Recent Advances in Light-Induced Thermoelastic Spectroscopy for Gas Sensing: A Review
Abstract
:1. Introduction
2. Conventional LITES Sensor
3. Combination of QEPAS and LITES
4. Multi-QTF-Based LITES Sensor
5. Material-Coated QTF-Based LITES Sensor
6. Custom QTF-Based LITES Sensor
7. Optical Fiber-Based LITES Sensor
8. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.; Chan, Y.-C.; Changala, P.B.; Nesbitt, D.J.; Ye, J.; Toscano, J. Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics. Proc. Natl. Acad. Sci. USA 2021, 118, e2105063118. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, L.; Tan, T.; Wang, G.; Zhang, W.; Chen, W.; Gao, X. Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell. Sens. Actuators B Chem. 2015, 220, 1000–1005. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.; Luo, L.; Tittel, F.K. Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm. Sens. Actuators B Chem. 2015, 221, 1062–1068. [Google Scholar] [CrossRef]
- Li, J.; Yu, Z.; Du, Z.; Ji, Y.; Liu, C. Standoff Chemical Detection Using Laser Absorption Spectroscopy: A Review. Remote Sens. 2020, 12, 2771. [Google Scholar] [CrossRef]
- Guo, S.; Yang, Y.; Shao, G.; Li, Z.; Ren, W.; Mo, J.; Lu, Z.; Yao, S. Correcting the light extinction effect of fly ash particles on the measurement of NO by TDLAS. Front. Phys. 2022, 10, 1020376. [Google Scholar] [CrossRef]
- Deng, B.; Sima, C.; Xiao, Y.; Wang, X.; Ai, Y.; Li, T.; Lu, P.; Liu, D. Modified laser scanning technique in wavelength modulation spectroscopy for advanced TDLAS gas sensing. Opt. Lasers Eng. 2022, 151, 106906. [Google Scholar] [CrossRef]
- Li, B.; Zheng, C.; Liu, H.; He, Q.; Ye, W.; Zhang, Y.; Pan, J.; Wang, Y. Development and measurement of a near-infrared CH4 detection system using 1.654μm wavelength-modulated diode laser and open reflective gas sensing probe. Sens. Actuators B Chem. 2016, 225, 188–198. [Google Scholar] [CrossRef]
- Fathy, A.; Sabry, Y.M.; Hunter, I.W.; Khalil, D.; Bourouina, T. Direct Absorption and Photoacoustic Spectroscopy for Gas Sensing and Analysis: A Critical Review. Laser Photon. Rev. 2022, 16, 2100556. [Google Scholar] [CrossRef]
- Xia, J.; Zhu, F.; Bounds, J.; Aluauee, E.; Kolomenskii, A.; Dong, Q.; He, J.; Meadows, C.; Zhang, S.; Schuessler, H. Spectroscopic trace gas detection in air-based gas mixtures: Some methods and applications for breath analysis and environmental monitoring. J. Appl. Phys. 2022, 131, 220901. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, H.; Li, J.; Wan, H.; Guo, Q.; Zhu, H.; Liu, H.; Yi, F. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nat. Commun. 2020, 11, 5245. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Feng, Y.; Yang, S.; Dong, Y.K. Ultra-wide-dynamic-range gas sensing by optical pathlength multiplexed absorption spectroscopy. Photon. Res. 2021, 9, 193–201. [Google Scholar] [CrossRef]
- Tombez, L.; Zhang, E.J.; Orcutt, J.S.; Kamlapurkar, S.; Green, W.M.J. Methane absorption spectroscopy on a silicon photonic chip. Optica 2017, 4, 1322–1325. [Google Scholar] [CrossRef]
- Jaworski, P.; Krzempek, K.; Kozioł, P.; Wu, D.; Yu, F.; Bojęś, P.; Dudzik, G.; Liao, M.; Knight, J.; Abramski, K. Sub parts-per-billion detection of ethane in a 30-meters long mid-IR Antiresonant Hollow-Core Fiber. Opt. Laser Technol. 2022, 147, 107638. [Google Scholar] [CrossRef]
- Zheng, K.; Yu, L.; Zheng, C.; Xi, Z.; Zhang, Y.; Yan, G.; Zhang, H.; Zhang, Y.; Wang, Y.; Tittel, F.K. Mobile vehicle measurement of urban atmospheric CH4/C2H6 using a mid-infrared dual-gas sensor system based on interband cascade laser absorption spectroscopy. ACS Sens. 2022, 7, 1685–1697. [Google Scholar] [CrossRef]
- Wojtas, J.; Tittel, F.K.; Stacewicz, T.; Bielecki, Z.; Lewicki, R.; Mikolajczyk, J.; Nowakowski, M.; Szabra, D.; Stefanski, P.; Tarka, J. Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis. Int. J. Thermophys. 2014, 35, 2215–2225. [Google Scholar] [CrossRef]
- Zhao, G.; Hausmaninger, T.; Ma, W.; Axner, O. Whispering-gallery-mode laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry. Opt. Lett. 2017, 42, 3109–3112. [Google Scholar] [CrossRef]
- Hu, J.; Wan, F.; Wang, P.; Ge, H.; Chen, W. Application of frequency-locking cavity-enhanced spectroscopy for highly sensitive gas sensing: A review. Appl. Spectrosc. Rev. 2021, 57, 378–410. [Google Scholar] [CrossRef]
