Assessing the Magnitude of the Amazonian Forest Blowdowns and Post-Disturbance Recovery Using Landsat-8 and Time Series of PlanetScope Satellite Constellation Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Landsat-8 and PlanetScope NICFI Satellite Data
2.3. Spectral Mixture Analysis (SMA)
2.4. Amazon Blowdown Event Mapping and Data Collection
2.5. Analysis
3. Results
3.1. OLI Landsat-8 and PlanetScope NICFI Images of Blowdown Disturbance
3.2. Changes in Endmember Fractions after Blowdown
3.3. Post-Blowdown Vegetation Regeneration Process
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Negrón-Juárez, R.I.; Jenkins, H.S.; Raupp, C.F.; Riley, W.J.; Kueppers, L.M.; Magnabosco Marra, D.; Ribeiro, G.H.; Monteiro, M.T.F.; Candido, L.A.; Chambers, J.Q. Windthrow Variability in Central Amazonia. Atmosphere 2017, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Negrón-Juárez, R.I.; Romps, D.M.; Chambers, J.Q. Amazon Windthrow Disturbances Are Likely to Increase with Storm Frequency under Global Warming. Nat. Commun. 2023, 14, 101. [Google Scholar] [CrossRef] [PubMed]
- Tyukavina, A.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Smith-Rodriguez, K.; Okpa, C.; Aguilar, R. Types and Rates of Forest Disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 2017, 3, e1601047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gora, E.M.; Bitzer, P.M.; Burchfield, J.C.; Gutierrez, C.; Yanoviak, S.P. The Contributions of Lightning to Biomass Turnover, Gap Formation and Plant Mortality in a Tropical Forest; John Wiley & Sons: Hoboken, NJ, USA, 2021; ISBN 0012-9658. [Google Scholar]
- Chambers, J.Q.; Negron-Juarez, R.I.; Marra, D.M.; Di Vittorio, A.; Tews, J.; Roberts, D.; Ribeiro, G.H.; Trumbore, S.E.; Higuchi, N. The Steady-State Mosaic of Disturbance and Succession across an Old-Growth Central Amazon Forest Landscape. Proc. Natl. Acad. Sci. USA 2013, 110, 3949–3954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espírito-Santo, F.D.; Gloor, M.; Keller, M.; Malhi, Y.; Saatchi, S.; Nelson, B.; Junior, R.C.O.; Pereira, C.; Lloyd, J.; Frolking, S. Size and Frequency of Natural Forest Disturbances and the Amazon Forest Carbon Balance. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Peterson, C.J.; Ribeiro, G.H.P.d.M.; Negrón-Juárez, R.; Marra, D.M.; Chambers, J.Q.; Higuchi, N.; Lima, A.; Cannon, J.B. Critical Wind Speeds Suggest Wind Could Be an Important Disturbance Agent in Amazonian Forests. For. Int. J. For. Res. 2019, 92, 444–459. [Google Scholar] [CrossRef]
- Esquivel-Muelbert, A.; Phillips, O.L.; Brienen, R.J.; Fauset, S.; Sullivan, M.J.; Baker, T.R.; Chao, K.-J.; Feldpausch, T.R.; Gloor, E.; Higuchi, N. Tree Mode of Death and Mortality Risk Factors across Amazon Forests. Nat. Commun. 2020, 11, 5515. [Google Scholar] [CrossRef] [PubMed]
- Lindenmayer, D.; McCarthy, M.A. Congruence between Natural and Human Forest Disturbance: A Case Study from Australian Montane Ash Forests. For. Ecol. Manag. 2002, 155, 319–335. [Google Scholar] [CrossRef]
