Extreme Weather and Climate Events and Their Operational Applications in Climate Monitoring Prediction. Meteorol. Mon. 2014, 40, 860–874. [Google Scholar]
- Ren, F.; Cui, D.; Gong, Z.; Wang, Y.; Zou, X.; Li, Y.; Wang, S.; Wang, X. An Objective Identification Technique for Regional Extreme Events. J. Clim. 2012, 25, 7015–7027. [Google Scholar] [CrossRef]
- Gong, Z.; Wang, X.; Cui, D.; Wang, Y.; Ren, F.; Feng, G.; Zhang, Q.; Zou, X.; Wang, X. The Identification and Changing Characteristics of Regional Low Temperature Extreme Events. J. Appl. Meteorol. Sci. 2012, 23, 195–204. [Google Scholar]
- Wang, X.-J.; Gong, Z.-Q.; Ren, F.-M.; Feng, G.-L. Spatial-Temporal Characteristics of Regional Extreme Low Temperature Events in China during 1960–2009. Adv. Clim. Chang. Res. 2012, 3, 186–194. [Google Scholar] [CrossRef]
- Min, S.; Qian, Y.-F. Regionality and persistence of extreme precipitation events in China. Adv. Water Sci. 2008, 19, 765–771. [Google Scholar]
- Huang, D.; Qian, Y. The analysis method of regional characteristics of extreme temperature and its results. J. Nanjing Univ. (Nat. Sci.) 2009, 45, 715–723. [Google Scholar]
- Kai, T.; Zhong-Wei, Y.; Yi, W. A spatial cluster analysis of heavy rains in China. Atmos. Ocean. Sci. Lett. 2011, 4, 36–40. [Google Scholar] [CrossRef]
- Zhai, J.; Huang, J.; Su, B.; Cao, L.; Wang, Y.; Jiang, T.; Fischer, T. Intensity–area–duration analysis of droughts in China 1960–2013. Clim. Dyn. 2017, 48, 151–168. [Google Scholar] [CrossRef]
- Lü, Y.; Jiang, T.; Tao, H.; Zhai, J.; Wang, Y. Spatial-temporal patterns of population exposed to the extreme maximum temperature events in the Belt and Road regions. Sci. Technol. Rev. 2020, 38, 68–79. [Google Scholar]
- Jing, C.; Jiang, T.; Wang, Y.; Chen, J.; Jian, D.; Luo, L.; Buda, S. A study on regional extreme precipitation events and the exposure of population and economy in China. Acta Meteorol. Sin. 2016, 74, 572–582. [Google Scholar]
- Hou, Y. Evaluation of Utility and Disutility of China’s Economic Growth Based on Genuine Progress Indicator 2.0. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4265306 (accessed on 18 January 2023).
- Cai, W.; Zhang, C.; Suen, H.P.; Ai, S.; Bai, Y.; Bao, J.; Chen, B.; Cheng, L.; Cui, X.; Dai, H. The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health 2021, 6, e64–e81. [Google Scholar] [CrossRef] [PubMed]
- Zhi, G.; Meng, B.; Wang, J.; Chen, S.; Tian, B.; Ji, H.; Yang, T.; Wang, B.; Liu, J. Spatial Analysis of Urban Residential Sensitivity to Heatwave Events: Case Studies in Five Megacities in China. Remote Sens. 2021, 13, 4086. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Liu, T.; Li, Q. Runoff Dynamics and Associated Multi-Scale Responses to Climate Changes in the Middle Reach of the Yarlung Zangbo River Basin, China. Water 2018, 10, 295. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Kun, Y.; Jie, H. China Meteorological Forcing Dataset (1979–2018); National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C.K. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Dai, A.; Rasmussen, R.M.; Liu, C.; Ikeda, K.; Prein, A.F. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Clim. Dyn. 2020, 55, 343–368. [Google Scholar] [CrossRef]