- Thorpe, M.J.; Moll, K.D.; Jones, R.J.; Safdi, B.; Ye, J. Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection. Science 2006, 311, 1595–1599. [Google Scholar] [CrossRef] [Green Version]
- Maity, A.; Maithani, S.; Pradhan, M. Cavity Ring-Down Spectroscopy: Recent Technological Advancements, Techniques, and Applications. Anal. Chem. 2021, 93, 388–416. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, Y.; Bao, H.; Ho, H.L.; Jin, W.; Fan, S.; Gao, S.; Wang, Y.; Wang, P. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber. Nat. Commun. 2020, 11, 847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, C.; Gao, S.; Wang, Y.; Jin, W.; Ren, W. Heterodyne interferometric photothermal spectroscopy for gas detection in a hollow-core fiber. Sens. Actuators B Chem. 2021, 346, 130528. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Zhang, H.; Jiang, S.; Wang, Y.; Jin, W.; Ren, W. Dual-comb photothermal spectroscopy. Nat. Commun. 2022, 13, 2181. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Dong, L.; Yin, X.; Wu, H. Compact and Highly Sensitive NO2 Photoacoustic Sensor for Environmental Monitoring. Molecules 2020, 25, 1201. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Dong, L.; Wu, H.; Zhang, L.; Ma, W.; Yin, W.; Xiao, L.; Jia, S.; Tittel, F.K. Highly sensitive photoacoustic multicomponent gas sensor for SF6 decomposition online monitoring. Opt. Express 2019, 27, A224–A234. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Lu, P.; Sima, C.; Zhao, J.; Pan, Y.; Li, T.; Zhang, X.; Liu, D. Small-volume highly-sensitive all-optical gas sensor using non-resonant photoacoustic spectroscopy with dual silicon cantilever optical microphones. Photoacoustics 2022, 27, 100382. [Google Scholar] [CrossRef]
- Köhring, M.; Böttger, S.; Willer, U.; Schade, W. LED-Absorption-QEPAS Sensor for Biogas Plants. Sensors 2015, 15, 12092–12102. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Dong, L.; Yin, X.; Sampaolo, A.; Patimisco, P.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Spagnolo, V.; et al. Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration. Sens. Actuators B Chem. 2019, 297, 126753. [Google Scholar] [CrossRef]
- Shang, Z.; Li, S.; Li, B.; Wu, H.; Sampaolo, A.; Patimisco, P.; Spagnolo, V.; Dong, L. Quartz-enhanced photoacoustic NH3 sensor exploiting a large-prong-spacing quartz tuning fork and an optical fiber amplifier for biomedical applications. Photoacoustics 2022, 26, 100363. [Google Scholar] [CrossRef]
- Kosterev, A.A.; Bakhirkin, Y.A.; Curl, R.F.; Tittel, F.K. Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2002, 27, 1902–1904. [Google Scholar] [CrossRef]
- Kosterev, A.A.; Tittel, F.K.; Serebryakov, D.V.; Malinovsky, A.L.; Morozov, I.V. Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 2005, 76, 043105. [Google Scholar] [CrossRef] [Green Version]
- Friedt, J.-M.; Carry, É. Introduction to the quartz tuning fork. Am. J. Phys. 2007, 75, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Guo, X.; Yi, H.; Chen, W.; Zhang, W.; Gao, X. Off-beam quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2009, 34, 1594–1596. [Google Scholar] [CrossRef]
- Aoust, G.; Levy, R.; Raybaut, M.; Godard, A.; Melkonian, J.-M.; Lefebvre, M. Theoretical analysis of a resonant quartz-enhanced photoacoustic spectroscopy sensor. Appl. Phys. B 2017, 123, 63. [Google Scholar] [CrossRef]
- Wu, H.; Dong, L.; Zheng, H.; Yu, Y.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Jia, S.; Tittel, F.K. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring. Nat. Commun. 2017, 8, 15331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patimisco, P.; Sampaolo, A.; Dong, L.; Tittel, F.K.; Spagnolo, V. Recent advances in quartz enhanced photoacoustic sensing. Appl. Phys. Rev. 2018, 5, 011106. [Google Scholar] [CrossRef]
- Zheng, H.; Dong, L.; Wu, H.; Yin, X.; Xiao, L.; Jia, S.; Curl, R.F.; Tittel, F.K. Application of acoustic micro-resonators in quartz-enhanced photoacoustic spectroscopy for trace gas analysis. Chem. Phys. Lett. 2018, 691, 462–472. [Google Scholar] [CrossRef]
- Li, S.; Dong, L.; Wu, H.; Sampaolo, A.; Patimisco, P.; Spagnolo, V.; Tittel, F.K. Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork. Anal. Chem. 2019, 91, 5834–5840. [Google Scholar] [CrossRef]
- Ma, Y. Recent Advances in QEPAS and QEPTS Based Trace Gas Sensing: A Review. Front. Phys. 2020, 8, 268. [Google Scholar] [CrossRef]