- Kimmins, J.P. Forest Ecology. In Fishes and Forestry: Worldwide Watershed Interactions and Management; Wiley-Blackwell: Hoboken, NJ, USA, 2004; pp. 17–43. [Google Scholar]
- Feng, Y.; Negrón-Juárez, R.I.; Chambers, J.Q. Remote Sensing and Statistical Analysis of the Effects of Hurricane María on the Forests of Puerto Rico. Remote Sens. Environ. 2020, 247, 111940. [Google Scholar] [CrossRef]
- Urquiza Muñoz, J.D.; Magnabosco Marra, D.; Negrón-Juarez, R.I.; Tello-Espinoza, R.; Alegría-Muñoz, W.; Pacheco-Gómez, T.; Rifai, S.W.; Chambers, J.Q.; Jenkins, H.S.; Brenning, A. Recovery of Forest Structure Following Large-Scale Windthrows in the Northwestern Amazon. Forests 2021, 12, 667. [Google Scholar] [CrossRef]
- Gorgens, E.B.; Keller, M.; Jackwon, T.D.; Marra, D.M.; Reis, C.R.; Almeida, D.R.A.; Coomes, D.; Ometto, J.P. Tracking Canopy Gap Dynamics across Four Sites in the Brazilian Amazon. bioRxiv, 2022; preprint. [Google Scholar] [CrossRef]
- Chambers, J.Q.; Asner, G.P.; Morton, D.C.; Anderson, L.O.; Saatchi, S.S.; Espírito-Santo, F.D.; Palace, M.; Souza, C., Jr. Regional Ecosystem Structure and Function: Ecological Insights from Remote Sensing of Tropical Forests. Trends Ecol. Evol. 2007, 22, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Dalagnol, R.; Phillips, O.L.; Gloor, E.; Galvão, L.S.; Wagner, F.H.; Locks, C.J.; Aragão, L.E. Quantifying Canopy Tree Loss and Gap Recovery in Tropical Forests under Low-Intensity Logging Using VHR Satellite Imagery and Airborne LiDAR. Remote Sens. 2019, 11, 817. [Google Scholar] [CrossRef] [Green Version]
- Dalagnol, R.; Wagner, F.H.; Galvão, L.S.; Streher, A.S.; Phillips, O.L.; Gloor, E.; Pugh, T.A.; Ometto, J.P.; Aragão, L.E. Large-Scale Variations in the Dynamics of Amazon Forest Canopy Gaps from Airborne Lidar Data and Opportunities for Tree Mortality Estimates. Sci. Rep. 2021, 11, 1388. [Google Scholar] [CrossRef] [PubMed]
- Reis, C.R.; Jackson, T.D.; Gorgens, E.B.; Dalagnol, R.; Jucker, T.; Nunes, M.H.; Ometto, J.P.; Aragão, L.E.; Rodriguez, L.C.E.; Coomes, D.A. Forest Disturbance and Growth Processes Are Reflected in the Geographical Distribution of Large Canopy Gaps across the Brazilian Amazon. J. Ecol. 2022, 110, 2971–2983. [Google Scholar] [CrossRef]
- Jucker, T. Deciphering the Fingerprint of Disturbance on the Three-dimensional Structure of the World’s Forests. N. Phytol. 2022, 233, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, A.; Araujo, R.F.; Celes, C.H.S.; da Silva e Silva, F.R.; dos Santos, J.; Higuchi, N.; Trumbore, S.; Marra, D.M. Gap Geometry, Seasonality and Associated Losses of Biomass–Combining UAV Imagery and Field Data from a Central Amazon Forest. Biogeosciences Discuss. 2023. [Google Scholar] [CrossRef]
- McConnell, T.J. A Guide to Conducting Aerial Sketchmapping Surveys; US Department of Agriculture, Forest Service: Washington, DC, USA, 2000.
