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Abstract: Vegetation phenology reflects the response mechanisms in ecology and climate change,
so it is important that the parameters used to study vegetation phenology are accurate. Previous
studies mainly focused on phenological changes. However, because the extraction methods used
in those investigations led to inconsistencies in setting vegetation phenological parameters, a more
accurate approach needs to be developed. To resolve this issue, we select five methods to extract
the start of the growing season (SOS) and the end of the growing season (EOS) from the normalised
difference vegetation index (NDVI3g) data. The five chosen methods are the second-order derivative
method (Method 1), the first-order derivative method (Method 2), the 0.2 dynamic threshold method
(Method 3), the 0.5 dynamic threshold method (Method 4), and the fixed threshold method (Method 5).
Our study area is the Northern Hemisphere (above 30◦N), and our study period is 1982 to 2015. After
applying the five methods, we evaluate the consistency of the vegetation phenological parameters.
The results show that (1) regardless of the method used, the average changes in phenological
parameters are consistent; however, the SOS and EOS under Methods 1, 3 and 5 are up to 30 days
earlier than those under Methods 2 and 4. (2) Under all five methods, the SOS trend mainly shows
an advance, but the trend is substantially higher under Methods 1, 3 and 4 than under Methods
2 and 5 from 45◦N to 60◦N. The distribution of the EOS trend under different methods is consistent.
(3) Under the tested extraction methods, the SOS trends of evergreen needleleaf forests (ENF) and
mixed forests (MF) have significant differences (p < 0.05), whereas, the EOS trend for different
vegetation types is consistent. (4) By analysing the consistency of the phenological parameters
between remote sensing data and ground data under different methods, we now know that Methods
3 and 4 are the most accurate for extracting the SOS and EOS, respectively. The above results can
provide a reference for the accurate extraction of phenological parameters above 30◦N.

Keywords: phenological parameters; consistency; evaluation; different extraction methods; above
30◦N

1. Introduction

Terrestrial vegetation reflects the characteristics of climate change. Vegetation phe-
nological parameters, such as the start of the growing season (SOS) and the end of the
growing season (EOS) [1–3], can lead to significant changes in ecosystem function by af-
fecting important processes, such as evapotranspiration and the surface energy cycle [4,5].
Therefore, research on vegetation phenological parameters can help us better understand
the corresponding shifts and alterations in land–air exchange and the energy cycle caused
by climate change. Previous investigations into vegetation phenological parameters mainly
involved monitoring remote sensing datasets [3,6], so the accuracy of those parameters
directly affected vegetation phenological research results. The extraction of parameters in
vegetation phenology is thus a crucial link in the study of vegetation phenology.
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Since the 1980s, long time series remote sensing data have provided the possibility for
large-scale monitoring of vegetation phenology [7]. These data are widely applied in the
study of vegetation phenology. Datasets, such as SPOT [8,9], MODIS and GIMMS [6,10,11],
are used locally, regionally and globally to analyse vegetation phenology, while Land-
sat, Sentinel-2, and spatial and temporal fusion dataset are also used locally and region-
ally [12–14]. Analysing the normalised difference vegetation index (NDVI) from remote
sensing data helps obtain the SOS and EOS, and the length of the growing season (LOS).
However, most researchers extract large-scale vegetation phenological parameters using
the GIMMS and MODIS datasets [15–19], and the phenological parameters are largely
determined using the fitting models and extraction methods. The main fitting models used
are the Asymmetric Gaussian (AG) filter, the harmonic analysis of time series (HANTS)
method, the double logistic (DL) function, and the Savitzky–Golay (SG) filter [20–23], while
the main extraction techniques are the threshold, median, and derivative methods [9,24–27].

For the study of vegetation phenology in the Northern Hemisphere, many researchers
have employed the DL function to fit the NDVI from the GIMMS3g dataset (third-generation
Global Inventory Modeling and Mapping Studies). The GIMMS3g dataset has the favourable
characteristics of long time series, wide coverage, comparable time and space, and a strong
ability to represent the dynamic changes of vegetation. However, the extraction methods
differ [15,28–30]. There are mainly the following five methods (Table 1). Wang et al.,
used several different methods to extract the parameters of vegetation phenology and
analysed the trend changes in spring and autumn phenology [29]. Zeng et al., used four
different methods to extract the parameters of vegetation phenology and analysed the
effect of preseason drought on vegetation phenology [28]. Zhang et al., used only one
method to extract the parameters of vegetation phenology from the two datasets and
compared the differences between them [15]. Other studies focused on the change in
vegetation phenological parameters but ignored the inconsistency of vegetation phenological
parameters under different extraction methods on vegetation phenological results. Accurate
extraction of phenological parameters is critical for the study of vegetation phenology [31].
However, to our knowledge, the current understanding of how the various extraction
methods lead to inconsistencies in vegetation phenological parameters is still limited.