- Kholodovsky, V.; Liang, X.Z. A generalized Spatio-Temporal Threshold Clustering method for identification of extreme event patterns. Adv. Stat. Clim. Meteorol. Oceanogr. 2021, 7, 35–52. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Martins, J.P.A.; Russo, A.; Durão, R.; Trigo, I.F. Monitoring Heat Extremes across Central Europe Using Land Surface Temperature Data Records from SEVIRI/MSG. Remote Sens. 2022, 14, 3470. [Google Scholar] [CrossRef]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Cook, E.R. Pan-Continental Droughts in North America over the Last Millennium. J. Clim. 2014, 27, 383–397. [Google Scholar] [CrossRef] [Green Version]
- Dracup, J.A.; Lee, K.S.; Paulson, E.G., Jr. On the definition of droughts. Water Resour. Res. 1980, 16, 297–302. [Google Scholar] [CrossRef]
- Sheffield, J.; Andreadis, K.; Wood, E.; Lettenmaier, D. Global and continental drought in the second half of the twentieth century: Severity–area–duration analysis and temporal variability of large-scale events. J. Clim. 2009, 22, 1962–1981. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Y.; Su, B.; Kundzewicz, Z.W.; Tao, H.; Wen, S.; Qin, J.; Gong, Y.; Jiang, T. Comparison of Changing Population Exposure to Droughts in River Basins of the Tarim and the Indus. Earth's Future 2020, 8, e2019EF001448. [Google Scholar] [CrossRef] [Green Version]
- Basarir, A.; Arman, H.; Hussein, S.; Murad, A.; Aldahan, A.; Al-Abri, M.A. Trend Detection in Annual Temperature and Precipitation Using Mann–Kendall Test—A Case Study to Assess Climate Change in Abu Dhabi; United Arab Emirates: Cham, Switzerland, 2018; pp. 3–12. [Google Scholar]
- Bihrat, Ö.; Bayazit, M. The power of statistical tests for trend detection. Turk. J. Eng. Environ. Sci. 2003, 27, 247–251. [Google Scholar]
- Oven, K.J.; Curtis, S.E.; Reaney, S.; Riva, M.; Stewart, M.G.; Ohlemüller, R.; Dunn, C.E.; Nodwell, S.; Dominelli, L.; Holden, R. Climate change and health and social care: Defining future hazard, vulnerability and risk for infrastructure systems supporting older people’s health care in England. Appl. Geogr. 2012, 33, 16–24. [Google Scholar] [CrossRef]
- Alonso, L.; Renard, F. A comparative study of the physiological and socio-economic vulnerabilities to heat waves of the population of the Metropolis of Lyon (France) in a climate change context. Int. J. Environ. Res. Public Health 2020, 17, 1004. [Google Scholar] [CrossRef] [Green Version]
- Nori-Sarma, A.; Benmarhnia, T.; Rajiva, A.; Azhar, G.S.; Gupta, P.; Pednekar, M.S.; Bell, M.L. Advancing our understanding of heat wave criteria and associated health impacts to improve heat wave alerts in developing country settings. Int. J. Environ. Res. Public Health 2019, 16, 2089. [Google Scholar] [CrossRef] [Green Version]
- Heo, S.; Bell, M.L.; Lee, J.-T. Comparison of health risks by heat wave definition: Applicability of wet-bulb globe temperature for heat wave criteria. Environ. Res. 2019, 168, 158–170. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, J. The association between consecutive days’ heat wave and cardiovascular disease mortality in Beijing, China. BMC Public Health 2017, 17, 223. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, E.; Gallardo, C.; Gaertner, M.; Arribas, A.; Castro, M. Future climate extreme events in the Mediterranean simulated by a regional climate model: A first approach. Glob. Planet. Chang. 2004, 44, 163–180. [Google Scholar] [CrossRef]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Kosatsky, T.; Smargiassi, A.; Bilodeau-Bertrand, M.; Auger, N. Heat and pregnancy-related emergencies: Risk of placental abruption during hot weather. Environ. Int. 2018, 111, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-M.; Ai, S.-Q.; Qi, J.-L.; Wang, L.-J.; Zhou, M.-G.; Wang, C.-J.; Yin, P.; Lin, H.-L. Defining region-specific heatwave in China based on a novel concept of “avoidable mortality for each temperature unit decrease”. Adv. Clim. Chang. Res. 2021, 12, 611–618. [Google Scholar] [CrossRef]