- Breitegger, P.; Schweighofer, B.; Wegleiter, H.; Knoll, M.; Lang, B.; Bergmann, A. Towards low-cost QEPAS sensors for nitrogen dioxide detection. Photoacoustics 2020, 18, 100169. [Google Scholar] [CrossRef]
- Lv, H.; Zheng, H.; Liu, Y.; Yang, Z.; Wu, Q.; Lin, H.; Montano, B.A.Z.; Zhu, W.; Yu, J.; Kan, R.; et al. Radial-cavity quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2021, 46, 3917–3920. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lin, H.; Montano, B.A.Z.; Zhu, W.; Zhong, Y.; Kan, R.; Yuan, B.; Yu, J.; Shao, M.; Zheng, H. Integrated near-infrared QEPAS sensor based on a 28 kHz quartz tuning fork for online monitoring of CO2 in the greenhouse. Photoacoustics 2022, 25, 100332. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Q.; Zhang, H.; Borri, S.; Galli, I.; Sampaolo, A.; Patimisco, P.; Spagnolo, V.L.; De Natale, P.; Ren, W. Doubly resonant sub-ppt photoacoustic gas detection with eight decades dynamic range. Photoacoustics 2022, 27, 100387. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Yan, M.; Wen, Z.; Ma, H.; Li, R.; Huang, K.; Zeng, H. Dual-comb quartz-enhanced photoacoustic spectroscopy. Photoacoustics 2022, 28, 100403. [Google Scholar] [CrossRef]
- Miklós, A.; Hess, P.; Bozóki, Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 2001, 72, 1937–1955. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Zhang, B.; Liu, S.; Yu, Q. Parts-per-billion-level detection of hydrogen sulfide based on near-infrared all-optical photoacoustic spectroscopy. Sens. Actuators B Chem. 2019, 283, 1–5. [Google Scholar] [CrossRef]
- Pan, Y.; Dong, L.; Wu, H.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Jia, S.; Tittel, F.K. Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser. Atmos. Meas. Tech. 2019, 12, 1905–1911. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Wu, H.; Dong, L.; Li, B.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Jia, S.; Tittel, F.K. ppb-Level SO2 Photoacoustic Sensors with a Suppressed Absorption–Desorption Effect by Using a 7.41 μm External-Cavity Quantum Cascade Laser. ACS Sens. 2020, 5, 549–556. [Google Scholar] [CrossRef]
- Gong, Z.; Gao, T.; Mei, L.; Chen, K.; Chen, Y.; Zhang, B.; Peng, W.; Yu, Q. Ppb-level detection of methane based on an optimized T-type photoacoustic cell and a NIR diode laser. Photoacoustics 2021, 21, 100216. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Q.; Wang, R.; Liu, K.; Chen, W.; Wang, G.; Gao, X. Development of a 443 nm diode laser-based differential photoacoustic spectrometer for simultaneous measurements of aerosol absorption and NO2. Photoacoustics 2021, 21, 100229. [Google Scholar] [CrossRef]
- Xiao, H.; Zhao, J.; Sima, C.; Lu, P.; Long, Y.; Ai, Y.; Zhang, W.; Pan, Y.; Zhang, J.; Liu, D. Ultra-sensitive ppb-level methane detection based on NIR all-optical photoacoustic spectroscopy by using differential fiber-optic microphones with gold-chromium composite nanomembrane. Photoacoustics 2022, 26, 100353. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Gao, M.; Miao, R.; Zhang, L.; Zhang, X.; Liu, L.; Shao, X.; Tittel, F.K. Near-infrared laser photoacoustic gas sensor for simultaneous detection of CO and H2S. Opt. Express 2022, 29, 34258–34268. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Zeng, F.; Zhang, X.; Tang, J.; Zhang, Y. The effect of the photoacoustic Field-Photoacoustic cell coupling term on the performance of the gas detection system. Opt. Laser Technol. 2022, 153, 108211. [Google Scholar] [CrossRef]
- Dong, L.; Kosterev, A.A.; Thomazy, D.; Tittel, F.K. QEPAS spectrophones: Design, optimization, and performance. Appl. Phys. B Laser Opt. 2010, 100, 627–635. [Google Scholar] [CrossRef]
- Ma, Y.; Tong, Y.; He, Y.; Jin, X.; Tittel, F.K. Compact and sensitive mid-infrared all-fiber quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide detection. Opt. Express 2019, 27, 9302–9312. [Google Scholar] [CrossRef]
- Jahjah, M.; Belahsene, S.; Nähle, L.; Fischer, M.; Koeth, J.; Rouillard, Y.; Vicet, A. Quartz enhanced photoacoustic spectroscopy with a 338 μm antimonide distributed feedback laser. Opt. Lett. 2012, 37, 2502–2504. [Google Scholar] [CrossRef]
- Wu, H.; Dong, L.; Zheng, H.; Liu, X.; Yin, X.; Ma, W.; Zhang, L.; Yin, W.; Jia, S.; Tittel, F.K. Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582 nm DFB laser. Sens. Actuators B Chem. 2015, 221, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, Z.; Wang, C.; Ren, W. Optical fiber tip-based quartz-enhanced photoacoustic sensor for trace gas detection. Appl. Phys. B 2016, 122, 147. [Google Scholar] [CrossRef]