- Stone, C.; Carnegie, A.; Melville, G.; Smith, D.; Nagel, M. Aerial Mapping Canopy Damage by the Aphid Essigella Californica in a Pinus Radiata Plantation in Southern New South Wales: What Are the Challenges? Aust. For. 2013, 76, 101–109. [Google Scholar] [CrossRef]
- Stone, C.; Mohammed, C. Application of Remote Sensing Technologies for Assessing Planted Forests Damaged by Insect Pests and Fungal Pathogens: A Review. Curr. For. Rep. 2017, 3, 75–92. [Google Scholar] [CrossRef]
- Nelson, B.W.; Kapos, V.; Adams, J.B.; Oliveira, W.J.; Braun, O.P. Forest Disturbance by Large Blowdowns in the Brazilian Amazon. Ecology 1994, 75, 853–858. [Google Scholar] [CrossRef]
- Chambers, J.Q.; Negrón-Juárez, R.I.; Hurtt, G.C.; Marra, D.M.; Higuchi, N. Lack of Intermediate-scale Disturbance Data Prevents Robust Extrapolation of Plot-level Tree Mortality Rates for Old-growth Tropical Forests. Ecol. Lett. 2009, 12, E22–E25. [Google Scholar] [CrossRef]
- Negrón-Juárez, R.I.; Chambers, J.Q.; Marra, D.M.; Ribeiro, G.H.; Rifai, S.W.; Higuchi, N.; Roberts, D. Detection of Subpixel Treefall Gaps with Landsat Imagery in Central Amazon Forests. Remote Sens. Environ. 2011, 115, 3322–3328. [Google Scholar] [CrossRef]
- Chambers, J.Q.; Fisher, J.I.; Zeng, H.; Chapman, E.L.; Baker, D.B.; Hurtt, G.C. Hurricane Katrina’s Carbon Footprint on US Gulf Coast Forests. Science 2007, 318, 1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrón-Juárez, R.I.; Chambers, J.Q.; Guimaraes, G.; Zeng, H.; Raupp, C.F.; Marra, D.M.; Ribeiro, G.H.; Saatchi, S.S.; Nelson, B.W.; Higuchi, N. Widespread Amazon Forest Tree Mortality from a Single Cross-basin Squall Line Event. Geophys. Res. Lett. 2010, 37, L16701. [Google Scholar] [CrossRef]
- Rifai, S.W.; Urquiza Muñoz, J.D.; Negrón-Juárez, R.I.; Ramírez Arévalo, F.R.; Tello-Espinoza, R.; Vanderwel, M.C.; Lichstein, J.W.; Chambers, J.Q.; Bohlman, S.A. Landscape-scale Consequences of Differential Tree Mortality from Catastrophic Wind Disturbance in the Amazon. Ecol. Appl. 2016, 26, 2225–2237. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.Q.; Robertson, A.L.; Carneiro, V.M.; Lima, A.J.; Smith, M.-L.; Plourde, L.C.; Higuchi, N. Hyperspectral Remote Detection of Niche Partitioning among Canopy Trees Driven by Blowdown Gap Disturbances in the Central Amazon. Oecologia 2009, 160, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Weishampel, J.F.; Drake, J.B.; Cooper, A.; Blair, J.B.; Hofton, M. Forest Canopy Recovery from the 1938 Hurricane and Subsequent Salvage Damage Measured with Airborne LiDAR. Remote Sens. Environ. 2007, 109, 142–153. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Gillis, M.D.; Walsworth, N.; Hansen, M.C.; Potapov, P. Multiscale Satellite and Spatial Information and Analysis Framework in Support of a Large-Area Forest Monitoring and Inventory Update. Environ. Monit. Assess 2010, 170, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Cushman, K.C.; Burley, J.T.; Imbach, B.; Saatchi, S.S.; Silva, C.E.; Vargas, O.; Zgraggen, C.; Kellner, J.R. Impact of a Tropical Forest Blowdown on Aboveground Carbon Balance. Sci. Rep. 2021, 11, 11279. [Google Scholar] [CrossRef]
- Emmert, L.; Negrón-Juárez, R.I.; Chambers, J.Q.; Santos, J.D.; Lima, A.J.N.; Trumbore, S.; Marra, D.M. Sensitivity of Optical Satellites to Estimate Windthrow Tree-Mortality in a Central Amazon Forest. Preprints 2023, 2023051631. [Google Scholar] [CrossRef]
- Schwarz, M.; Steinmeier, C.; Holecz, F.; Stebler, O.; Wagner, H. Detection of Windthrow in Mountainous Regions with Different Remote Sensing Data and Classification Methods. Scand. J. For. Res. 2003, 18, 525–536. [Google Scholar] [CrossRef]
- Negrón-Juárez, R.I.; Holm, J.A.; Faybishenko, B.; Magnabosco-Marra, D.; Fisher, R.A.; Shuman, J.K.; de Araujo, A.C.; Riley, W.J.; Chambers, J.Q. Landsat Near-Infrared (NIR) Band and ELM-FATES Sensitivity to Forest Disturbances and Regrowth in the Central Amazon. Biogeosciences 2020, 17, 6185–6205. [Google Scholar] [CrossRef]
- NICFI Securing Tropical Forests for the Future. 2023. Available online: https://www.nicfi.no/ (accessed on 19 April 2023).
- Planet NICFI DATA Program User Guide. 2022. Available online: https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf (accessed on 29 August 2022).
