Evaluating the Consistency of Vegetation Phenological Parameters in the Northern Hemisphere from 1982 to 2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.1.1. GIMMS3g NDVI Dataset
2.1.2. Land Cover Dataset
2.1.3. Fluxnet2015 Dataset
2.2. Data Preprocessing
2.3. Phenology Parameter Extraction
2.4. Trend Analysis Model
3. Results and Analysis
3.1. Consistency of Vegetation Phenology Parameters
3.2. Consistency of Vegetation Phenology Trends
3.3. Consistency of Latitude Changes in Vegetation Phenology
3.3.1. Significant Trends in Vegetation Phenology by Latitude
3.3.2. Consistency of Phenological Trends of Different Vegetation Types by Latitude
3.4. Phenological Consistency between Remote Sensing and Ground Data
4. Discussion
4.1. Consistency of Characteristics and Trends in Vegetation Phenology
4.2. Consistency of Latitude Variation in Vegetation Phenology
4.3. Phenological Consistency between Remote Sensing and Ground
5. Shortcomings and Future Works
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jeganathan, C.; Dash, J.; Atkinson, P. Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sens. Environ. 2014, 143, 154–170. [Google Scholar] [CrossRef]
- Zeng, H.; Jia, G.; Epstein, H. Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environ. Res. Lett. 2011, 6, 045508. [Google Scholar] [CrossRef]
- Jeong, S.J.; Ho, C.H.; Gim, H.J.; Brown, M.E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Chang. Biol. 2011, 17, 2385–2399. [Google Scholar] [CrossRef]
- Jeong, S.J.; Ho, C.H.; Kim, K.Y.; Jeong, J.H. Reduction of spring warming over East Asia associated with vegetation feedback. Geophys. Res. Lett. 2009, 36, 9114. [Google Scholar] [CrossRef]
- Barr, A.; Black, T.A.; McCaughey, H. Climatic and phenological controls of the carbon and energy balances of three contrasting boreal forest ecosystems in western Canada. In Phenology of Ecosystem Processes; Springer: Cham, Switzerland, 2009; pp. 3–34. [Google Scholar] [CrossRef]
- Heumann, B.W.; Seaquist, J.; Eklundh, L.; Jönsson, P. AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens. Environ. 2007, 108, 385–392. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X. Investigation of wildfire impacts on land surface phenology from MODIS time series in the western US forests. ISPRS J. Photogramm. Remote Sens. 2020, 159, 281–295. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, G.; Cong, N.; Wang, S.; Kong, W.; Piao, S. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 2014, 189, 71–80. [Google Scholar] [CrossRef]
- Delbart, N.; Kergoat, L.; Le Toan, T.; Lhermitte, J.; Picard, G. Determination of phenological dates in boreal regions using normalized difference water index. Remote Sens. Environ. 2005, 97, 26–38. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef]
- Ganguly, S.; Friedl, M.A.; Tan, B.; Zhang, X.; Verma, M. Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote Sens. Environ. 2010, 114, 1805–1816. [Google Scholar] [CrossRef]
- Vrieling, A.; Meroni, M.; Darvishzadeh, R.; Skidmore, A.K.; Wang, T.; Zurita-Milla, R.; Oosterbeek, K.; O’Connor, B.; Paganini, M. Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island. Remote Sens. Environ. 2018, 215, 517–529. [Google Scholar] [CrossRef]
- Zipper, S.C.; Schatz, J.; Singh, A.; Kucharik, C.J.; Townsend, P.A.; Loheide, S.P. Urban heat island impacts on plant phenology: Intra-urban variability and response to land cover. Environ. Res. Lett. 2016, 11, 054023. [Google Scholar] [CrossRef]
- Walker, J.; De Beurs, K.; Wynne, R. Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data. Remote Sens. Environ. 2014, 144, 85–97. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, J.; Wang, Y.; Zhang, H.; Zhang, Z.; Guo, X. Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets. ISPRS J. Photogramm. Remote Sens. 2020, 169, 1–16. [Google Scholar] [CrossRef]
