Ground Surface Freezing and Thawing Index Distribution in the Qinghai-Tibet Engineering Corridor and Factors Analysis Based on GeoDetector Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Reanalysis Datasets
2.2.2. Topographic Data and Site Selection
2.3. Methods
2.3.1. Freezing Index, Thawing Index, and N-Factors
2.3.2. GeoDetector
2.3.3. Statistical Model
3. Results
3.1. Statistical Analysis of Differences between GST and LST Obtained from Reanalyzed Dataset
3.2. Obtain the N-Factors in the QTEC Based on Relationship between GFI (or GTI) and LFI (or LTI) from In Situ Measurements
3.3. Effect of Environmental Factors on GFI and GTI in the QTEC
3.4. Multi-Factors Quantitative Analysis of the GFI and GTI in the QTEC
4. Discussion
4.1. Differences in the Thermal Condition of the Ground Surface and Land Surface
4.2. Analysis of Driving Factors Affecting Spatial Distribution of GFI and GTI in the QTEC
5. Conclusions
- The freezing and thawing index can amplify the bias of thermal conditions between the ground and land surface. Although there is a high correlation between LST and GST, the error between LFI and GFI reaches 430 °C·d, and the difference between LTI and GTI is 533 °C·d. This will lead to errors in permafrost mapping. The Nf factor and Nt factor between GFI and LFI in the QTEC are approximately 1.088 (r = 0.36, p < 0.05) and 0.554 (r = 0.46, p < 0.05), respectively.
- The explanatory variables for the high consistency (q > 0.1) of the geographical distribution of the GFI and the GTI are different. The strongest explanatory power for the GFI is latitude (q = 0.438), followed by longitude, NDVI, snow duration days, soil moisture, and elevation. Elevation explains 65% of the spatial variation in GTI, followed by soil type, soil moisture, snow duration days, longitude, and latitude. Factor interaction detection indicates that the explanatory power of any two factors on the GFI and GTI is enhanced. The interaction of elevation and latitude have the highest explanatory power for both the GFI and GTI, with q-values of 0.793 and 0.856, respectively.
- Finally, the multiple linear regression equation established for the GFI (or GTI) and environmental factors performed well at the measured sites. The error of this equation is smaller than the error between the LFI (or LTI) and the GFI (or GTI). The N-factors method can greatly improve the accuracy of the ground surface freezing and thawing index.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, X.; Wang, F.; Fan, J.; Ochieng, R.M. Performance of solar chimney power plant in Qinghai-Tibet Plateau. Renew. Sustain. Energy Rev. 2010, 14, 2249–2255. [Google Scholar] [CrossRef]
- Çalışkan, O. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms; National Snow and Ice Data Center: Boulder, CO, USA, 2017. [Google Scholar]
- Yao, T.; Guo, X.; Thompson, L.; Duan, K.; Wang, N.; Pu, J.; Xu, B.; Yang, X.; Sun, W. δ 18O record and temperature change over the past 100 years in ice cores on the Tibetan Plateau. Sci. China Ser. D 2006, 49, 1–9. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.G.; Jiao, K.; Mosley-Thompson, E.; Yang, Z. Recent warming as recorded in the Qinghai-Tibetan cryosphere. Ann. Glaciol. 2017, 21, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zhao, L.; Ding, Y.; Wu, T.; Xiao, Y.; Du, E.; Liu, G.; Qiao, Y. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chin. Sci. Bull. 2012, 57, 4609–4616. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhang, T. Recent permafrost warming on the Qinghai-Tibetan Plateau. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, L.; Li, R.; Wang, Q.; Xie, C.; Pang, Q. Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. Int. J. Climatol. 2013, 33, 920–930. [Google Scholar] [CrossRef]
- Cheng, G.; Wu, T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Niu, F.; Luo, J.; Lin, Z.; Ma, W.; Lu, J. Development and thermal regime of a thaw slump in the Qinghai–Tibet plateau. Cold Reg. Sci. Technol. 2012, 83–84, 131–138. [Google Scholar] [CrossRef]
- Niu, F.; Yin, G.; Luo, J.; Lin, Z.; Liu, M. Permafrost Distribution along the Qinghai-Tibet Engineering Corridor, China Using High-Resolution Statistical Mapping and Modeling Integrated with Remote Sensing and GIS. Remote Sens. 2018, 10, 215. [Google Scholar] [CrossRef] [Green Version]
- Ran, Y.; Li, X.; Jin, R.; Guo, J. Remote Sensing of the Mean Annual Surface Temperature and Surface Frost Number for Mapping Permafrost in China. Arct. Antarct. Alp. Res. 2015, 47, 255–265. [Google Scholar] [CrossRef]
- Gisnås, K.; Etzelmüller, B.; Lussana, C.; Hjort, J.; Sannel, A.B.K.; Isaksen, K.; Westermann, S.; Kuhry, P.; Christiansen, H.H.; Frampton, A.; et al. Permafrost Map for Norway, Sweden and Finland. Permafr. Periglac. Process. 2017, 28, 359–378. [Google Scholar] [CrossRef] [Green Version]
- Juliussen, H.; Humlum, O. Towards a TTOP ground temperature model for mountainous terrain in central-eastern Norway. Permafr. Periglac. Process. 2007, 18, 161–184. [Google Scholar] [CrossRef]
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Duchesne, C. Regional-Scale Permafrost Mapping Using the TTOP Ground Temperature Model. 2003. Available online: https://www.arlis.org/docs/vol1/ICOP/55700698/Pdf/Chapter_218.pdf (accessed on 25 April 2022).