- He, Y.; Ma, Y.; Tong, Y.; Yu, X.; Peng, Z.; Gao, J.; Tittel, F.K. Long distance, distributed gas sensing based on micro-nano fiber evanescent wave quartz-enhanced photoacoustic spectroscopy. Appl. Phys. Lett. 2017, 111, 241102. [Google Scholar] [CrossRef]
- Zheng, H.; Dong, L.; Yin, X.; Liu, X.; Wu, H.; Zhang, L.; Ma, W.; Yin, W.; Jia, S. Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED. Sens. Actuators B Chem. 2015, 208, 173–179. [Google Scholar] [CrossRef]
- Wu, H.; Yin, X.; Dong, L.; Pei, K.; Sampaolo, A.; Patimisco, P.; Zheng, H.; Ma, W.; Zhang, L.; Yin, W.; et al. Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork. Appl. Phys. Lett. 2017, 110, 121104. [Google Scholar] [CrossRef] [Green Version]
- Borri, S.; Patimisco, P.; Galli, I.; Mazzotti, D.; Giusfredi, G.; Akikusa, N.; Yamanishi, M.; Scamarcio, G.; De Natale, P.; Spagnolo, V. Intracavity quartz-enhanced photoacoustic sensor. Appl. Phys. Lett. 2014, 104, 091114. [Google Scholar] [CrossRef]
- Cui, R.; Wu, H.; Dong, L.; Chen, W.; Tittel, F.K. Multiple-sound-source-excitation quartz-enhanced photoacoustic spectroscopy based on a single-line spot pattern multi-pass cell. Appl. Phys. Lett. 2021, 118, 161101. [Google Scholar] [CrossRef]
- Li, B.; Feng, C.; Wu, H.; Jia, S.; Dong, L. Calibration-free mid-infrared exhaled breath sensor based on BF-QEPAS for real-time ammonia measurements at ppb level. Sens. Actuators B Chem. 2022, 358, 131510. [Google Scholar] [CrossRef]
- Yin, X.; Dong, L.; Wu, H.; Gao, M.; Zhang, L.; Zhang, X.; Liu, L.; Shao, X.; Tittel, F.K. Compact QEPAS humidity sensor in SF6 buffer gas for high-voltage gas power systems. Photoacoustics 2022, 25, 100319. [Google Scholar] [CrossRef]
- Ma, Y.; He, Y.; Tong, Y.; Yu, X.; Tittel, F.K. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Opt. Express 2018, 26, 32103–32110. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Ma, Y.; Tong, Y.; Yu, X.; Tittel, F.K. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell. Opt. Lett. 2019, 44, 1904–1907. [Google Scholar] [CrossRef]
- Ma, Y.; He, Y.; Patimisco, P.; Sampaolo, A.; Qiao, S.; Yu, X.; Tittel, F.K.; Spagnolo, V. Ultra-high sensitive trace gas detection based on light-induced thermoelastic spectroscopy and a custom quartz tuning fork. Appl. Phys. Lett. 2020, 116, 011103. [Google Scholar] [CrossRef]
- Hu, L.; Zheng, C.; Zhang, Y.; Zheng, J.; Wang, Y.; Tittel, F.K. Compact all-fiber light-induced thermoelastic spectroscopy for gas sensing. Opt. Lett. 2020, 45, 1894–1897. [Google Scholar] [CrossRef]
- Wei, T.; Zifarelli, A.; Russo, S.D.; Wu, H.; Menduni, G.; Patimisco, P.; Sampaolo, A.; Spagnolo, V.; Dong, L. High and flat spectral responsivity of quartz tuning fork used as infrared photodetector in tunable diode laser spectroscopy. Appl. Phys. Rev. 2021, 8, 041409. [Google Scholar] [CrossRef]
- Lou, C.; Liu, X.; Wang, Y.; Li, R.; Huang, L.; Liu, X. Miniature quartz tuning fork-based broad spectral coverage and high detectivity infrared spectroscopy. Infrared Phys. Technol. 2022, 126, 104322. [Google Scholar] [CrossRef]
- Pohlkötter, A.; Willer, U.; Bauer, C.; Schade, W. Resonant tuning fork detector for electromagnetic radiation. Appl. Opt. 2008, 48, B119–B125. [Google Scholar] [CrossRef] [PubMed]
- Willer, U.; Pohlkötter, A.; Schade, W.; Xu, J.; Losco, T.; Green, R.P.; Tredicucci, A.; Beere, H.E.; Ritchie, D. Resonant tuning fork detector for THz radiation. Opt. Express 2009, 17, 14069–14074. [Google Scholar] [CrossRef] [PubMed]
- Van Neste, C.W.; Senesac, L.R.; Thundat, T. Standoff photoacoustic spectroscopy. Appl. Phys. Lett. 2008, 92, 234102. [Google Scholar] [CrossRef]
- Van Neste, C.W.; Senesac, L.R.; Thundat, T. Standoff Spectroscopy of Surface Adsorbed Chemicals. Anal. Chem. 2009, 81, 1952–1956. [Google Scholar] [CrossRef]
- Spajer, M.; Cavallier, B.; Euphrasie, S.; Matten, G.; Vacheret, X.; Vairac, P.; Vernier, D.; Jalocha, A. Thermoelastic investigation of a quartz tuning fork used in infrared spectroscopy. Appl. Phys. Lett. 2013, 103, 201111. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Zhou, S.; Zhang, L.; Yu, B.; Fischer, H.; Ren, W.; Li, J. Standoff detection of VOCs using external cavity quantum cascade laser spectroscopy. Laser Phys. Lett. 2018, 15, 085701. [Google Scholar] [CrossRef]