- Yuan, H.; Wu, C.; Lu, L.; Wang, X. A new algorithm predicting the end of growth at five evergreen conifer forests based on nighttime temperature and the enhanced vegetation index. ISPRS J. Photogramm. Remote Sens. 2018, 144, 390–399. [Google Scholar] [CrossRef]
- Liu, Y.; Hill, M.J.; Zhang, X.; Wang, Z.; Richardson, A.D.; Hufkens, K.; Filippa, G.; Baldocchi, D.D.; Ma, S.; Verfaillie, J. Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales. Agric. For. Meteorol. 2017, 237, 311–325. [Google Scholar] [CrossRef]
- Garonna, I.; de Jong, R.; Schaepman, M.E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Chang. Biol. 2016, 22, 1456–1468. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data. Remote Sens. Environ. 2015, 156, 457–472. [Google Scholar] [CrossRef]
- Beck, P.S.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Beaubien, E.; Freeland, H. Spring phenology trends in Alberta, Canada: Links to ocean temperature. Int. J. Biometeorol. 2000, 44, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Chang. Biol. 2006, 12, 672–685. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles. 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Kaduk, J.; Heimann, M. A prognostic phenology scheme for global terrestrial carbon cycle models. Clim. Res. 1996, 6, 1–19. [Google Scholar] [CrossRef]
- Fischer, A. A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters. Remote Sens. Environ. 1994, 48, 220–230. [Google Scholar] [CrossRef]
- Zeng, Z.; Wu, W.; Ge, Q.; Li, Z.; Wang, X.; Zhou, Y.; Zhang, Z.; Li, Y.; Huang, H.; Liu, G. Legacy effects of spring phenology on vegetation growth under preseason meteorological drought in the Northern Hemisphere. Agric. For. Meteorol. 2021, 310, 108630. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, J.; Li, X.; Cheng, G.; Ma, M.; Zhu, G.; Altaf Arain, M.; Andrew Black, T.; Jassal, R.S. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 2019, 10, 2389. [Google Scholar] [CrossRef]
- Peng, J.; Wu, C.; Zhang, X.; Wang, X.; Gonsamo, A. Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Glob. Chang. Biol. 2019, 25, 2174–2188. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Chang, Q.; Xiao, X.; Jiao, W.; Wu, X.; Doughty, R.; Wang, J.; Du, L.; Zou, Z.; Qin, Y. Assessing consistency of spring phenology of snow-covered forests as estimated by vegetation indices, gross primary production, and solar-induced chlorophyll fluorescence. Agric. For. Meteorol. 2019, 275, 305–316. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J. Global land surface phenology trends from GIMMS database. Int. J. Remote Sens. 2009, 30, 3495–3513. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Studer, S.; Stöckli, R.; Appenzeller, C.; Vidale, P.L. A comparative study of satellite and ground-based phenology. Int. J. Biometeorol. 2007, 51, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Luedeling, E.; Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2010, 107, 22151–22156. [Google Scholar] [CrossRef]
- Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- Wang, T.; Peng, S.; Lin, X.; Chang, J. Declining snow cover may affect spring phenological trend on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2013, 110, E2854–E2855. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s Contributions to Economics and Econometrics: Econometric Theory and Methodology; Springer: Cham, Switzerland, 1992; pp. 345–381. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kandasamy, S.; Fernandes, R. An approach for evaluating the impact of gaps and measurement errors on satellite land surface phenology algorithms: Application to 20 year NOAA AVHRR data over Canada. Remote Sens. Environ. 2015, 164, 114–129. [Google Scholar] [CrossRef]