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T. Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Riseborough, D.; Shiklomanov, N.; Etzelmüller, B.; Gruber, S.; Marchenko, S. Recent advances in permafrost modelling. Permafr. Periglac. Process. 2008, 19, 137–156. [Google Scholar] [CrossRef]
- Luo, D.; Liu, L.; Jin, H.; Wang, X.; Chen, F. Characteristics of ground surface temperature at Chalaping in the Source Area of the Yellow River, northeastern Tibetan Plateau. Agric. For. Meteorol. 2019, 281, 107819. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, T.; Frauenfeld, O.W.; Du, R.; Wei, Q.; Liang, B. Soil freeze depth variability across Eurasia during 1850–2100. Clim. Chang. 2019, 158, 531–549. [Google Scholar] [CrossRef]
- Klene, A.E.; Nelson, F.E.; Shiklomanov, N.I.; Hinkel, K.M. The N-factor in Natural Landscapes: Variability of Air and Soil-Surface Temperatures, Kuparuk River Basin, Alaska, U.S.A. Arct. Antarct. Alp. Res. 2001, 33, 140–148. [Google Scholar] [CrossRef]
- Luo, D.; Jin, H.; Wu, Q.; Bense, V.F.; He, R.; Ma, Q.; Gao, S.; Jin, X.; Lu, L. Thermal regime of warm-dry permafrost in relation to ground surface temperature in the Source Areas of the Yangtze and Yellow rivers on the Qinghai-Tibet Plateau, SW China. Sci. Total Environ. 2018, 618, 1033–1045. [Google Scholar] [CrossRef]
- Hachem, S.; Allard, M.; Duguay, C. Using the MODIS land surface temperature product for mapping permafrost: An application to northern Québec and Labrador, Canada. Permafr. Periglac. Process. 2009, 20, 407–416. [Google Scholar] [CrossRef]
- Li, A.; Xia, C.; Bao, C.; Yin, G. Using MODIS Land Surface Temperatures for Permafrost Thermal Modeling in Beiluhe Basin on the Qinghai-Tibet Plateau. Sensors 2019, 19, 4200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, C.; LaRocque, A.; Leblon, B.; Zhang, Y.; Webster, K.; McLaughlin, J. Modelling and mapping permafrost at high spatial resolution using Landsat and Radarsat-2 images in Northern Ontario, Canada: Part 2—Regional mapping. Int. J. Remote Sens. 2016, 37, 2751–2779. [Google Scholar] [CrossRef]
- Bense, V.F.; Read, T.; Verhoef, A. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux. Agric. For. Meteorol. 2016, 220, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Liu, T. A summarization of formulas of calculating frozen or melted depth abroad (in Chinese). J. Glaciol. Geocryol. 1983, 5, 85–95. [Google Scholar]
- Luo, D.; Jin, H.; Marchenko, S.S.; Romanovsky, V.E. Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau. Geoderma 2018, 312, 74–85. [Google Scholar] [CrossRef]
- Anselin, L. Thirty years of spatial econometrics. Pap. Reg. Sci. 2010, 89, 3–25. [Google Scholar] [CrossRef]
- Fischer, M.; Wang, J. Spatial Data Analysis: Models, Methods and Techniques; Springer Science & Business Media: Cham, Switzerland, 2011. [Google Scholar]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, W.; Samat, A.; Abuduwaili, J.; Ge, Y. Quantifying the influences of land surface parameters on LST variations based on GeoDetector model in Syr Darya Basin, Central Asia. J. Arid. Environ. 2021, 186, 104415. [Google Scholar] [CrossRef]
- Xu, L.; Du, H.; Zhang, X. Driving forces of carbon dioxide emissions in China’s cities: An empirical analysis based on the geodetector method. J. Clean. Prod. 2021, 287, 125169. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; He, M.; Christakos, G. Beyond mere pollution source identification: Determination of land covers emitting soil heavy metals by combining PCA/APCS, GeoDetector and GIS analysis. Catena 2020, 185, 104297. [Google Scholar] [CrossRef]
