Normalized Temperature Drought Index (NTDI) for Soil Moisture Monitoring Using MODIS and Landsat-8 Data
Abstract
:1. Introduction
2. Materials
2.1. Characteristics of the Study Area
2.2. Datasets and Observations
2.2.1. MODIS Data
2.2.2. Landsat-8 Data
2.2.3. Field Measurements
3. Methodology
3.1. The Red–NIR Spectral Space
3.2. The LST–NDVI Feature Space
3.3. The NDVI–LSTnor Feature Space
3.4. Design of the New Drought Index
4. Results
4.1. Estimation of Soil Line for NTDI
4.2. Comparison of PDI, MPDI, TVDI and NTDI Using MODIS Data at Crop Sites
4.3. Spatial–Temporal Estimation of Drought Indices from MODIS Images
4.4. Spatial–Temporal Estimation of Drought Indices from Landsat-8 Images
4.5. Influences of Different Spatial Resolution on NTDI
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goddard, S.; Harms, S.K.; Reichenbach, S.E.; Tadesse, T.; Waltman, W.J. Geospatial decision support for drought risk management. Commun. ACM 2003, 46, 35–37. [Google Scholar] [CrossRef]
- Riebsame, W.E.; Changnon, S.A.; Karl, T.R. Drought and Natural Resources Management in the United States: Impacts and Implications of the 1987-89 Drought; Routledge: England, UK, 2019. [Google Scholar]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y.; Minh, V.Q. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 417–427. [Google Scholar] [CrossRef]
- Sheldon, F.; Thoms, M.C. Relationships between flow variability and macroinvertebrate assemblage composition: Data from four Australian dryland rivers. River Res. Appl. 2006, 22, 219–238. [Google Scholar] [CrossRef]
- McKee, T.B. Drought monitoring with multiple time scales. In Proceedings of the 9th Conference on Applied Climatology, Boston, MA, USA, 15–20 January 1995. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Van Rooy, M. A rainfall anomally index independent of time and space. Notos 1965, 14, 43–48. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Peters, A.J.; Walter-Shea, E.A.; Ji, L.; Vina, A.; Hayes, M.; Svoboda, M.D. Drought monitoring with NDVI-based standardized vegetation index. Photogramm. Eng. Remote Sens. 2002, 68, 71–75. [Google Scholar]
- Dong, Z.; Wang, L.; Gao, M.F.; Zhu, X.C.; Feng, W.B.; Li, N. Ratio Drought Index (RDI): A soil moisture index based on new NIR-red triangle space. Int. J. Remote Sens. 2023, 1–14. [Google Scholar] [CrossRef]
- Tian, Q.; Lu, J.Z.; Chen, X.L. A novel comprehensive agricultural drought index reflecting time lag of soil moisture to meteorology: A case study in the Yangtze River basin, China. Catena 2022, 209, 105804. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Xiao, Q.-G.; Sheng, Y.-W. Application of the anomaly vegetation index to monitoring heavy drought in 1992. Remote Sens. Environ. 1994, 9, 106–112. [Google Scholar]
- Kogan, F.N. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. [Google Scholar] [CrossRef]
- Lu, Y.; Tao, H.; Wu, H. Dynamic drought monitoring in Guangxi using revised temperature vegetation dryness index. Wuhan Univ. J. Nat. Sci. 2007, 12, 663–668. [Google Scholar] [CrossRef]
- Qin, Q.; Ghulam, A.; Zhu, L.; Wang, L.; Li, J.; Nan, P. Evaluation of MODIS derived perpendicular drought index for estimation of surface dryness over northwestern China. Int. J. Remote Sens. 2008, 29, 1983–1995. [Google Scholar] [CrossRef]
- McVicar, T.R.; Jupp, D.L. The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: A review. Agric. Syst. 1998, 57, 399–468. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, P.; Li, X. Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. Int. J. Remote Sens. 2004, 25, 61–72. [Google Scholar] [CrossRef]