- Cao, R.; Chen, J.; Shen, M.; Tang, Y. An improved logistic method for detecting spring vegetation phenology in grasslands from MODIS EVI time-series data. Agric. For. Meteorol. 2015, 200, 9–20. [Google Scholar] [CrossRef]
- Garrity, S.R.; Bohrer, G.; Maurer, K.D.; Mueller, K.L.; Vogel, C.S.; Curtis, P.S. A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange. Agric. For. Meteorol. 2011, 151, 1741–1752. [Google Scholar] [CrossRef]
- Wu, C.; Peng, D.; Soudani, K.; Siebicke, L.; Gough, C.M.; Arain, M.A.; Bohrer, G.; Lafleur, P.M.; Peichl, M.; Gonsamo, A. Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agric. For. Meteorol. 2017, 233, 171–182. [Google Scholar] [CrossRef]
- Prăvălie, R.; Bandoc, G.; Patriche, C.; Sternberg, T. Recent changes in global drylands: Evidences from two major aridity databases. CATENA 2019, 178, 209–231. [Google Scholar] [CrossRef]
- Xu, X. Global patterns and ecological implications of diurnal hysteretic response of ecosystem water consumption to vapor pressure deficit. Agric. For. Meteorol. 2022, 314, 108785. [Google Scholar] [CrossRef]
- Gao, M.; Wang, X.; Meng, F.; Liu, Q.; Li, X.; Zhang, Y.; Piao, S. Three-dimensional change in temperature sensitivity of northern vegetation phenology. Glob. Chang. Biol. 2020, 26, 5189–5201. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, X.; Zhang, B.; Liu, L.; Liu, X.; Huete, A.R.; Huang, W.; Wang, S.; Luo, S.; Zhang, X. Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States. ISPRS J. Photogramm. Remote Sens. 2017, 132, 185–198. [Google Scholar] [CrossRef]
- O’Connor, B.; Dwyer, E.; Cawkwell, F.; Eklundh, L. Spatio-temporal patterns in vegetation start of season across the island of Ireland using the MERIS Global Vegetation Index. ISPRS J. Photogramm. Remote Sens. 2012, 68, 79–94. [Google Scholar] [CrossRef]
- Ogutu, J.O.; Owen-Smith, N.; Piepho, H.-P.; Kuloba, B.; Edebe, J. Dynamics of ungulates in relation to climatic and land use changes in an insularized African savanna ecosystem. Biodivers. Conserv. 2012, 21, 1033–1053. [Google Scholar] [CrossRef]
- Wang, X.; Piao, S.; Xu, X.; Ciais, P.; MacBean, N.; Myneni, R.B.; Li, L. Has the advancing onset of spring vegetation green-up slowed down or changed abruptly over the last three decades? Glob. Ecol. Biogeogr. 2015, 24, 621–631. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; Dong, J.; Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA 2013, 110, 4309–4314. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, H.; Zhang, Z.; Guo, X.; Li, X.; Chen, C. Spatial and temporal changes in vegetation phenology at middle and high latitudes of the Northern Hemisphere over the past three decades. Remote Sens. 2015, 7, 10973–10995. [Google Scholar] [CrossRef]
- Gonsamo, A.; Chen, J.M.; D’Odorico, P. Deriving land surface phenology indicators from CO2 eddy covariance measurements. Ecol. Indic. 2013, 29, 203–207. [Google Scholar] [CrossRef]
Continent | Latitude | Method 1 | Method 2 | Method 3 | Method 4 | Method 5 |
---|---|---|---|---|---|---|
Asia | 30°~45°N | −0.32 | −0.45 | −0.28 | −0.40 | −0.30 |
45°~60°N | −0.40 | −0.27 | −0.53 | −0.36 | −0.37 | |
60°~75°N | −0.27 | −0.16 | −0.32 | −0.25 | −0.37 | |
75°~90°N | −0.23 | −0.21 | −0.24 | −0.21 | −0.20 | |
Europe | 30°~45°N | −0.54 | −0.54 | −0.52 | −0.51 | −0.64 |
45°~60°N | −0.55 | −0.58 | −0.65 | −0.57 | −0.60 | |
60°~75°N | −0.54 | −0.40 | −0.68 | −0.51 | −0.61 | |
75°~90°N | 0.05 | −0.27 | −0.10 | −0.17 | 0.19 | |
North America | 30°~45°N | 0.62 | 0.38 | 0.55 | 0.33 | 0.20 |
45°~60°N | 0.27 | 0.34 | 0.20 | 0.30 | 0.29 | |