- Sharma, R.C.; Kumar, S.; Parmar, A.; Mann, M.; Prakash, S.; Thakur, S.N. Standoff pump-probe photothermal detection of hazardous chemicals. Sci. Rep. 2020, 10, 15053. [Google Scholar] [CrossRef]
- Van Neste, C.W.; Morales-Rodríguez, M.E.; Senesac, L.R.; Mahajan, S.M.; Thundat, T. Quartz crystal tuning fork photoacoustic point sensing. Sens. Actuators B Chem. 2010, 150, 402–405. [Google Scholar] [CrossRef]
- Sun, J.; Deng, H.; Liu, N.; Wang, H.; Yu, B.; Li, J. Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser. Rev. Sci. Instrum. 2016, 87, 123101. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, J.; Cong, Z.; Wang, Z. Application of Quartz Tuning Fork in Photodetector Based on Photothermal Effect. IEEE Photo. Technol. Lett. 2019, 31, 1592–1595. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, N.; Zhang, L.; He, T.; Yu, B.; Li, J. Realization of a infrared detector free of bandwidth limit based on quartz crystal tuning fork. Opt. Laser Technol. 2019, 113, 261–265. [Google Scholar] [CrossRef]
- Li, J.; Liu, N.; Ding, J.; Zhou, S.; He, T.; Zhang, L. Piezoelectric effect-based detector for spectroscopic application. Opt. Lasers Eng. 2019, 115, 141–148. [Google Scholar] [CrossRef]
- Lou, C.; Liu, X.; Wang, Y.; Zhang, Y.; Li, Y.; Yao, J.; Chang, C.; Ma, Y.; Liu, X. Ultra-broadband optical detection from the visible to the terahertz range using a miniature quartz tuning fork. Opt. Lett. 2022, 47, 1875–1878. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Wu, H.; Dong, L.; Cui, R.; Jia, S. Palm-sized methane TDLAS sensor based on a mini-multi-pass cell and a quartz tuning fork as a thermal detector. Opt. Express 2021, 29, 12357–12364. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhou, S.; Liu, N.; Zhang, M.; Liang, J.; Li, J. Multigas Sensing Technique Based on Quartz Crystal Tuning Fork-Enhanced Laser Spectroscopy. Anal. Chem. 2020, 92, 14153–14163. [Google Scholar] [CrossRef]
- Liu, X.; Qiao, S.; Ma, Y. Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 µm diode laser and adaptive Savitzky-Golay filtering. Opt. Express 2022, 30, 1304–1313. [Google Scholar] [CrossRef]
- Zheng, K.; Zheng, C.; Hu, L.; Guan, G.; Ma, Y.; Song, F.; Zhang, Y.; Wang, Y.; Tittel, F.K. Light-induced off-axis cavity-enhanced thermoelastic spectroscopy in the near-infrared for trace gas sensing. Opt. Express 2021, 29, 23213–23224. [Google Scholar] [CrossRef]
- Mi, Y.; Ma, Y. Ultra-Highly Sensitive Ammonia Detection Based on Light-Induced Thermoelastic Spectroscopy. Sensors 2021, 21, 4548. [Google Scholar] [CrossRef]
- Ma, Y.; Lang, Z.; He, Y.; Qiao, S.; Li, Y. Ultra-Highly Sensitive Hydrogen Chloride Detection Based on Quartz-Enhanced Photothermal Spectroscopy. Sensors 2021, 21, 3563. [Google Scholar] [CrossRef]
- Xu, L.; Liu, N.; Zhou, S.; Zhang, L.; Yu, B.; Fischer, H.; Li, J. Dual-frequency modulation quartz crystal tuning fork–enhanced laser spectroscopy. Opt. Express 2020, 28, 5648–5657. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; He, T.; Zhou, S.; Zhang, L.; Li, J. Quartz tuning fork-based photodetector for mid-infrared laser spectroscopy. Appl. Phys. B 2018, 124, 78. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, J.; Cong, Z.; Wang, Z. Long-path quartz tuning fork enhanced photothermal spectroscopy gas sensor using a high power Q-switched fiber laser. Measurement 2020, 156, 107601. [Google Scholar] [CrossRef]
- Yang, G.; Xu, L.; Liang, H.; Li, J. Quartz-Tuning-Fork-Enhanced Spectroscopy Based on Fast Fourier Transform Algorithm. Front. Phys. 2020, 8, 582503. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Liu, N.; Zhou, S. Quartz crystal tuning fork based 2f/1f wavelength modulation spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 267, 120608. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zheng, C.; Hu, L.; Zheng, K.; Song, F.; Zhang, Y.; Wang, Y.; Tittel, F.K. High-robustness near-infrared methane sensor system using self-correlated heterodyne-based light-induced thermoelastic spectroscopy. Sens. Actuators B Chem. 2022, 370, 132429. [Google Scholar] [CrossRef]
- Zhang, Q.; Gong, W.; Chang, J.; Wei, Y.; Zhang, T.; Wang, Z.; Li, Y.; Zhang, W.; Liu, T. Long-distance free space gas detection system based on QEPTS technique for CH4 leakage monitoring. Infrared Phys. Technol. 2022, 122, 104091. [Google Scholar] [CrossRef]