Table 1. Trends of the SOS under different extraction methods at different latitudes.

Continent Latitude Method 1 Method 2 Method 3 Method 4 Method 5

Asia

30◦~45◦N −0.32 −0.45 −0.28 −0.40 −0.30
45◦~60◦N −0.40 −0.27 −0.53 −0.36 −0.37
60◦~75◦N −0.27 −0.16 −0.32 −0.25 −0.37
75◦~90◦N −0.23 −0.21 −0.24 −0.21 −0.20

Europe

30◦~45◦N −0.54 −0.54 −0.52 −0.51 −0.64
45◦~60◦N −0.55 −0.58 −0.65 −0.57 −0.60
60◦~75◦N −0.54 −0.40 −0.68 −0.51 −0.61
75◦~90◦N 0.05 −0.27 −0.10 −0.17 0.19

North
America

30◦~45◦N 0.62 0.38 0.55 0.33 0.20
45◦~60◦N 0.27 0.34 0.20 0.30 0.29
60◦~75◦N 0.06 0.11 0.06 0.10 0.01
75◦~90◦N −0.14 −0.28 −0.17 −0.18 0.13

The values in the table represent the SOS average trend of all pixels in different regions under different extraction
methods from 1982 to 2015.

To evaluate the consistency of vegetation phenological parameters under different
extraction methods above 30◦N, we first used the DL function to fit the GIMMS3g NDVI
time series from 1982 to 2015, and then applied five methods to extract the SOS and EOS
(Figure 1). After that, we analysed the consistency of vegetation phenological parameters
under different methods focusing on interannual variation, trend change, latitude change,
different vegetation types and so on. Finally, we evaluated the applicability of vegetation
phenological parameters under five selected methods using the Fluxnet2015 dataset above
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30◦N. The above results can provide reference for selecting the best method for vegeta-
tion phenology extraction in the Northern Hemisphere (above 30◦N), and offer valuable
guidance for more accurately evaluating the dynamic changes of vegetation phenology in
this region.
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Figure 1. Comparison of phenological parameters under five extraction methods. The figure is the
result of using five extraction methods to extract the SOS and EOS of a grid point (57.5◦~57.583◦E,
60.833◦~60.917◦N) in 2000. (A–E) represent the five extraction methods. The black dots in the figure
represent the NDVI values of 12 months in 2000, and the black lines represent the fitting results of
double logistic functions, and the dotted lines represent the results of extracting the SOS and EOS by
applying five extraction methods, respectively, and the details of the five extraction methods have
been introduced in Section 2.3.

2. Materials and Methods
2.1. Data Acquisition
2.1.1. GIMMS3g NDVI Dataset

The GIMMS3g v1 dataset (https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/,
accessed on 5 October 2022) has a resolution of 8 km and is carried on the Advanced
Very High Resolution Radiometer (AVHRR) satellite sensor. To avoid adverse effects, the
dataset was preprocessed with radiometric correction and coordinate transformation. This
dataset is synthesised using the maximum value synthesis method for 15 days, which can

https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
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effectively reduce non-vegetation interference. The GIMMS3g NDVI dataset optimises the
calibration detection method for melting snow and solves the problem of GIMMS NDVI
discontinuity north of 72◦N. As the time period of this dataset is from 1982 to 2015, our
research only focuses on this time range.

2.1.2. Land Cover Dataset

To study the phenological changes above 30◦N from 1982 to 2015, we used the
MCD12C1 dataset; however this dataset is available only from the year 2000, so we analysed
the dataset from 2000 to 2015. Its classification standard is established by the International
Geosphere-Biosphere Program (IGBP) and is divided into 17 land types with a spatial
resolution of 5600 m (https://lpdaac.usgs.gov/products/mcd12c1v006/, accessed on
7 October 2022). Initially in our study, we merged the 17 land types into 11 land types (Ev-
ergreen needleleaf forests, Evergreen broadleaf forests, Deciduous broadleaf forests, Mixed
forests, Open shrublands, Woody savannas, Savannas, Grasslands, Permanent wetlands,
Croplands, and Changed areas and others) and only selected pixels that had the same
class between 2000 and 2015 (Figure 2). Later in our research, we selected the following
eight main vegetation types for analysis: Evergreen needleleaf forests (ENF), Deciduous
broadleaf forests (DBF), Mixed forests (MF), Open shrublands (OS), Woody savannas (WS),
Savannas (S), Grasslands (G), and Croplands (C).
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2.1.3. Fluxnet2015 Dataset

This dataset covers fluxnet data for many regions around the world. We chose the latest
version of the data (updated on 6 February 2020) for the time period 2000 to 2014 (https://
fluxnet.fluxdata.org/data/fluxnet2015-dataset/, accessed on 7 October 2022). According to
the flux station characteristics, researchers typically extract vegetation phenology from GPP
observation data by using threshold, logistic function, and derivative methods [7,29,32]. We
selected 25 sites above 30◦N with a time series of more than 5 years and obtained the weekly
GPP mean data from these sites (Figure 2). We then extracted vegetation phenological
parameters by employing the same extraction methods as for the remote data.