- Espírito-Santo, F.D.; Keller, M.; Braswell, B.; Nelson, B.W.; Frolking, S.; Vicente, G. Storm Intensity and Old-growth Forest Disturbances in the Amazon Region. Geophys. Res. Lett. 2010, 37, L11403. [Google Scholar] [CrossRef] [Green Version]
- Araujo, R.F.; Nelson, B.W.; Celes, C.H.S.; Chambers, J.Q. Regional Distribution of Large Blowdown Patches across Amazonia in 2005 Caused by a Single Convective Squall Line. Geophys. Res. Lett. 2017, 44, 7793–7798. [Google Scholar] [CrossRef] [Green Version]
- Negrón-Juárez, R.I.; Holm, J.A.; Marra, D.M.; Rifai, S.W.; Riley, W.J.; Chambers, J.Q.; Koven, C.D.; Knox, R.G.; McGroddy, M.E.; Di Vittorio, A.V. Vulnerability of Amazon Forests to Storm-Driven Tree Mortality. Environ. Res. Lett. 2018, 13, 054021. [Google Scholar] [CrossRef]
- de Assis Diniz, F.; Ramos, A.M.; Rebello, E.R.G. Brazilian Climate Normals for 1981–2010. Pesqui. Agropecuária Bras. 2018, 53, 131–143. [Google Scholar] [CrossRef]
- Vancutsem, C.; Achard, F.; Pekel, J.-F.; Vieilledent, G.; Carboni, S.; Simonetti, D.; Gallego, J.; Aragao, L.E.; Nasi, R. Long-Term (1990–2019) Monitoring of Forest Cover Changes in the Humid Tropics. Sci. Adv. 2021, 7, eabe1603. [Google Scholar] [CrossRef]
- USGS Landsat Collection 2 Surface Reflectance. 2022. Available online: https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-reflectance (accessed on 18 August 2022).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Roberts, D.A.; Smith, M.O.; Adams, J.B. Green Vegetation, Nonphotosynthetic Vegetation, and Soils in AVIRIS Data. Remote Sens. Environ. 1993, 44, 255–269. [Google Scholar] [CrossRef]
- Bangira, T.; Alfieri, S.M.; Menenti, M.; Van Niekerk, A.; Vekerdy, Z. A Spectral Unmixing Method with Ensemble Estimation of Endmembers: Application to Flood Mapping in the Caprivi Floodplain. Remote Sens. 2017, 9, 1013. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar]
- Combe, J.-P.; Le Mouélic, S.; Sotin, C.; Gendrin, A.; Mustard, J.F.; Le Deit, L.; Launeau, P.; Bibring, J.-P.; Gondet, B.; Langevin, Y. Analysis of OMEGA/Mars Express Data Hyperspectral Data Using a Multiple-Endmember Linear Spectral Unmixing Model (MELSUM): Methodology and First Results. Planet. Space Sci. 2008, 56, 951–975. [Google Scholar] [CrossRef]
- Yang, J.; Weisberg, P.J.; Bristow, N.A. Landsat Remote Sensing Approaches for Monitoring Long-Term Tree Cover Dynamics in Semi-Arid Woodlands: Comparison of Vegetation Indices and Spectral Mixture Analysis. Remote Sens. Environ. 2012, 119, 62–71. [Google Scholar] [CrossRef]
- ESRI, A.P. 2.8. 3; Environmental Systems Research Institute. 2021. Available online: https://www.esri.com/content/dam/esrisites/en-us/media/legal/vpats/arcgis-pro-28-vpat.pdf (accessed on 20 April 2023).