- Liu, X.; Qiao, S.; Han, G.; Liang, J.; Ma, Y. Highly sensitive HF detection based on absorption enhanced light-induced thermoelastic spectroscopy with a quartz tuning fork of receive and shallow neural network fitting. Photoacoustics 2022, 28, 100422. [Google Scholar] [CrossRef]
- He, Q.; Zheng, C.; Liu, H.; Li, B.; Wang, Y.; Tittel, F.K. A near-infrared acetylene detection system based on a 1.534 μm tunable diode laser and a miniature gas chamber. Infrared Phys. Technol. 2016, 75, 93–99. [Google Scholar] [CrossRef]
- Ma, Y.; He, Y.; Zhang, L.; Yu, X.; Zhang, J.; Sun, R.; Tittel, F.K. Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork. Appl. Phys. Lett. 2017, 110, 031107. [Google Scholar] [CrossRef]
- Cui, R.; Dong, L.; Wu, H.; Ma, W.; Xiao, L.; Jia, S.; Chen, W.; Tittel, F.K. Three-Dimensional Printed Miniature Fiber-Coupled Multipass Cells with Dense Spot Patterns for ppb-Level Methane Detection Using a Near-IR Diode Laser. Anal. Chem. 2020, 92, 13034–13041. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Qiao, S.; He, Y.; Lang, Z.; Ma, Y. Quartz-enhanced photoacoustic-photothermal spectroscopy for trace gas sensing. Opt. Express 2021, 29, 5121–5127. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, N.; Zhou, S.; Zhang, L.; Li, J. Dual-spectroscopy technique based on quartz crystal tuning fork detector. Sens. Actuators A Phys. 2020, 304, 111873. [Google Scholar] [CrossRef]
- Zheng, H.; Lin, H.; Dong, L.; Huang, Z.; Gu, X.; Tang, J.; Dong, L.; Zhu, W.; Yu, J.; Chen, Z. Quartz-Enhanced Photothermal-Acoustic Spectroscopy for Trace Gas Analysis. Appl. Sci. 2019, 9, 4021. [Google Scholar] [CrossRef] [Green Version]
- Qiao, S.; He, Y.; Ma, Y. Trace gas sensing based on single-quartz-enhanced photoacoustic–photothermal dual spectroscopy. Opt. Lett. 2021, 46, 2449–2452. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tian, C.; Qian, S.; Yu, Y.; Chang, J.; Zhang, Q.; Feng, Y.; Li, H.; Feng, Z. A comprehensive dual-spectroscopy detection technique based on TDLAS and QEPAS using a quartz tuning fork. Opt. Laser Technol. 2022, 145, 107483. [Google Scholar] [CrossRef]
- Liang, T.; Qiao, S.; Lang, Z.; Ma, Y. Highly Sensitive Trace Gas Detection Based on In-Plane Single-Quartz-Enhanced Dual Spectroscopy. Sensors 2022, 22, 1035. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, J.; Cong, Z.; Wang, Z. Quartz tuning fork enhanced photothermal spectroscopy gas detection system with a novel QTF-self-difference technique. Sens. Actuators A Phys. 2019, 209, 111629. [Google Scholar] [CrossRef]
- Lang, Z.; Qiao, S.; He, Y.; Ma, Y. Quartz tuning fork-based demodulation of an acoustic signal induced by photo-thermo-elastic energy conversion. Photoacoustics 2021, 22, 100272. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, Y.; Qiao, S.; Lang, Z.; Liu, X.; He, Y.; Spagnolo, V. Quartz tuning forks resonance frequency matching for laser spectroscopy sensing. Photoacoustics 2022, 25, 100329. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, X.; Yu, G.; Li, X.; Zhang, J.; Chen, D.; Sun, R.; Tittel, F.K. Multi-quartz-enhanced photoacoustic spectroscopy. Appl. Phys. Lett. 2015, 107, 021106. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Hu, Y.; Qiao, S.; He, Y.; Tittel, F.K. Trace gas sensing based on multi-quartz-enhanced photothermal spectroscopy. Photoacoustics 2020, 20, 100206. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Xu, L.; Chen, K.; Zhang, L.; Yu, B.; Jiang, T.; Li, J. Absorption spectroscopy gas sensor using a low-cost quartz crystal tuning fork with an ultrathin iron doped cobaltous oxide coating. Sens. Actuators B Chem. 2021, 326, 128951. [Google Scholar] [CrossRef]
- Lou, C.; Yang, X.; Li, X.; Chen, H.; Chang, C.; Liu, X. Graphene-Enhanced Quartz Tuning Fork for Laser-Induced Thermoelastic Spectroscopy. IEEE Sens. J. 2021, 21, 9819–9824. [Google Scholar] [CrossRef]
- Lou, C.; Li, X.; Chen, H.; Yang, X.; Zhang, Y.; Yao, J.; Liu, X. Polymer-coated quartz tuning fork for enhancing the sensitivity of laser-induced thermoelastic spectroscopy. Opt. Express 2021, 29, 12195–12205. [Google Scholar] [CrossRef]