2.2. Data Preprocessing

We use ArcGIS 10.7, MATLAB R2020a and Origin 2021 this paper to process and
analyse the data. We then resample the MODIS dataset to 8 km to unify the spatial
resolution between the MODIS land cover and GIMMS3g NDVI datasets. For the GIMMS3g,
when NDVI > 0, only 0.01% pixels in land are “missing data”. To ensure the continuity
of vegetation phenological parameters, we use the annual minimum to fill the areas that
always have no value. Finally, to avoid the soil background’s influence, areas with an
annual average value of NDVI less than 0.1 are removed [24,29].

2.3. Phenology Parameter Extraction

There are several ways to extract vegetation phenology from the NDVI time series, but
the two main approaches are the inflection point method and the threshold method. The
inflection point strategy uses the inflection point to find the corresponding inflection point
on the smooth curve of the NDVI time series for each year, and then calculates the derivative
of the NDVI smooth curve. When the derivative is the local maximum (or minimum), the
corresponding date is defined as the SOS or EOS [29]. The threshold strategy compares the
smooth NDVI curve with the fixed NDVI curve or compares the corresponding percentage
of the annual maximum NDVI, because the NDVI threshold differs from year to year. In
the present work, we selected five common methods to extract vegetation phenology and
then analysed the phenological changes under different extraction methods above 30◦N.
The five methods are explained below.

Method 1: First, we fit the NDVI time series using the double logistic function [28,29],
shown in Equation (1), and then calculate the second-order derivative for the fitting function.
In the results, the two local maxima in the first half of the year represent the SOS and the
start of vegetation maturity, respectively. For the second half of the year, the two local
maxima represent the start of vegetation senescence and the EOS, respectively [33,34].

y(t) = a + b(
1

1 + ec(t−d)
+

1
1 + ee(t− f )

) (1)

In this fitting function, a represents the original NDVI value, a + b represents the
maximum NDVI value, t represents the day, y(t) shows the NDVI value at time t, and
c, d, e, b and f are the parameters of this function.

Method 2: We fit the NDVI time series using the double logistic function, shown in
Equation (1). The fastest date for the increases or decreases in NDVI value is defined as
the SOS or EOS, respectively. In other words, the SOS and EOS dates correspond to the
maximum and minimum, respectively, in the first derivative of the fitting curve [35].

Methods 3 and 4: Vegetation phenological extraction uses the dynamic NDVI threshold.
In this approach, the double logistic function, shown in Equation (1), is used to fit the NDVI
time series, after which the function, shown in Equation (2), is used to normalise:

Ratioday =
NDVIday − NDVImin

NDVImax − NDVImin
(2)

https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
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In Equation (2), NDVIday is fitted to the NDVI of a given date, NDVImax and NDVImin
represent the NDVI maximum and minimum of each year, respectively, and the SOS and
EOS are determined using Ratioday. In this paper, the thresholds in Methods 3 and 4 are
0.2 [36] and 0.5 [25], respectively.

Method 5: Using the fixed NDVI threshold to determine the phenology, the double
logistic function, shown in Equation (1), is also used to fit the NDVI time series. In this
method, the seasonal dynamics of NDVI are obtained from the NDVI for several years,
and the average of those years is used to estimate the NDVI change rate by employing
Equation (3):

NDVIRC =
NDVI(t + 1)− NDVI(t)

NDVI(t)
(3)

In Equation (3), NDVI(t + 1) and NDVI(t) are the NDVI values at times t + 1 and
t, respectively; the thresholds of the SOS and EOS are determined as the maximum and
minimum change rates of the NDVI values, respectively; and the threshold of the fitted
daily NDVI is analysed to determine the SOS and EOS [24,37].

The above phenological models make a solid contribution to understanding the SOS
and EOS of vegetation phenology [29]. However, it is still difficult to use phenological
models to accurately show phenological changes. Even though the phenological extraction
model is sensitive to snow, we believe that snow-affected NDVI is also one of the factors
leading to seasonal changes in phenological parameters, so the snow pixels in NDVI data
are not removed [18]. Some scholars suggest that testing the phenological trend over many
springs should not ignore the snow change in non-growing seasons [38].

2.4. Trend Analysis Model

In this paper, the Theil–Sen method is used to detect changes in the phenological
trend [39]. We use the Mann–Kendall method to evaluate the trend [40], which is a non-
parametric test for monotone trends and does not show specific distribution of the data.
Furthermore, it has little response to abnormal values. Due to these favourable factors, the
Mann–Kendall approach is widely applied in trend analysis.