- Zhao, R.; Zhan, L.; Yao, M.; Yang, L. A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2.5. Sustain. Cities Soc. 2020, 56, 102106. [Google Scholar] [CrossRef]
- Jin, H.-j.; Yu, Q.-h.; Wang, S.-l.; Lü, L.-z. Changes in permafrost environments along the Qinghai–Tibet engineering corridor induced by anthropogenic activities and climate warming. Cold Reg. Sci. Technol. 2008, 53, 317–333. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, T.; Liu, Y. Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010. Cryosphere 2012, 6, 607–612. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Jin, L.; Wang, H. Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor Since 2000 Induced by Climate Change and Human Activities. Remote Sens. 2018, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.; Xiaodong, Z.; Wenbin, T.; Lirong, D.; Jin, M.; Xu, Z. Daily 1-km All-Weather Land Surface Temperature Dataset for Western China (TRIMS LST-TP; 2000–2021) V2; National Tibetan Plateau Data Center: Beijing, China, 2019; Available online: https://data.tpdc.ac.cn/home (accessed on 25 April 2022).
- Zhang, X.; Zhou, J.; Göttsche, F.M.; Zhan, W.; Liu, S.; Cao, R. A Method Based on Temporal Component Decomposition for Estimating 1-km All-Weather Land Surface Temperature by Merging Satellite Thermal Infrared and Passive Microwave Observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4670–4691. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Liang, S.; Wang, D. A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature. Remote Sens. Environ. 2021, 260, 112437. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Zhan, W.; Gottsche, F.-M.; Liu, S.; Olesen, F.-S.; Hu, W.; Dai, F. A Thermal Sampling Depth Correction Method for Land Surface Temperature Estimation From Satellite Passive Microwave Observation Over Barren Land. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4743–4756. [Google Scholar] [CrossRef]
- Hu, Z.; Chai, L.; Crow, W.T.; Liu, S.; Zhu, Z.; Zhou, J.; Qu, Y.; Liu, J.; Yang, S.; Lu, Z. Applying a Wavelet Transform Technique to Optimize General Fitting Models for SM Analysis: A Case Study in Downscaling over the Qinghai–Tibet Plateau. Remote Sens. 2022, 14, 3063. [Google Scholar] [CrossRef]
- Qu, Y.; Zhu, Z.; Montzka, C.; Chai, L.; Liu, S.; Ge, Y.; Liu, J.; Lu, Z.; He, X.; Zheng, J.; et al. Inter-comparison of several soil moisture downscaling methods over the Qinghai-Tibet Plateau, China. J. Hydrol. 2021, 592, 125616. [Google Scholar] [CrossRef]
- Linna, C.; Zhongli, Z.; Shaomin, L. Daily 0.01° × 0.01° Land Surface Soil Moisture Dataset of the Qinghai-Tibet Plateau (2005, 2010, 2015, 2017a nd 2018) (SMHiRes, V1). 2020. Available online: https://data.tpdc.ac.cn/home (accessed on 25 April 2022).
- Xu, X. Spatial Distribution Dataset of Annual Normalized Difference Vegetation Index (NDVI) in China; 2018. Available online: https://www.resdc.cn/ (accessed on 1 April 2022).
- Nachtergaele, F.O.; Velthuizen, H.V.; Wiberg, D.; Batjes, N.H.; Dijkshoorn, J.A.; Engelen, V.W.P.v.; Fischer, G.; Jones, A.; Montanarela, L.; Petri, M.; et al. Harmonized World Soil Database (HWSD). 2014. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 1 April 2022).
- Tang, Z.; Deng, G.; Hu, G.; Zhang, H.; Pan, H.; Sang, G. Satellite observed spatiotemporal variability of snow cover and snow phenology over high mountain Asia from 2002 to 2021. J. Hydrol. 2022, 613, 128438. [Google Scholar] [CrossRef]
- Tang, Z.; Deng, G. Daily Cloud-Free MODIS NDSI and Snow Phenology Dataset over High Mountain Asia (2000–2021); 2022. Available online: https://data.tpdc.ac.cn/en/data/70e403c0-0378-4034-9e7a-3b53b5a52126/ (accessed on 1 April 2022).