- Lou, C.; Chen, H.; Li, X.; Yang, X.; Zhang, Y.; Yao, J.; Ma, Y.; Chang, C.; Liu, X. Graphene oxide and polydimethylsiloxane coated quartz tuning fork for improved sensitive near- and mid-infrared detection. Opt. Express 2021, 29, 20190–20204. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, K.; Xu, L.; Yu, B.; Jiang, T.; Li, J. Ultrathin two-dimensional Fe-doped cobaltous oxide as a piezoelectric enhancement mechanism in quartz crystal tuning fork (QCTF) photodetectors. Opt. Lett. 2021, 46, 496–499. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, T.; Lou, C.; Liu, X.; Li, X.; Huang, L.; Yao, J.; Liu, X. Carbon-based light-induced thermoelastic spectroscopy for ammonia gas sensing. Microw. Opt. Technol. Lett. 2022, 2022, 1–7. [Google Scholar] [CrossRef]
- Lou, C.; Wang, Y.; Zhang, Y.; Liu, X.; Huang, L.; Yao, J.; Chang, C.; Liu, X. Reduced Graphene Oxide/Polydimethylsiloxane as an Over-Coating Layer on Quartz Tuning Fork for Sensitive Light-Induced Thermoelastic Spectroscopy. IEEE Sens. J. 2022, 22, 10459–10464. [Google Scholar] [CrossRef]
- Patimisco, P.; Borri, S.; Sampaolo, A.; Beere, H.E.; Ritchie, D.A.; Vitiello, M.S.; Scamarcio, G.; Spagnolo, V. A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser. Analyst 2014, 139, 2079–2087. [Google Scholar] [CrossRef]
- Duquesnoy, M.; Aoust, G.; Melkonian, J.-M.; Lévy, R.; Raybaut, M.; Godard, A. Quartz Enhanced Photoacoustic Spectroscopy Based on a Custom Quartz Tuning Fork. Sensors 2019, 19, 1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, B.; Zifarelli, A.; Wu, H.; Russo, S.D.; Li, S.; Patimisco, P.; Dong, L.; Spagnolo, V. Mid-Infrared Quartz-Enhanced Photoacoustic Sensor for ppb-Level CO Detection in a SF6 Gas Matrix Exploiting a T-Grooved Quartz Tuning Fork. Anal. Chem. 2020, 92, 13922–13929. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.D.; Sampaolo, A.; Patimisco, P.; Menduni, G.; Giglio, M.; Hoelzl, C.; Passaro, V.M.; Wu, H.; Dong, L.; Spagnolo, V. Quartz-enhanced photoacoustic spectroscopy exploiting low-frequency tuning forks as a tool to measure the vibrational relaxation rate in gas species. Photoacoustics 2021, 21, 100227. [Google Scholar] [CrossRef] [PubMed]
- Sampaolo, A.; Patimisco, P.; Giglio, M.; Zifarelli, A.; Wu, H.; Dong, L.; Spagnolo, V. Quartz-enhanced photoacoustic spectroscopy for multi-gas detection: A review. Anal. Chim. Acta 2022, 1202, 338894. [Google Scholar] [CrossRef]
- Li, S.; Lu, J.; Shang, Z.; Zeng, X.; Yuan, Y.; Wu, H.; Pan, Y.; Sampaolo, A.; Patimisco, P.; Spagnolo, V.; et al. Compact quartz-enhanced photoacoustic sensor for ppb-level ambient NO2 detection by use of a high-power laser diode and a grooved tuning fork. Photoacoustics 2022, 25, 100325. [Google Scholar] [CrossRef]
- Hayden, J.; Giglio, M.; Sampaolo, A.; Spagnolo, V.; Lendl, B. Mid-infrared intracavity quartz-enhanced photoacoustic spectroscopy with pptv–Level sensitivity using a T-shaped custom tuning fork. Photoacoustics 2022, 25, 100330. [Google Scholar] [CrossRef]
- Russo, S.D.; Zifarelli, A.; Patimisco, P.; Sampaolo, A.; Wei, T.; Wu, H.; Dong, L.; Spagnolo, V. Light-induced thermo-elastic effect in quartz tuning forks exploited as a photodetector in gas absorption spectroscopy. Opt. Express 2020, 28, 19074–19084. [Google Scholar] [CrossRef]
- Qiao, S.; Ma, Y.; He, Y.; Patimisco, P.; Sampaolo, A.; Spagnolo, V. Ppt level carbon monoxide detection based on light-induced thermoelastic spectroscopy exploring custom quartz tuning forks and a mid-infrared QCL. Opt. Express 2021, 29, 25100–25108. [Google Scholar] [CrossRef]
- Qiao, S.; Sampaolo, A.; Patimisco, P.; Spagnolo, V.; Ma, Y. Ultra-highly sensitive HCl-LITES sensor based on a low-frequency quartz tuning fork and a fiber-coupled multi-pass cell. Photoacoustics 2022, 27, 100381. [Google Scholar] [CrossRef]
- Patimisco, P.; Sampaolo, A.; Dong, L.; Giglio, M.; Scamarcio, G.; Tittel, F.; Spagnolo, V. Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing. Sens. Actuators B Chem. 2016, 227, 539–546. [Google Scholar] [CrossRef]
- Patimisco, P.; Sampaolo, A.; Giglio, M.; dello Russo, S.; Mackowiak, V.; Rossmadl, H.; Cable, A.; Tittel, F.K.; Spagnolo, V. Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy. Opt. Express 2019, 27, 1401–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giglio, M.; Elefante, A.; Patimisco, P.; Sampaolo, A.; Sgobba, F.; Rossmadl, H.; Mackowiak, V.; Wu, H.; Tittel, F.K.; Dong, L.; et al. Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone. Opt. Express 2019, 27, 4271–4280. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Feng, W.; Qiao, S.; Zhao, Z.; Gao, S.; Wang, Y. Hollow-core anti-resonant fiber based light-induced thermoelastic spectroscopy for gas sensing. Opt. Express 2022, 30, 18836–18844. [Google Scholar] [CrossRef]