3. Results and Analysis
3.1. Consistency of Vegetation Phenology Parameters

The interannual changes of the SOS and EOS under the five methods have great
differences above 30◦N (Figure 3). For the SOS (Figure 3A), the variation ranges under
Methods 1, 3 and 5 in each region were similar, and the value was mainly concentrated
between 83 and 123 days. The variation ranges of the SOS under Methods 2 and 4 were
similar, and the value was mainly concentrated between 113 and 148 days. By analysing the
SOS under different vegetation types, we also found that it is the same as that in different
regions, which shows that the SOS extracted using Methods 2 and 4 is obviously delayed
by approximately 30 days compared with Methods 1, 3 and 5. This may be because the
threshold limit of method 2 and method 4 on NDVI is obviously higher than that of the
other methods, and the regions with low NDVI values are not extracted well, which leads
to the lagging of the SOS. However, the changes of the SOS were consistent in different
regions, showing that Europe < North America < above 30◦N < Asia. For instance, for
MF and WS (Figure 3C), the interannual variation of the SOS extracted using method 3 is
obviously higher than that extracted using other methods. In addition, the interannual
variation of the SOS under the five extraction methods is small.
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whisker in the box represents the maximum value of the data, and the bottom of the whisker in the 
box represents the minimum value of the data. 
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showing that North America > above 30°N > Europe > Asia. However, judging from the 
EOS under different methods (Figure 3D), the interannual variation range of different veg-
etation types is large, among which S and G are the most obvious. However, the interan-
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Figure 3. Vegetation phenological changes above 30◦N from 1982 to 2015. (A,B) represent the
interannual changes of the SOS and EOS in different regions, respectively. (C,D) represent the
interannual changes of the SOS and EOS in different vegetation types, respectively. The length of
the box represents the interannual variation range of the SOS and EOS, and the shorter the box, the
smaller the fluctuation of the data, and the longer the box, the greater the fluctuation of the data.
Among them, the black dot in the middle of the box represents the average value of the data, the top
of the whisker in the box represents the maximum value of the data, and the bottom of the whisker in
the box represents the minimum value of the data.

For EOS (Figure 3B), the variation range in each region is larger under each method.
The variation ranges of the EOS under Methods 2, 4 and 5 are roughly the same and are
mostly concentrated from 260 to 309 days. However, the EOS under Methods 1 and 3 is
in most cases delayed from 287 to 332 days. This may also be because the threshold limit
of Methods 2 and 4 on the NDVI is obviously higher than that of other methods, and the
regions with low NDVI values are not extracted well, which leads to the advancement
of the EOS. Except for Method 5, the EOS average change across different regions is the
same, showing that North America > above 30◦N > Europe > Asia. However, judging
from the EOS under different methods (Figure 3D), the interannual variation range of
different vegetation types is large, among which S and G are the most obvious. However,
the interannual variation range of the EOS under different vegetation types extracted using
Methods 4 and 5 is obviously smaller than that extracted using other methods.
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3.2. Consistency of Vegetation Phenology Trends

By analysing the SOS and EOS trends under the different methods above 30◦N from
1982 to 2015, we found that the SOS trend was almost consistent under the five selected
methods. There was a significant advancing trend (p < 0.05) for Methods 1–5 (Figure 4A–E).
The number of pixels shows a significant advancing trend accounting for 73.12%, 68.35%,
75.10%, 72.62% and 73.88% of the total number of pixels, respectively. However, in some
regions, the advancing trend under the five methods is also greatly different. For instance, in
the Asian region between 30◦N and 45◦N, the SOS advancing trend for Methods 2 and 4 is
significantly higher than that of the other three methods (Figure 4A–E and Table 1). For Asian
and European regions between 45◦N and 75◦N, the SOS advancing trend for Methods 1,3 and
5 is significantly higher than that of Methods 2 and 4 (Figure 4A–E and Table 1). This may be
because the SOS under the five selected methods is greatly influenced by vegetation type.
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Figure 4. Phenological trend changes under different methods at mid and high latitudes. The trend
changes under different extraction methods in the figure are all using the Theil-Sen method, and
the Mann–Kendall method is used to test the trend. (A–E) represent the SOS trend under Method 1,
Method 2, Method 3, Method 4 and Method 5 at mid and high latitudes in the Northern Hemisphere,
respectively. (F–J) represent the EOS trend under Methods 1–5 at mid and high latitudes in the
Northern Hemisphere, respectively. The histogram in the lower left represents the percentage of
positive trend and negative trend pixels in the total pixels under MK test, and different colours
represent different trend range, all corresponding to the colour bands on the right.