- Idso, S.; Reginato, R.; Jackson, R.; Pinter, J.P. Measuring yield-reducing plant water potential depressions in wheat by infrared thermometry. Irrig. Sci. 1981, 2, 205–212. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- McVicar, T.; Jupp, D.; Yang, X.; Tian, G. Linking regional water balance models with remote sensing. In Proceedings of the 13th Asian Conference on Remote Sensing, Ulaanbaatar, Mongolia, 7–11 October 1992; p. B6. [Google Scholar]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.; Zhan, Z. Designing of the perpendicular drought index. Environ. Geol. 2007, 52, 1045–1052. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.; Kusky, T.; Li, Z.L. A re-examination of perpendicular drought indices. Int. J. Remote Sens. 2008, 29, 6037–6044. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.; Teyip, T.; Li, Z.-L. Modified perpendicular drought index (MPDI): A real-time drought monitoring method. ISPRS J. Photogramm. Remote Sens. 2007, 62, 150–164. [Google Scholar] [CrossRef]
- Zormand, S.; Jafari, R.; Koupaei, S.S. Assessment of PDI, MPDI and TVDI drought indices derived from MODIS Aqua/Terra Level 1B data in natural lands. Nat. Hazards 2017, 86, 757–777. [Google Scholar] [CrossRef]
- Wang, H.; He, N.; Zhao, R.; Ma, X. Soil water content monitoring using joint application of PDI and TVDI drought indices. Remote Sens. Lett. 2020, 11, 455–464. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Liu, Z.F.; Yao, Z.J.; Wang, R. Evaluating the surface temperature and vegetation index (Ts/VI) method for estimating surface soil moisture in heterogeneous regions. Hydrol. Res. 2018, 49, 689–699. [Google Scholar] [CrossRef]
- Yan, H.; Zhou, G.; Yang, F.; Lu, X. DEM correction to the TVDI method on drought monitoring in karst areas. Int. J. Remote Sens. 2018, 40, 2166–2189. [Google Scholar] [CrossRef]
- Rouse, J.J.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973; p. 309. [Google Scholar]
- Zhang, J.; Zhang, Q.; Bao, A.; Wang, Y. A new remote sensing dryness index based on the near-infrared and red spectral space. Remote Sens. 2019, 11, 456. [Google Scholar] [CrossRef]
- Baret, F.; Clevers, J.; Steven, M. The robustness of canopy gap fraction estimates from red and near-infrared reflectances: A comparison of approaches. Remote Sens. Environ. 1995, 54, 141–151. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhou, Z.M.; Yao, F.M.; Yang, L.M.; Hao, C. Validating the Modified Perpendicular Drought Index in the North China Region Using In Situ Soil Moisture Measurement. IEEE Geosci. Remote Sens. Lett. 2015, 12, 542–546. [Google Scholar] [CrossRef]
- Chen, J.; Wang, C.; Jiang, H.; Mao, L.; Yu, Z. Estimating soil moisture using Temperature–Vegetation Dryness Index (TVDI) in the Huang-huai-hai (HHH) plain. Int. J. Remote Sens. 2011, 32, 1165–1177. [Google Scholar] [CrossRef]
- Chen, S.L.; Wen, Z.M.; Jiang, H.; Zhao, Q.J.; Zhang, X.Y.; Chen, Y. Temperature Vegetation Dryness Index Estimation of Soil Moisture under Different Tree Species. Sustainability 2015, 7, 11401–11417. [Google Scholar] [CrossRef]
- Du, L.; Song, N.; Liu, K.; Hou, J.; Hu, Y.; Zhu, Y.; Wang, X.; Wang, L.; Guo, Y. Comparison of Two Simulation Methods of the Temperature Vegetation Dryness Index (TVDI) for Drought Monitoring in Semi-Arid Regions of China. Remote Sens. 2017, 9, 177. [Google Scholar] [CrossRef]
- Shi, S.; Yao, F.; Zhang, J.; Yang, S. Evaluation of Temperature Vegetation Dryness Index on Drought Monitoring over Eurasia. IEEE Access 2020, 8, 30050–30059. [Google Scholar] [CrossRef]