- Cheng, G.; Zhao, L.; Li, R. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau (In Chinese). Chin. Sci. Bull. 2019, 64, 2783–2795. [Google Scholar]
- Zhao, L.; Zou, D.; Hu, G.; Du, E.; Pang, Q.; Xiao, Y.; Li, R.; Sheng, Y.; Wu, X.; Sun, Z.; et al. Changing climate and the permafrost environment on the Qinghai–Tibet (Xizang) plateau. Permafr. Periglac. Process. 2020, 31, 396–405. [Google Scholar] [CrossRef]
- Zhao, L.; Zou, D.; Hu, G.; Wu, T.; Du, E.; Liu, G.; Xiao, Y.; Li, R.; Pang, Q.; Qiao, Y.; et al. A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China. Earth Syst. Sci. Data 2021, 13, 4207–4218. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, G.; Zou, D.; Wu, T.; Du, E.; Liu, G.; Xiao, Y.; Li, R.; Pang, Q.; Qiao, Y.; et al. A synthesis Dataset of Permafrost for the Qinghai-Xizang (Tibet) Plateau, China (2002–2018); 2021. Available online: https://data.tpdc.ac.cn/en/data/789e838e-16ac-4539-bb7e-906217305a1d/ (accessed on 1 April 2022).
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Ma, S.; Yang, B.; Zhao, J.; Tan, C.; Chen, J.; Mei, Q.; Hou, X. Hydrothermal Dynamics of Seasonally Frozen Soil With Different Vegetation Coverage in the Tianshan Mountains. Front. Earth Sci. 2022, 9, 806309. [Google Scholar] [CrossRef]
- Hachem, S.; Duguay, C.R.; Allard, M. Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. Cryosphere 2012, 6, 51–69. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.P.; Estop-Aragones, C.; Thierry, A.; Charman, D.J.; Wolfe, S.A.; Hartley, I.P.; Murton, J.B.; Williams, M.; Phoenix, G.K. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Glob. Chang. Biol. 2016, 22, 3127–3140. [Google Scholar] [CrossRef] [Green Version]
- Zorigt, M.; Myagmar, K.; Orkhonselenge, A.; van Beek, E.; Kwadijk, J.; Tsogtbayar, J.; Yamkhin, J.; Dechinlkhundev, D. Modeling permafrost distribution over the river basins of Mongolia using remote sensing and analytical approaches. Environ. Earth Sci. 2020, 79, 308. [Google Scholar] [CrossRef]
- Gisnås, K.; Etzelmüller, B.; Farbrot, H.; Schuler, T.V.; Westermann, S. CryoGRID 1.0: Permafrost Distribution in Norway estimated by a Spatial Numerical Model. Permafr. Periglac. Process. 2013, 24, 2–19. [Google Scholar] [CrossRef] [Green Version]
- Gisnås, K.; Westermann, S.; Schuler, T.V.; Litherland, T.; Isaksen, K.; Boike, J.; Etzelmüller, B. A statistical approach to represent small-scale variability of permafrost temperatures due to snow cover. Cryosphere 2014, 8, 2063–2074. [Google Scholar] [CrossRef] [Green Version]
- Sannel, A.B.K.; Hugelius, G.; Jansson, P.; Kuhry, P. Permafrost Warming in a Subarctic Peatland—Which Meteorological Controls are Most Important? Permafr. Periglac. Process. 2016, 27, 177–188. [Google Scholar] [CrossRef]
- Gisnås, K.; Westermann, S.; Schuler, T.V.; Melvold, K.; Etzelmüller, B. Small-scale variation of snow in a regional permafrost model. Cryosphere 2016, 10, 1201–1215. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Lai, Y.; Fortier, D.; Harris, S.A. Impacts of snow cover on the pattern and velocity of air flow in air convection embankments of sub-Arctic regions. Renew. Energy 2022, 199, 1033–1046. [Google Scholar] [CrossRef]
- Chen, L.; Voss, C.I.; Fortier, D.; McKenzie, J.M. Surface energy balance of sub-Arctic roads with varying snow regimes and properties in permafrost regions. Permafr. Periglac. Process. 2021, 32, 681–701. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R.; Armstrong, R.; Zhang, T. Snow depth derived from passive microwave remote-sensing data in China. Ann. Glaciol. 2008, 49, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Deng, J.; Wang, W.; Feng, Q.; Liang, T. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau. Remote Sens. Environ. 2017, 190, 274–288. [Google Scholar] [CrossRef]