The variation law of the EOS under the five selected methods is basically consistent
above 30◦N. The EOS under the five methods mainly lags between 30◦N and 60◦N and
advances between 60◦N and 75◦N (Figure 4F–J). However, there are also great differences
in some regions. For Asia between 45◦N and 60◦N, the lagging trend and the number
of significant pixels of the EOS in Method 1 are significantly higher than those of the
other methods (Figure 4F–J and Table 2), and in Europe between 45◦N and 60◦N, the
lagging trends in Methods 1 and 2 are significantly higher than in Methods 3, 4, and
5. However, in Asia and North America, there is a significant advancing trend from
60◦N to 75◦N. The advancing trend under Method 2 in Asia is especially obvious at
0.58 days/year (Table 2). Compared with other extraction methods, the advancing trend of
the EOS under Method 5 is significantly lower than that under other methods, especially
in North America.
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Table 2. Trends of the EOS under different extraction methods at different latitudes.

Continent Latitude Method 1 Method 2 Method 3 Method 4 Method 5

Asia

30◦~45◦N 0.34 0.32 0.30 0.29 0.36
45◦~60◦N 0.38 0.21 0.07 0.16 0.37
60◦~75◦N −0.46 −0.58 −0.47 −0.50 −0.01
75◦~90◦N 0.21 0.05 0.24 0.12 0.26

Europe

30◦~45◦N −0.09 0.22 0.62 0.08 0.41
45◦~60◦N 0.69 0.75 0.43 0.54 0.54
60◦~75◦N 0.28 0.00 0.16 0.05 0.53
75◦~90◦N −0.31 −0.32 −0.28 −0.28 −0.28

North
America

30◦~45◦N 0.23 0.17 0.40 0.31 0.15
45◦~60◦N 0.30 0.29 0.06 0.14 0.35
60◦~75◦N −0.57 −0.56 −0.54 −0.56 −0.29
75◦~90◦N 0.08 −0.07 0.22 0.00 0.24

The values in the table represent the EOS average trend of all pixels in different regions under different extraction
methods from 1982 to 2015.

3.3. Consistency of Latitude Changes in Vegetation Phenology
3.3.1. Significant Trends in Vegetation Phenology by Latitude

Studying significant trends in vegetation phenology reveals dynamic changes in
vegetation. In this research, to analyse change trends according to latitude, we divided
the region above 30◦N into 0.083◦ latitude zones and calculated the number of significant
phenology trends in each zone using the five above-stated methods (Figure 5). By analysing
the SOS latitude changes under these methods (Figure 5A), we found that the curve
variation law for the number of pixels with a significant trend was consistent under Methods
1 to 4, showing a strong increasing trend from low to high latitudes and a maximum value
at approximately 65◦N. However, far fewer pixels show a significant trend under Method
5, and the maximum number of pixels in latitudes appears earlier, at approximately 60◦N.
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Furthermore, under the same five methods, the significant number of SOS trends is
mainly distributed between 50◦N and 70◦N, while the EOS curve change denoting the
significant number of pixels in latitudes is very similar to the SOS (Figure 5B), except for
Method 5. Under that method, the maximum number of pixels for EOS is earlier than
for SOS and appears at approximately 58◦N. Meanwhile, for all the five methods, the
pixel distribution range of a significant EOS trend has increased and is mainly distributed
between 45◦N and 70◦N.
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3.3.2. Consistency of Phenological Trends of Different Vegetation Types by Latitude

Determining changes in vegetation phenology according to latitude is important for
analysing trend differences using different methods. To analyse the various vegetation
phenology trends above 30◦N, the region between 30◦N and 90◦N is divided into latitude
zones of 5◦ units. The phenological trends in different vegetation types in the pixels where
the land cover types have not changed are then calculated (Figure 6). By analysing the SOS
trend changes, we found that the advancing trend mostly dominated in different vegetation
types according to latitude zone, with an advanced trend range of 0 to 0.86 days/year.
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Deciduous Broadleaf Forests (DBF), Mixed Forests (MF), Open Shrublands (OS), Woody Savannas
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change. All the trend values indicate an increase or decrease at a significant level of 95% (p < 0.05).

However, there are still some differences in the SOS under the various methods. For
ENF, Methods 1 (Figure 6A), 3 (Figure 6C) and 5 (Figure 6E) show a significant advancing
trend between 55◦N and 70◦N, while Methods 2 (Figure 6B) and 4 (Figure 6D) show no
obvious trend. For DBF, the SOS shows a different delay trend under different methods
at 40◦~45◦N. For MF, the variation law of different methods is the same in the latitude
zone, showing an advancing trend at 50◦~75◦N that is most significant at 65◦~70◦N. The
maximum advancing trend can reach 1.02 days/year. For other vegetation types, the SOS
trend varies by latitude.