- Marra, D.M.; Chambers, J.Q.; Higuchi, N.; Trumbore, S.E.; Ribeiro, G.H.; Dos Santos, J.; Negrón-Juárez, R.I.; Reu, B.; Wirth, C. Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest. PLoS ONE 2014, 9, e103711. [Google Scholar] [CrossRef] [PubMed]
- Di Vittorio, A.V.; Negrón-Juárez, R.I.; Higuchi, N.; Chambers, J.Q. Tropical Forest Carbon Balance: Effects of Field-and Satellite-Based Mortality Regimes on the Dynamics and the Spatial Structure of Central Amazon Forest Biomass. Environ. Res. Lett. 2014, 9, 034010. [Google Scholar] [CrossRef] [Green Version]
- Galvão, L.S.; dos Santos, J.R.; da Silva, R.D.; da Silva, C.V.; Moura, Y.M.; Breunig, F.M. Following a Site-Specific Secondary Succession in the Amazon Using the Landsat CDR Product and Field Inventory Data. Int. J. Remote Sens. 2015, 36, 574–596. [Google Scholar] [CrossRef]
- Wohl, E. Redistribution of Forest Carbon Caused by Patch Blowdowns in Subalpine Forests of the Southern Rocky Mountains, USA. Glob. Biogeochem. Cycles 2013, 27, 1205–1213. [Google Scholar] [CrossRef]
- Sapkota, I.P.; Odén, P.C. Gap Characteristics and Their Effects on Regeneration, Dominance and Early Growth of Woody Species. J. Plant Ecol. 2009, 2, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Peterson, C.J.; Pickett, S.T. Forest Reorganization: A Case Study in an Old-growth Forest Catastrophic Blowdown. Ecology 1995, 76, 763–774. [Google Scholar] [CrossRef]
- Yamamoto, S.-I. Forest Gap Dynamics and Tree Regeneration. J. For. Res. 2000, 5, 223–229. [Google Scholar] [CrossRef]
- Henkel, T.K.; Chambers, J.Q.; Baker, D.A. Delayed Tree Mortality and Chinese Tallow (Triadica Sebifera) Population Explosion in a Louisiana Bottomland Hardwood Forest Following Hurricane Katrina. For. Ecol. Manag. 2016, 378, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, V.H.; Dalagnol, R.; Cassol, H.L.; Rosan, T.M.; de Almeida, C.T.; Silva Junior, C.H.; Campanharo, W.A.; House, J.I.; Sitch, S.; Hales, T.C. Large Carbon Sink Potential of Secondary Forests in the Brazilian Amazon to Mitigate Climate Change. Nat. Commun. 2021, 12, 1785. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, V.H.A.; Vancutsem, C.; Dalagnol, R.; Rosan, T.M.; Fawcett, D.; Silva-Junior, C.H.L.; Cassol, H.L.G.; Achard, F.; Jucker, T.; Silva, C.A.; et al. The Carbon Sink of Secondary and Degraded Humid Tropical Forests. Nature 2023, 615, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Bispo, P.D.C.; Pardini, M.; Papathanassiou, K.P.; Kugler, F.; Balzter, H.; Rains, D.; dos Santos, J.R.; Rizaev, I.G.; Tansey, K.; dos Santos, M.N.; et al. Mapping Forest Successional Stages in the Brazilian Amazon Using Forest Heights Derived from TanDEM-X SAR Interferometry. Remote Sens. Environ. 2019, 232, 111194. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Liesenberg, V.; Chen, Q.; Guerriero, L.; Del Frate, F.; Bartolini, A.; Coomes, D.; Wilebore, B.; Lindsell, J.; Valentini, R. Optical and SAR Sensor Synergies for Forest and Land Cover Mapping in a Tropical Site in West Africa. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 7–16. [Google Scholar] [CrossRef]
Landsat-8 OLI | PlanetScope NICFI | ||
---|---|---|---|
Band (μm) | Blue | 0.45–0.512 | 0.455–0.515 |
Green | 0.533–0.590 | 0.500–0.590 | |
Red | 0.636–0.673 | 0.590–0.670 | |
Near-Infrared | 0.851–0.879 | 0.780–0.860 | |
SWIR 1 | 1.566–1.651 | / | |