- Rita, A.; Camarero, J.J.; Nolè, A.; Borghetti, M.; Brunetti, M.; Pergola, N.; Serio, C.; Vicente-Serrano, S.M.; Tramutoli, V.; Ripullone, F. The impact of drought spells on forests depends on site conditions: The case of 2017 summer heat wave in southern Europe. Glob. Chang. Biol. 2020, 26, 851–863. [Google Scholar] [CrossRef]
- Yoon, D.; Cha, D.H.; Lee, G.; Park, C.; Lee, M.I.; Min, K.H. Impacts of synoptic and local factors on heat wave events over southeastern region of Korea in 2015. J. Geophys. Res. Atmos. 2018, 123, 12081–12096. [Google Scholar] [CrossRef]
- Rummukainen, M. Changes in climate and weather extremes in the 21st century. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 115–129. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, J.; Shalamzari, M.J.; Arshad, A.; Liu, S.; Liu, T.; Tao, H. Monitoring Recent Changes in Drought and Wetness in the Source Region of the Yellow River Basin, China. Water 2022, 14, 861. [Google Scholar] [CrossRef]
- Andreadis, K.M.; Clark, E.A.; Wood, A.W.; Hamlet, A.F.; Lettenmaier, D.P. Twentieth-century drought in the conterminous United States. J. Hydrometeorol. 2005, 6, 985–1001. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B. A spatio-temporal structure-based approach to drought characterisation. Int. J. Climatol. 2012, 32, 406–418. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Lettenmaier, D.P.; Sheffield, J. Soil Moisture Drought in China, 1950–2006. J. Clim. 2011, 24, 3257–3271. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- Nikolopoulos, E.; Borga, M.; Creutin, J.; Marra, F. Estimation of debris flow triggering rainfall: Influence of rain gauge density and interpolation methods. Geomorphology 2015, 243, 40–50. [Google Scholar] [CrossRef]
- Hallack-Alegria, M.; Watkins, D.W., Jr. Annual and warm season drought intensity–duration–frequency analysis for Sonora, Mexico. J. Clim. 2007, 20, 1897–1909. [Google Scholar] [CrossRef] [Green Version]
- Bonal, D.; Burban, B.; Stahl, C.; Wagner, F.; Hérault, B. The response of tropical rainforests to drought—Lessons from recent research and future prospects. Ann. For. Sci. 2016, 73, 27–44. [Google Scholar] [CrossRef] [Green Version]
Level | Classification Criteria |
---|---|
Light | 2.8 ≤ HWI < 6.5 |
Moderate | 6.5 ≤ HWI < 10.5 |
Severe | HWI ≥ 10.5 |
Region | Frequency | Frequency (D < 6 Days) | Frequency (D ≥ 12 Days) | Longest D (Days) | Maximum IA (104 km2) |
---|---|---|---|---|---|
XJ | 1463 | 1255 | 59 | 51 (13 July 2002) | 263.88 (11 July 1999) |
QTP | 5 | 5 | 0 | 2 (25 July 2002) | 1.98 (25 July 2002) |
NW | 578 | 537 | 5 | 49 (9 July 2010) | 386.35 (9 July 2010) |
NE | 201 | 194 | 1 | 21 (7 July 2000) | 231.18 (7 July 2000) |
NC | 645 | 595 | 10 | 30 (11 June 2005) | 204.06 (11 June 2005) |
SW | 903 | 746 | 60 | 36 (6 August 2018) | 159.78 (25 July 2014) |
SC | 2231 | 2029 | 68 | 56 (12 July 2018) | 229.56 (12 July 2018) |
Region | XJ | QTP | NW | NE | NC | SW | SC |
---|---|---|---|---|---|---|---|