For the EOS under the five tested methods, the ENF change is consistent, showing
a delaying trend between 45◦N and 65◦N. Specifically, Methods 1 (Figure 6F), 2 (Figure 6G),
3 (Figure 6H) and 4 (Figure 6I) all show maximum delaying trends of 0.92, 1.17, 1.09, and
1.26 days/year, respectively, between 55◦N and 60◦N. For DBF and MF, the delaying trend
under Methods 1 and 2 is smaller than Methods 3 and 4 in the corresponding latitude zones.
For OS, the EOS trends are advanced in the corresponding latitudes for Methods 1 to 4,
between 70◦N and 75◦N. For C, the EOS trends for all five methods are lagged at 35◦~55◦N,
and the maximum delay appears at 50◦~55◦N. For Methods 1–5, the delay trends are 1.06,
1.21, 1.25, 1.59, and 0.65 days/year, respectively.

According to the analysis of phenological trends of different vegetation types under
the five chosen extraction methods (Figure 7A), the SOS trends of other vegetation are all
consistent (except for C) and show an advancing trend, among which MF and ENF are
more advanced than other vegetations. However, there are significant differences (p < 0.05)
between MF and ENF under the different extraction methods (Table 3). By comparing the
SOS trend average of the five extraction methods (Figure 7B), we found that Method 4 was
the most suitable for SOS extraction of C and S, and Method 5 was the most suitable for SOS
extraction of WS and MF. Additionally, Method 1 is the most suitable for SOS extraction of
OS and DBF. Except for Method 5, all methods are suitable for SOS extraction of ENF.

For the EOS trends of different vegetation types (Figure 7C), the trends of G, S and
OS are mainly advancing under the different extraction methods, while those of other
vegetation are mainly delaying. By comparing the EOS trend average of the five extraction
methods (Figure 7D), we found that, for C and MF, Method 5 was the best method for EOS
extraction, but it was the worst for G, S, WS, and OS. Moreover, for G and DBF, Method 4
is the best approach for EOS extraction, and Method 1 is the best for EOS extraction of S
and OS.
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the average difference of five extraction methods, and C, G, S, WS, OS, MF, DBF, and ENF on the
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Table 3. Differences of phenological parameters under different extraction methods.

Phenological Parameters ENF DBF MF OS WS S G C

SOS 0.03 * 0.09 0.00 * 0.28 0.43 0.25 0.37 0.15
EOS 0.27 0.41 0.16 0.53 0.82 0.74 0.68 0.36

The values represent the trend difference of phenological parameters under the five extraction methods. * repre-
sents that the significant level of the difference is 0.05 (p < 0.05). ENF, DBF, MF, OS, WS, S, G, and C are different
vegetation types.

3.4. Phenological Consistency between Remote Sensing and Ground Data

To study the similarities and differences between remote sensing data and ground
data in vegetation phenology above 30◦N, we employed the same five methods used above,
extracted the phenological data from weekly mean GPP data from 25 qualified flux towers
and applied the average value as ground phenological parameters.

Based on the SOS analysis from the image data and ground data (Table 4), we found
that the SOS from the image data and ground data under different methods above 30◦N
were significantly correlated (p < 0.05); however, according to the correlation coefficients
(R) and the root mean square error (RMSE), we found that Method 3 had a higher R (0.94,
p < 0.05) and the lowest RMSE (4.35) than the other methods, and was most suitable
for the extraction of the SOS in this area. However, for different latitude regions, the
phenological consistency between remote sensing data and ground data is greatly different
under different extraction methods. From the R and RMSE, we found that Methods 2 and 4
are more suitable for the extraction of the SOS from 30◦N to 45◦N, and Methods 3 and 5 are
more suitable for the extraction of the SOS from 45◦N to 75◦N.
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Table 4. The consistency of the SOS between image data and ground data above 30◦N.

Different Regions Different Methods R p RMSE

Above 30◦N

Method 1 0.82 0.037 * 7.61
Method 2 0.63 0.046 * 10.97
Method 3 0.94 0.025 * 4.35
Method 4 0.83 0.038 * 6.56
Method 5 0.96 0.019 * 7.11

30◦~45◦N

Method 1 0.58 0.053 9.28
Method 2 0.87 0.009 ** 3.75
Method 3 0.49 0.039 * 8.52
Method 4 0.83 0.037 * 4.43
Method 5 0.67 0.065 10.37

45◦~60◦N

Method 1 0.72 0.035 * 9.16
Method 2 0.36 0.048 * 10.72
Method 3 0.81 0.023 * 4.27
Method 4 0.46 0.072 11.39
Method 5 0.77 0.016 * 6.14

60◦~75◦N

Method 1 0.51 0.031 * 9.77
Method 2 0.64 0.044 * 10.33
Method 3 0.91 0.027 * 6.54
Method 4 0.72 0.062 8.66
Method 5 0.86 0.036 * 7.37

R represents the correlation coefficient of the SOS between remote sensing data and ground data. p represents the
significant correlation of the two, and * indicates the significant level is 0.05 (p < 0.05), ** indicates the significant
level is 0.01 (p < 0.01). RMSE represents the root mean square error, the higher the value, the worse the fitting
degree between remote sensing data and ground data; on the contrary, the lower the value, the better the fitting
degree between them.