Factor | Dataset | Time Range | Resolution |
---|---|---|---|
LST | Data of LST, using the Thermal and Reanalysis Integrating Moderate-Resolution Spatial-Seamless LST—Tibetan Plateau | 2008-2020 | 1 km |
Soil moisture | Daily 0.01° × 0.01° Land Surface Soil Moisture Dataset of the Qinghai–Tibet Plateau (2005, 2010, 2015, 2017, and 2018) | 2010, 2015, 2017, 2018 | 0.01° |
NDVI | Annual Normalized Difference Vegetation Index (NDVI) Spatial Distribution Dataset in China | 2008–2018 | 1 km |
Soil type | Harmonized World Soil Database v1.2 (HWSD) | \ | 0.0083° |
SDD | Daily cloud-free MODIS NDSI and snow phenology dataset over High Mountain Asia | 2008–2020 | 500 m |
DEM (slope, aspect, longitude, latitude, elevation) | SRTM DEM 90 m | \ | 90 m |
Interaction Type | Description |
---|---|
Weaken, univariate | Min(q (X1), q (X2)) < q(X1 ∩ X2) < Max(q (X1), q (X2)) |
Weaken, nonlinear | q (X1 ∩ X2) < Min(q (X1), q (X2)) |
Enhance, bivariate | q (X1 ∩ X2) > Max(q (X1), q (X2)) |
Enhance, nonlinear | q (X1 ∩ X2) > q (X1) + q (X2) |
Independent | q (X1 ∩ X2) = q (X1) + q (X2) |
Variable | B (Coefficient) | t Test | p | F test | Adj-R2 |
---|---|---|---|---|---|
Longitude | −41.696 | −23.587 | 0.00 | 79301.344 ** | 0.888 ** |
Latitude | −116.404 | −123.328 | 0.00 | ||
SSD | −0.181 | −16.747 | 0.00 | ||
Soil moisture | −21.447 | −31.827 | 0.00 | ||
Soil type | −10.738 | −23.741 | 0.00 | ||
Elevation | −0.985 | −474.020 | 0.00 | ||
Constant | 13677.763 | 95.128 | 0.00 |
Variable | B (Coefficient) | t Test | p | F test | Adj-R2 |
---|---|---|---|---|---|
Longitude | −69.562 | −25.037 | 0.00 | 39126.193 ** | 0.797 ** |
Latitude | 266.072 | 178.599 | 0.00 | ||
SSD | 1.841 | 104.849 | 0.00 | ||
NDVI | −523.266 | −37.332 | 0.00 | ||
Soil moisture | 84.070 | 45.917 | 0.00 | ||
elevation | 0.596 | 180.990 | 0.00 | ||
constant | −4994.684 | −22.053 | 0.00 |
Methods | MAE (°C·d) | RMSE (°C·d) |
---|---|---|
LFI directly as GFI | 334.15 | 482.64 |
GFI predicted by multiple linear regression | 327.69 | 454.87 |
LTI directly as GTI | 671.99 | 727.1185 |
GTI predicted by multiple linear regression | 236.09 | 267.9592 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Zhao, J.; Chen, J.; Zhang, S.; Dong, T.; Mei, Q.; Hou, X.; Liu, G. Ground Surface Freezing and Thawing Index Distribution in the Qinghai-Tibet Engineering Corridor and Factors Analysis Based on GeoDetector Technique. Remote Sens. 2023, 15, 208. https://doi.org/10.3390/rs15010208
Ma S, Zhao J, Chen J, Zhang S, Dong T, Mei Q, Hou X, Liu G. Ground Surface Freezing and Thawing Index Distribution in the Qinghai-Tibet Engineering Corridor and Factors Analysis Based on GeoDetector Technique. Remote Sensing. 2023; 15(1):208. https://doi.org/10.3390/rs15010208
Chicago/Turabian StyleMa, Shen, Jingyi Zhao, Ji Chen, Shouhong Zhang, Tianchun Dong, Qihang Mei, Xin Hou, and Guojun Liu. 2023. "Ground Surface Freezing and Thawing Index Distribution in the Qinghai-Tibet Engineering Corridor and Factors Analysis Based on GeoDetector Technique" Remote Sensing 15, no. 1: 208. https://doi.org/10.3390/rs15010208
APA StyleMa, S., Zhao, J., Chen, J., Zhang, S., Dong, T., Mei, Q., Hou, X., & Liu, G. (2023). Ground Surface Freezing and Thawing Index Distribution in the Qinghai-Tibet Engineering Corridor and Factors Analysis Based on GeoDetector Technique. Remote Sensing, 15(1), 208. https://doi.org/10.3390/rs15010208