- Maduako, I.N.; Ndukwu, R.I.; Ifeanyichukwu, C.; Igbokwe, O. Multi-Index Soil Moisture Estimation from Satellite Earth Observations: Comparative Evaluation of the Topographic Wetness Index (TWI), the Temperature Vegetation Dryness Index (TVDI) and the Improved TVDI (iTVDI). J. Indian Soc. Remote Sens. 2016, 45, 631–642. [Google Scholar] [CrossRef]
- Zhao, S.; Cong, D.; He, K.; Yang, H.; Qin, Z. Spatial-temporal variation of drought in China from 1982 to 2010 based on a modified temperature vegetation drought index (mTVDI). Sci. Rep. 2017, 7, 17473. [Google Scholar] [CrossRef]
- Zhu, W.; Jia, S.; Lv, A. A time domain solution of the Modified Temperature Vegetation Dryness Index (MTVDI) for continuous soil moisture monitoring. Remote Sens. Environ. 2017, 200, 1–17. [Google Scholar] [CrossRef]
- Li, C.B.; Adu, B.; Li, H.H.; Yang, D.H. Spatial and temporal variations of drought in Sichuan Province from 2001 to 2020 based on modified temperature vegetation dryness index (TVDI). Ecol. Indic. 2022, 141, 109106. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.S.; Zhang, W.J.; Ye, X.; Liu, X.F. A Modified Temperature-Vegetation Dryness Index (MTVDI) for Assessment of Surface Soil Moisture Based on MODIS Data. Chin. Geogr. Sci. 2022, 32, 592–605. [Google Scholar] [CrossRef]
- Dai, R.; Chen, S.B.; Cao, Y.J.; Zhang, Y.F.; Xu, X.T. A Modified Temperature Vegetation Dryness Index (mTVDI) for Agricultural Drought Assessment Based on MODIS Data: A Case Study in Northeast China. Remote Sens. 2023, 15, 1915. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, L.X.; Yue, H. Biparabolic NDVI-T-S Space and Soil Moisture Remote Sensing in an Arid and Semi arid Area. Can. J. Remote Sens. 2015, 41, 159–169. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, H. The Temperature Vegetation Dryness Index (TVDI) Based on Bi-Parabolic NDVI-T-s Space and Gradient-Based Structural Similarity (GSSIM) for Long-Term Drought Assessment across Shaanxi Province, China (2000–2016). Remote Sens. 2018, 10, 959. [Google Scholar] [CrossRef]
- Carlson, T. An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 2007, 7, 1612–1629. [Google Scholar] [CrossRef]
- Zhang, D.J.; Tang, R.L.; Tang, B.H.; Wu, H.; Li, Z.L. A Simple Method for Soil Moisture Determination From LST-VI Feature Space Using Nonlinear Interpolation Based on Thermal Infrared Remotely Sensed Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 638–648. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.-L.; Tang, B. An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sens. Environ. 2010, 114, 540–551. [Google Scholar] [CrossRef]
- Tao, L.; Ryu, D.; Western, A.; Boyd, D. A new drought index for soil moisture monitoring based on MPDI-NDVI trapezoid space using MODIS data. Remote Sens. 2021, 13, 122. [Google Scholar] [CrossRef]
- Nguyen, H.; Wheeler, M.C.; Hendon, H.H.; Lim, E.-P.; Otkin, J.A. The 2019 flash droughts in subtropical eastern Australia and their association with large-scale climate drivers. Weather Clim. Extrem. 2021, 32, 100321. [Google Scholar] [CrossRef]
- Zhu, W.; Lv, A.; Jia, S.; Yan, J. A new contextual parameterization of evaporative fraction to reduce the reliance of the Ts− VI triangle method on the dry edge. Remote Sens. 2017, 9, 26. [Google Scholar] [CrossRef]