By analysing the consistency of the EOS between image data and ground data above
30◦N (Table 5), we found that Method 4 has the highest significant correlation coefficient
(0.83, p < 0.05) and the lowest RMSE (7.49) compared to the other methods, and is most
suitable for the extraction of the EOS in this area. For 30◦N to 45◦N and 60◦N to 75◦N,
compared with other methods, Methods 3 and 4 have higher significant correlation co-
efficient and lower RMSE, making them more suitable for the extraction of the EOS in
these regions. Method 4 has the highest correlation coefficient (0.73) and the lowest RMSE
(5.36) compared to the other methods from 45◦N to 60◦N, thus it is most suitable for the
extraction of EOS in this region.

Table 5. The consistency of the EOS between image data and ground data above 30◦N.

Different Regions Different Methods R p RMSE

Above 30◦N

Method 1 0.56 0.049 * 11.30
Method 2 0.66 0.034 * 10.95
Method 3 0.80 0.045 * 7.67
Method 4 0.83 0.023 * 7.49
Method 5 0.74 0.032 * 10.11

30◦~45◦N

Method 1 0.44 0.043 * 9.66
Method 2 0.39 0.051 9.35
Method 3 0.69 0.041 * 8.33
Method 4 0.73 0.033 * 8.02
Method 5 0.57 0.072 10.11

45◦~60◦N

Method 1 0.27 0.073 11.65
Method 2 0.54 0.068 9.54
Method 3 0.41 0.046 * 10.37
Method 4 0.73 0.023 * 5.36
Method 5 0.56 0.066 9.29
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Table 5. Cont.

Different Regions Different Methods R p RMSE

60◦~75◦N

Method 1 0.47 0.042 * 8.32
Method 2 0.44 0.037 * 9.04
Method 3 0.69 0.046 * 7.22
Method 4 0.76 0.018 * 6.37
Method 5 0.36 0.077 10.55

R represents the correlation coefficient of the EOS between remote sensing data and ground data. p represents the
significant correlation of the two, and * indicates the significant level is 0.05 (p < 0.05). RMSE represents the root
mean square error, the higher the value, the worse the fitting degree between remote sensing data and ground
data; on the contrary, the lower the value, the better the fitting degree between them.

4. Discussion

Using an appropriate algorithm for phenological parameters extraction from remote
sensing images of a time series is a key step in applying remote sensing phenology to
modelling [41–43]. To study the dynamic change of vegetation growth more accurately,
additional variables are constantly added to the SOS and EOS extraction methods, which
makes the extraction of vegetation phenological parameters more complex [44].

4.1. Consistency of Characteristics and Trends in Vegetation Phenology

By analysing the characteristics of phenological parameters under different extraction
methods, we found that there were great differences in the SOS and EOS. Specifically,
the average of the SOS extracted under Methods 1, 3, and 5 was obviously earlier than
Methods 2 and 4, and the average of the EOS under Methods 1 and 3 was significantly later
than Methods 2 and 4 in different regions and vegetation types (Figure 3). This is mainly
because the mechanism of different extraction methods is different. Compared with the
other methods, Methods 2 and 4 have higher requirements for the NDVI threshold and do
not identify some vegetation with an earlier growing season and smaller NDVI, so the SOS
is obviously later than that of other methods, and the EOS is obviously earlier than that of
the other methods.

The trend of vegetation phenological parameters is a crucial indicator affecting vegeta-
tion phenology. In our study, we found that the spatial distribution of the SOS and the five
methods were consistent, showing an advancing trend, which is the same as the results
obtained by Zhang et al. for vegetation phenology in the Northern Hemisphere [15]. How-
ever, the SOS trends under the five selected methods differed in some regions, especially
in Asia and Europe between 45◦N and 60◦N. This may be due to the different responses
of different vegetation types to hydrothermal conditions. Because in Asia between 45◦N
and 55◦N, the main vegetation is G, mainly distributed in the arid areas [45], the water
stress will significantly affect the dynamic changes in NDVI in this region [46], and lead to
significant differences in trend of the SOS under different extraction methods. Temperature
has been widely recognised as the dominant climatic variable driving changes in vegetation
phenology for temperate and boreal ecosystems across the Northern Hemisphere [31,47,48].
Furthermore, for the Asian and European regions between 55◦N and 60◦N, the main vege-
tation is MF, which is a mixture of various tree species. Due to the different responses of
various trees to temperature [49], increases in temperature will lead to large fluctuations in
the composition of vegetation in this region and aggravate the inconsistency of vegetation
phenology under different extraction methods [8,31,50].