SWIR 2 | 2.107–2.294 | / | |
Spatial resolution (m) | 30 | 4.77 | |
Temporal resolution (Revisit time) | 16 days | Daily, but monthly product mosaics available in NICFI |
ΔNPV > 0.3 | ΔNPV > 0.5 | |||||||
---|---|---|---|---|---|---|---|---|
ID | Planet Pixel Count | Landsat Pixel Count | Planet Area (ha) | Landsat Area (ha) | Planet Pixel Count | Landsat Pixel Count | Planet Area (ha) | Landsat Area (ha) |
10 | 468 | 40 | 1.06 | 3.60 | 60 | 2 | 0.14 | 0.18 |
11 | 5957 | 312 | 13.55 | 28.08 | 1853 | 100 | 4.22 | 9.00 |
13 | 4827 | 238 | 10.98 | 21.42 | 1857 | 111 | 4.23 | 9.99 |
16 | 21,633 | 730 | 49.22 | 65.70 | 6062 | 164 | 13.79 | 14.76 |
17 | 483 | 11 | 55.62 | 72.45 | 127 | 0 | 15.17 | 15.66 |
18 | 24,446 | 805 | 0.27 | 0.54 | 6669 | 174 | 0.03 | 0.00 |
19 | 1249 | 35 | 2.84 | 3.15 | 247 | 4 | 0.56 | 0.36 |
20 | 120 | 6 | 1.10 | 0.99 | 11 | 0 | 0.29 | 0.00 |
21 | 727 | 26 | 2.35 | 2.97 | 389 | 10 | 0.41 | 0.63 |
22 | 1031 | 33 | 18.97 | 21.87 | 180 | 7 | 7.43 | 8.19 |
23 | 247 | 8 | 4.70 | 8.01 | 39 | 0 | 1.24 | 2.25 |
24 | 2064 | 89 | 0.56 | 0.72 | 544 | 25 | 0.09 | 0.00 |
25 | 8337 | 243 | 2.46 | 3.06 | 3265 | 91 | 1.00 | 1.26 |
26 | 1081 | 34 | 1.65 | 2.34 | 439 | 14 | 0.89 | 0.90 |
27 | 2976 | 80 | 6.77 | 7.20 | 1183 | 31 | 2.69 | 2.79 |
28 | 3052 | 226 | 6.94 | 20.34 | 674 | 62 | 1.53 | 5.58 |
32 | 258,982 | 12,345 | 589.26 | 1111.0 | 79,301 | 3342 | 180.43 | 300.78 |
34 | 6256 | 271 | 14.23 | 24.39 | 1142 | 38 | 2.60 | 3.42 |
36 | 7413 | 280 | 16.87 | 25.20 | 2916 | 40 | 6.63 | 3.60 |
40 | 2483 | 89 | 5.65 | 8.01 | 1324 | 49 | 3.01 | 4.41 |
41 | 1069 | 43 | 2.43 | 3.87 | 395 | 14 | 0.90 | 1.26 |
42 | 829,011 | 20,827 | 1886.2 | 1874.4 | 605,299 | 14,535 | 1377.2 | 1308.1 |
43 | 116,685 | 2585 | 265.49 | 232.65 | 66,241 | 1319 | 150.72 | 118.71 |
44 | 74,618 | 1862 | 115.36 | 99.90 | 47,439 | 997 | 79.91 | 60.30 |
45 | 50,701 | 1110 | 169.78 | 167.58 | 35,121 | 670 | 107.94 | 89.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ping, D.; Dalagnol, R.; Galvão, L.S.; Nelson, B.; Wagner, F.; Schultz, D.M.; Bispo, P.d.C. Assessing the Magnitude of the Amazonian Forest Blowdowns and Post-Disturbance Recovery Using Landsat-8 and Time Series of PlanetScope Satellite Constellation Data. Remote Sens. 2023, 15, 3196. https://doi.org/10.3390/rs15123196
Ping D, Dalagnol R, Galvão LS, Nelson B, Wagner F, Schultz DM, Bispo PdC. Assessing the Magnitude of the Amazonian Forest Blowdowns and Post-Disturbance Recovery Using Landsat-8 and Time Series of PlanetScope Satellite Constellation Data. Remote Sensing. 2023; 15(12):3196. https://doi.org/10.3390/rs15123196
Chicago/Turabian StylePing, Dazhou, Ricardo Dalagnol, Lênio Soares Galvão, Bruce Nelson, Fabien Wagner, David M. Schultz, and Polyanna da C. Bispo. 2023. "Assessing the Magnitude of the Amazonian Forest Blowdowns and Post-Disturbance Recovery Using Landsat-8 and Time Series of PlanetScope Satellite Constellation Data" Remote Sensing 15, no. 12: 3196. https://doi.org/10.3390/rs15123196
APA StylePing, D., Dalagnol, R., Galvão, L. S., Nelson, B., Wagner, F., Schultz, D. M., & Bispo, P. d. C. (2023). Assessing the Magnitude of the Amazonian Forest Blowdowns and Post-Disturbance Recovery Using Landsat-8 and Time Series of PlanetScope Satellite Constellation Data. Remote Sensing, 15(12), 3196. https://doi.org/10.3390/rs15123196