60°~75°N | 0.06 | 0.11 | 0.06 | 0.10 | 0.01 | |
75°~90°N | −0.14 | −0.28 | −0.17 | −0.18 | 0.13 |
Continent | Latitude | Method 1 | Method 2 | Method 3 | Method 4 | Method 5 |
---|---|---|---|---|---|---|
Asia | 30°~45°N | 0.34 | 0.32 | 0.30 | 0.29 | 0.36 |
45°~60°N | 0.38 | 0.21 | 0.07 | 0.16 | 0.37 | |
60°~75°N | −0.46 | −0.58 | −0.47 | −0.50 | −0.01 | |
75°~90°N | 0.21 | 0.05 | 0.24 | 0.12 | 0.26 | |
Europe | 30°~45°N | −0.09 | 0.22 | 0.62 | 0.08 | 0.41 |
45°~60°N | 0.69 | 0.75 | 0.43 | 0.54 | 0.54 | |
60°~75°N | 0.28 | 0.00 | 0.16 | 0.05 | 0.53 | |
75°~90°N | −0.31 | −0.32 | −0.28 | −0.28 | −0.28 | |
North America | 30°~45°N | 0.23 | 0.17 | 0.40 | 0.31 | 0.15 |
45°~60°N | 0.30 | 0.29 | 0.06 | 0.14 | 0.35 | |
60°~75°N | −0.57 | −0.56 | −0.54 | −0.56 | −0.29 | |
75°~90°N | 0.08 | −0.07 | 0.22 | 0.00 | 0.24 |
Phenological Parameters | ENF | DBF | MF | OS | WS | S | G | C |
---|---|---|---|---|---|---|---|---|
SOS | 0.03 * | 0.09 | 0.00 * | 0.28 | 0.43 | 0.25 | 0.37 | 0.15 |
EOS | 0.27 | 0.41 | 0.16 | 0.53 | 0.82 | 0.74 | 0.68 | 0.36 |
Different Regions | Different Methods | R | p | RMSE |
---|---|---|---|---|
Above 30°N | Method 1 | 0.82 | 0.037 * | 7.61 |
Method 2 | 0.63 | 0.046 * | 10.97 | |
Method 3 | 0.94 | 0.025 * | 4.35 | |
Method 4 | 0.83 | 0.038 * | 6.56 | |
Method 5 | 0.96 | 0.019 * | 7.11 | |
30°~45°N | Method 1 | 0.58 | 0.053 | 9.28 |
Method 2 | 0.87 | 0.009 ** | 3.75 | |
Method 3 | 0.49 | 0.039 * | 8.52 | |
Method 4 | 0.83 | 0.037 * | 4.43 | |
Method 5 | 0.67 | 0.065 | 10.37 | |
45°~60°N | Method 1 | 0.72 | 0.035 * | 9.16 |
Method 2 | 0.36 | 0.048 * | 10.72 | |
Method 3 | 0.81 | 0.023 * | 4.27 | |
Method 4 | 0.46 | 0.072 | 11.39 | |
Method 5 | 0.77 | 0.016 * | 6.14 | |
60°~75°N | Method 1 | 0.51 | 0.031 * | 9.77 |
Method 2 | 0.64 | 0.044 * | 10.33 | |
Method 3 | 0.91 | 0.027 * | 6.54 | |
Method 4 | 0.72 | 0.062 | 8.66 | |
Method 5 | 0.86 | 0.036 * | 7.37 |
Different Regions | Different Methods | R | p | RMSE |
---|---|---|---|---|
Above 30°N | Method 1 | 0.56 | 0.049 * | 11.30 |
Method 2 | 0.66 | 0.034 * | 10.95 | |
Method 3 | 0.80 | 0.045 * | 7.67 | |
Method 4 | 0.83 | 0.023 * | 7.49 | |
Method 5 | 0.74 | 0.032 * | 10.11 | |
30°~45°N | Method 1 | 0.44 | 0.043 * | 9.66 |
Method 2 | 0.39 | 0.051 | 9.35 | |
Method 3 | 0.69 | 0.041 * | 8.33 | |
Method 4 | 0.73 | 0.033 * | 8.02 | |
Method 5 | 0.57 | 0.072 | 10.11 | |
45°~60°N | Method 1 | 0.27 | 0.073 | 11.65 |
Method 2 | 0.54 | 0.068 | 9.54 | |
Method 3 | 0.41 | 0.046 * | 10.37 | |
Method 4 | 0.73 | 0.023 * | 5.36 | |
Method 5 | 0.56 | 0.066 | 9.29 | |
60°~75°N | Method 1 | 0.47 | 0.042 * | 8.32 |
Method 2 | 0.44 | 0.037 * | 9.04 | |
Method 3 | 0.69 | 0.046 * | 7.22 | |
Method 4 | 0.76 | 0.018 * | 6.37 | |
Method 5 | 0.36 | 0.077 | 10.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chen, Y.; Li, Z.; Li, Y. Evaluating the Consistency of Vegetation Phenological Parameters in the Northern Hemisphere from 1982 to 2015. Remote Sens. 2023, 15, 2559. https://doi.org/10.3390/rs15102559
Liu X, Chen Y, Li Z, Li Y. Evaluating the Consistency of Vegetation Phenological Parameters in the Northern Hemisphere from 1982 to 2015. Remote Sensing. 2023; 15(10):2559. https://doi.org/10.3390/rs15102559
Chicago/Turabian StyleLiu, Xigang, Yaning Chen, Zhi Li, and Yupeng Li. 2023. "Evaluating the Consistency of Vegetation Phenological Parameters in the Northern Hemisphere from 1982 to 2015" Remote Sensing 15, no. 10: 2559. https://doi.org/10.3390/rs15102559
APA StyleLiu, X., Chen, Y., Li, Z., & Li, Y. (2023). Evaluating the Consistency of Vegetation Phenological Parameters in the Northern Hemisphere from 1982 to 2015. Remote Sensing, 15(10), 2559. https://doi.org/10.3390/rs15102559