For the trend of the EOS, most areas from 30◦N to 60◦N show a lagging trend under
the five selected methods, which is the same as the results obtained by Zhang et al. [15].
However, the EOS trend under Method 5 above 60◦N is significantly different from that
under the other extraction methods. This may be because Method 5 has poor NDVI
recognition for the OS in this region, which affects the trend. Therefore, when studying the
change in the EOS in this region, the deficiency of this method should be considered.
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4.2. Consistency of Latitude Variation in Vegetation Phenology

When phenology extraction is based on remote sensing image data, the differences in
the extraction methods used are one of the main reasons for the change in accuracy [19], as
individual regions have different spatial heterogeneity changes in phenology. Therefore,
studying similarities and differences in vegetation phenology under a variety of extraction
methods and latitudes plays an important role in accurately extracting regional phenology
parameters [15,48,49].

We found that the number of pixels under the five extraction methods was relatively
small above 80◦N, making it difficult to evaluate the phenological trend in these regions.
The SOS of different vegetation types under the five methods used in this study shows
an advancing trend at different latitudes. Among them, the advancing trend of the SOS
is more significant between 50◦N and 70◦N (p < 0.05), likely due to spring advancements
being more significant in the mid-high latitudes [1,24,51,52]. However, the SOS differs
according to latitude. This may be because different vegetation types affect the SOS of
the five extraction methods (Figure 6). Moreover, for most land cover types, the EOS
shows mainly a delayed trend from 30◦N to 60◦N, which is the same as Zhang et al.’s
results [15]. However, other than for Method 5, the vegetation phenological trend above
60◦N is primarily an advancing trend, which is consistent with Zeng et al.’s finding [2].
The dissimilarities in these results may be due to the use of different image datasets and
time periods [41,53]. Therefore, when extracting vegetation phenological parameters in the
future, the effects of different vegetation types on the extraction methods should be fully
considered (Figure 7), and the appropriate extraction methods should be selected according
to the characteristics of the study area.

4.3. Phenological Consistency between Remote Sensing and Ground

Numerous scholars working in the phenology field have used double logistic function
to fit the curve of GPP [32,54], so we also used this method to fit the weekly mean GPP. We
consider the phenology extracted of GPP under the five selected methods as real values
to test the phenological results using image data extraction. To improve the consistency
of phenological parameters between remote sensing and ground data, we should adopt
suitable extraction methods at different latitudes. We found that Method 3 was most
suitable for the extraction of the SOS above 30◦N, Methods 2 and 4 were more suitable for
the extraction of the SOS from 30◦N to 45◦N, and Methods 3 and 5 were more suitable for
the extraction of the SOS from 45◦N to 75◦N. For EOS, Method 4 is most suitable for the
extraction of the EOS above 30◦N, and for 30◦N to 45◦N and 60◦N to 75◦N, Methods 3 and
4 are more suitable, respectively. The differences in the above results may be caused by
changes in vegetation types and climate factors. However, we select fewer ground stations,
which may also affect the accuracy of the verification results.

5. Shortcomings and Future Works

In this paper, we evaluated the consistency of vegetation phenological parameters
under different extraction methods of the same fitting function applied to Northern Hemi-
sphere in 1982–2015 based on the GIMMS3g dataset, but there are still some areas that
need to be further explored in-depth. When using different methods to extract vegetation
phenological parameters, the effects of water stress on vegetation photosynthesis are not
considered, especially in arid ecosystem, which may also lead to the uncertainty of pheno-
logical parameters. The spatial resolution of the GIMMS3g NDVI dataset is lower than that
of the land cover dataset, which will lead to inaccurate phenological results for different
vegetation types after resampling. Furthermore, the period of the GIMMS3g NDVI dataset
is only from 1982 to 2015, and we will integrate a series of products over a longer time
and at a higher resolution to further discuss the consistency of vegetation phenological
parameters under different extraction methods in future studies.
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6. Conclusions

We used double logistic functions to fit the curve for GIMMS3g NDVI and selected
five commonly employed methods to extract the phenological parameters above 30◦N
during 1982–2015. We found that the spatial distribution and trends of the SOS and EOS
under the chosen extraction methods had both similarities and differences. Furthermore,
we found that through the verification of flux data, the SOS extracted using Method 3 from
the GIMMS3g dataset was the closest to the ground data, while the EOS extracted using
Method 4 was the closest to the ground data.

Overall, regardless of the method employed, the average changes in phenological
parameters were consistent during the study period, with the SOS showing Asia > whole
> North America > Europe, while the EOS showed North America > whole > Europe >
Asia. However, the SOS under Methods 1, 3 and 5 was significantly earlier than that under
Methods 2 and 4, while the EOS under methods 1 and 3 was notably later than that under
Methods 2 and 4.

Regarding phenological parameters, the SOS trends under the five methods mostly
showed an advance, except for the SOS trends from 45◦N to 60◦N in Asia and Europe. The
EOS trends, on the other hand, showed a clear lag under Methods 1 to 4 from 30◦N to 60◦N
and an advance above 60◦N. In addition to the above dissimilarities, vegetation type was
also shown to be a notable factor influencing the extraction of phenological parameters
above 30◦N.
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