- Stisen, S.; Sandholt, I.; Nørgaard, A.; Fensholt, R.; Jensen, K.H. Combining the triangle method with thermal inertia to estimate regional evapotranspiration—Applied to MSG-SEVIRI data in the Senegal River basin. Remote Sens. Environ. 2008, 112, 1242–1255. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophys. Res. Lett. 1999, 26, 2773–2776. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, R.; Zhao, W.; Tang, B.; Wu, H.; Shao, K.; Li, Z.-L. Surface Soil Water Content Estimation from Thermal Remote Sensing based on the Temporal Variation of Land Surface Temperature. Remote Sens. 2014, 6, 3170–3187. [Google Scholar] [CrossRef]
- Ran, Q.; Zhang, Z.; Zhang, G.; Zhou, Q. DEM correction using TVDI to evaluate soil moisture status in China. Sci. Soil Water Conserv. 2005, 3, 32–36. [Google Scholar]
Satellite | DOY | Date | Overpass Time (UTC) | Satellite | DOY | Date | Overpass Time (UTC) |
---|---|---|---|---|---|---|---|
MODIS | 004 | 4 January | 00:42 | Landsat-8 | 001 | 1 January | 00:21 |
023 | 23 January | 01:14 | |||||
055 | 24 February | 01:17 | |||||
061 | 2 March | 00:42 | |||||
075 | 16 March | 00:55 | |||||
102 | 12 April | 01:18 | |||||
137 | 17 May | 01:55 | |||||
162 | 11 June | 01:50 | |||||
176 | 25 June | 00:22 | 177 | 26 June | 00:21 | ||
178 | 27 June | 01:52 | |||||
203 | 22 July | 01:47 | |||||
242 | 30 August | 00:15 | |||||
254 | 11 September | 00:41 | 257 | 14 September | 00:21 | ||
274 | 1 October | 00:17 | |||||
295 | 22 October | 01:37 | |||||
297 | 24 October | 01:25 | |||||
322 | 18 November | 01:20 | |||||
354 | 20 December | 01:22 | 353 | 19 December | 00:21 |
DOY | NTDI | PDI | MPDI | TVDI | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
004 | 0.56 * | 0.02 | 0.39 | 0.03 | 0.38 | 0.06 | 0.31 | 0.09 |
023 | 0.43 | 0.07 | 0.34 | 0.02 | 0.36 | 0.04 | 0.42 | 0.10 |
055 | 0.55 * | 0.03 | 0.66 * | 0.02 | 0.63 * | 0.04 | 0.57 * | 0.05 |
061 | 0.56 * | 0.02 | 0.52 * | 0.03 | 0.52 * | 0.05 | 0.48 | 0.06 |
075 | 0.07 | 0.03 | 0.36 | 0.04 | 0.35 | 0.07 | 0.11 | 0.06 |
102 | 0.46 | 0.09 | 0.33 | 0.03 | 0.33 | 0.08 | 0.14 | 0.14 |
137 | 0.42 | 0.06 | 0.14 | 0.05 | 0.38 | 0.08 | 0.51 * | 0.10 |
162 | 0.39 | 0.06 | 0.45 | 0.04 | 0.44 | 0.11 | 0.38 | 0.10 |
176 | 0.42 | 0.09 | 0.21 | 0.04 | 0.27 | 0.12 | 0.15 | 0.10 |
178 | 0.44 | 0.07 | 0.33 | 0.03 | 0.38 | 0.13 | 0.33 | 0.09 |
203 | 0.08 | 0.09 | 0.24 | 0.03 | 0.16 | 0.20 | 0.24 | 0.11 |
242 | 0.78 ** | 0.02 | 0.19 | 0.03 | 0.35 | 0.10 | 0.44 | 0.10 |
254 | 0.79 ** | 0.03 | 0.17 | 0.05 | 0.43 | 0.08 | 0.55 * | 0.12 |
274 | 0.72 ** | 0.03 | 0.18 | 0.03 | 0.45 | 0.08 | 0.61 * | 0.13 |
295 | 0.13 | 0.09 | 0.23 | 0.05 | 0.24 | 0.11 | 0.31 | 0.17 |
297 | 0.39 | 0.04 | 0.29 | 0.05 | 0.23 | 0.11 | 0.14 | 0.16 |
322 | 0.05 | 0.05 | 0.53 * | 0.04 | 0.29 | 0.11 | 0.04 | 0.12 |
354 | 0.51 * | 0.03 | 0.40 | 0.05 | 0.18 | 0.09 | 0.24 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, L.; Di, Y.; Wang, Y.; Ryu, D. Normalized Temperature Drought Index (NTDI) for Soil Moisture Monitoring Using MODIS and Landsat-8 Data. Remote Sens. 2023, 15, 2830. https://doi.org/10.3390/rs15112830
Tao L, Di Y, Wang Y, Ryu D. Normalized Temperature Drought Index (NTDI) for Soil Moisture Monitoring Using MODIS and Landsat-8 Data. Remote Sensing. 2023; 15(11):2830. https://doi.org/10.3390/rs15112830
Chicago/Turabian StyleTao, Liangliang, Yangliu Di, Yuqi Wang, and Dongryeol Ryu. 2023. "Normalized Temperature Drought Index (NTDI) for Soil Moisture Monitoring Using MODIS and Landsat-8 Data" Remote Sensing 15, no. 11: 2830. https://doi.org/10.3390/rs15112830
APA StyleTao, L., Di, Y., Wang, Y., & Ryu, D. (2023). Normalized Temperature Drought Index (NTDI) for Soil Moisture Monitoring Using MODIS and Landsat-8 Data. Remote Sensing, 15(11), 2830. https://doi.org/10.3390/rs15112830