- Bojęś, P.; Pokryszka, P.; Jaworski, P.; Yu, F.; Wu, D.; Krzempek, K. Quartz-Enhanced Photothermal Spectroscopy-Based Methane Detection in an Anti-Resonant Hollow-Core Fiber. Sensors 2022, 22, 5504. [Google Scholar] [CrossRef]
- Hu, L.; Zheng, C.; Zhang, M.; Zheng, K.; Zheng, J.; Song, Z.; Li, X.; Zhang, Y.; Wang, Y.; Tittel, F.K. Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy. Photoacoustics 2021, 21, 100230. [Google Scholar] [CrossRef]
- Zheng, K.; Zheng, C.; Hu, L.; Song, F.; Zhang, Y.; Wang, Y.; Tittel, F.K. Near-Infrared Fiber-Coupled Off-Axis Cavity-Enhanced Thermoelastic Spectroscopic Sensor System for In Situ Multipoint Ammonia Leak Monitoring. IEEE Trans. Instrum. Meas. 2021, 70, 9510409. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Y. Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell. Chin. Opt. Lett. 2022, 20, 031201. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, J.; Lu, P.; Sima, C.; Zhang, W.; Fu, L.; Liu, D.; Zhang, J.; Wu, H.; Dong, L. All-optical light-induced thermoacoustic spectroscopy for remote and non-contact gas sensing. Photoacoustics 2022, 27, 100389. [Google Scholar] [CrossRef]
QTF | f [Hz] | Q-Factor | τ [s] | ε [a.u.] |
---|---|---|---|---|
QTF#1 | 7230.3 | 8720 | 0.19 | 161 |
QTF#2 | 9783.8 | 11,510 | 0.19 | 278 |
QTF#3 | 12,460.7 | 10,400 | 0.13 | 290 |
QTF#4 | 3853.8 | 7240 | 0.30 | 83 |
QTF#5 | 2887.5 | 5730 | 0.32 | 59 |
Standard | 32,757.4 | 8630 | 0.04 | 532 |
Sensor Type | Target Gas | Resonance Frequency of QTF (kHz) | Q-Factor | Excitation Wavelength (nm) | Effective Optical Pathlength (m) | Operating Pressure of QTF | MDL (ppm) | NNEA (cm−1 W/√Hz) | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|
Conventional LITES | C2H2 | 30.71 | 12,136 | 1530 | 0.2 | 1 atm | 0.718 @ 1 s | 7.63 × 10−9 | [66] | |
CO | 30.71 | 50,177 | 2330 | 10.1 | 20 Torr | 0.47 @ 60 ms | 7.4 × 10−10 | [67] | ||
CH4 | 32.78 | 27,205 | 1653 | 4.2 | 8 Torr | 0.052 @ 300 ms | 2.1 × 10−8 | [85] | ||
LITES + QEPAS | H2O | ~32 | ~10,000 | 1368 | 1 | 1 atm | ~12 | 8.4 × 10−7 | [104] | |
2 | ~55 | 3.7 × 10−6 | ||||||||
Two-QTF-based LITES | C2H2 | 30.71 | 11,503 | 1530 | 0.2 | 1 atm | 0.97 @ 1 s | / | [112] | |
Material-coated QTF-based LITES | Fe–CoO film-coated QTF | CH4 | 32.73 | 9417 | 1650 | 0.2 | 1 atm | 0.88 @ 1 s | 2.2 × 10−10 | [113] |
Graphene-coated QTF | CO2 | 32.74 | 6823 | 1580 | 20 | 1 atm | 600 @ 100 ms | 5.78 × 10−10 | [114] | |
Custom QTF-based LITES | C2H2 | 9.35 | 9080 | 1530 | 0.2 | 1 atm | ~0.325 @ 1 s | 9.16 × 10−10 | [68] | |
CO | 2.89 | 5454 | 4587 | ~10.13 | 1 atm | 0.75 × 10−3 @ 200 ms | / | [128] | ||
Optical fiber-based LITES | CH4 | 32.76 | 10,476 | 1653 | ~0.3 | 1 atm | ~48.8 @ 300 ms | 9.66 × 10−9 | [69] | |
CH4 | 32.76 | 11,374 | 1653 | ~0.3 | 1 atm | ~11 @ 300 ms | / | [135] | ||
H2S | 32.78 | 10,283 | 1576 | ~3.3 | 1 atm | 0.42 @ 300 ms | 4.6 × 10−10 | [138] |
Technique | Excitation Signal | Multipass Adsorption Cell | Acoustic Micro-Resonator [37] | Target Gas Contacts QTF | Remote Sensing Ability |
---|---|---|---|---|---|
QEPAS | Acoustic wave | Not required | Required (to improve the detection sensitivity) | Required | No |
LITES | Electromagnetic radiation | Required (to improve the detection sensitivity) | Not required | Not required | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Zhao, J.; Lu, P.; Sima, C.; Liu, D. Recent Advances in Light-Induced Thermoelastic Spectroscopy for Gas Sensing: A Review. Remote Sens. 2023, 15, 69. https://doi.org/10.3390/rs15010069
Pan Y, Zhao J, Lu P, Sima C, Liu D. Recent Advances in Light-Induced Thermoelastic Spectroscopy for Gas Sensing: A Review. Remote Sensing. 2023; 15(1):69. https://doi.org/10.3390/rs15010069
Chicago/Turabian StylePan, Yufeng, Jinbiao Zhao, Ping Lu, Chaotan Sima, and Deming Liu. 2023. "Recent Advances in Light-Induced Thermoelastic Spectroscopy for Gas Sensing: A Review" Remote Sensing 15, no. 1: 69. https://doi.org/10.3390/rs15010069
APA StylePan, Y., Zhao, J., Lu, P., Sima, C., & Liu, D. (2023). Recent Advances in Light-Induced Thermoelastic Spectroscopy for Gas Sensing: A Review. Remote Sensing, 15(1), 69. https://doi.org/10.3390/rs15010069