CIA (104 km2) | 16,847.13 | 5.14 | 3934.33 | 1615.90 | 5948.93 | 2799.78 | 13,266.42 |
Percentage (%) | 37.93 | 0.01 | 8.86 | 3.64 | 13.39 | 6.30 | 29.87 |
Slope (104 km2/decade) | 46.7 ** | 0.00 | 23.5 * | 9.1 | 5.2 | 29.8 ** | 86.3 ** |
Number | Period (Day-Month-Year) | Duration (d) | The Location of the Strongest Center (Lon, Lat) | Influence Area (104 km2) | Intensity | Region |
---|---|---|---|---|---|---|
1 | 12 July 2018–5 September 2018 | 56 | 118.45, 30.75 | 229.56 | 6.64 | SC |
2 | 3 July 2013–25 August 2013 | 53 | 117.75, 28.25 | 200.17 | 5.90 | SC |
3 | 13 July 2002–1 September 2002 | 51 | 89.15, 42.75 | 63.90 | 5.44 | XJ |
4 | 9 July 2010–27 August 2010 | 49 | 104.25, 41.25 | 386.35 | 5.95 | NW |
5 | 11 July 2017–6 August 2017 | 46 | 118.25, 26.35 | 221.09 | 5.36 | SC |
6 | 1 July 2003–14 August 2003 | 44 | 118.25, 26.35 | 183.32 | 6.07 | SC |
7 | 30 June 2007–13 August 2007 | 44 | 121.45, 29.85 | 134.45 | 5.29 | SC |
8 | 7 July 2018–19 August 2018 | 43 | 120.65, 21.85 | 2.76 | 7.15 | SC |
9 | 28 July 2016–7 September 2016 | 42 | 121.75, 24.25 | 3.11 | 7.40 | SC |
10 | 14 July 2014–23 August 2014 | 40 | 120.55, 22.25 | 2.84 | 6.98 | SC |
Number | Period (Day-Month-Year) | Duration (d) | Strongest Center Location (Lon, Lat) | Influence Area (104 km2) | Intensity | Region |
---|---|---|---|---|---|---|
1 | 9 July 2010–27 August 2010 | 49 | 104.25, 41.25 | 386.35 | 5.95 | NW |
2 | 11 July 1999–6 August 1999 | 26 | 92.25, 42.75 | 263.88 | 7.14 | XJ |
3 | 7 July 2000–27 July 2000 | 21 | 121.25, 41.25 | 231.18 | 6.42 | NE |
4 | 12 July 2018–5 September 2018 | 56 | 118.45, 30.75 | 229.56 | 6.64 | SC |
5 | 2 July 2017–2 August 2017 | 31 | 88.85, 42.75 | 221.45 | 6.99 | XJ |
6 | 11 July 2017–26 August 2017 | 46 | 118.25, 26.35 | 221.09 | 5.36 | SC |
7 | 11 June 2005–10 July 2005 | 30 | 113.25, 35.25 | 204.06 | 5.20 | NC |
8 | 8 July 2002–20 July 2002 | 13 | 116.75, 36.75 | 203.26 | 5.36 | NC |
9 | 3 July 2013–25 August 2013 | 53 | 117.75, 28.25 | 200.16 | 5.90 | SC |
10 | 15 July 2016–3 August 2014 | 20 | 109.25, 19.75 | 192.90 | 5.39 | SC |
Indicators | Intensity | Duration | Area |
---|---|---|---|
Intensity | 1.00 | 0.59 ** | 0.40 ** |
Duration | 0.59 ** | 1.00 | 0.60 ** |
Area | 0.40 ** | 0.60 ** | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Liu, J.; Zhang, T.; Shalamzari, M.J.; Arshad, A.; Liu, T.; Willems, P.; Gao, H.; Tao, H.; Wang, T. Identification and Analysis of Heatwave Events Considering Temporal Continuity and Spatial Dynamics. Remote Sens. 2023, 15, 1369. https://doi.org/10.3390/rs15051369
Ren Y, Liu J, Zhang T, Shalamzari MJ, Arshad A, Liu T, Willems P, Gao H, Tao H, Wang T. Identification and Analysis of Heatwave Events Considering Temporal Continuity and Spatial Dynamics. Remote Sensing. 2023; 15(5):1369. https://doi.org/10.3390/rs15051369
Chicago/Turabian StyleRen, Yanqun, Jinping Liu, Tongchang Zhang, Masoud Jafari Shalamzari, Arfan Arshad, Tie Liu, Patrick Willems, Huiran Gao, Hui Tao, and Tingli Wang. 2023. "Identification and Analysis of Heatwave Events Considering Temporal Continuity and Spatial Dynamics" Remote Sensing 15, no. 5: 1369. https://doi.org/10.3390/rs15051369
APA StyleRen, Y., Liu, J., Zhang, T., Shalamzari, M. J., Arshad, A., Liu, T., Willems, P., Gao, H., Tao, H., & Wang, T. (2023). Identification and Analysis of Heatwave Events Considering Temporal Continuity and Spatial Dynamics. Remote Sensing, 15(5), 1369. https://doi.org/10.3390/rs15051369